2.1-4. Consider the problem of adding two \(n \)-bit binary integers, stored in two \(n \)-element arrays \(A \) and \(B \). The sum of the two integers should be stored in binary form in an \((n+1) \)-element array \(C \). State the problem formally and write pseudocode for adding the two integers.

Solution:

Declaration of \(A \), \(B \) and \(C \):

\(A[0] \ldots A[n-1] \) (length = \(n \))

\(B[0] \ldots B[n-1] \) (length = \(n \))

\(C[0] \ldots C[n] \) (length = \(n+1 \))

\(A[0] \) and \(B[0] \) are the most significant bits.

Pseudocode:

\[
\text{Carry} = 0 \\
\text{For } i = n - 1 \text{ to } 0 \\
\quad C[i+1] = (A[i] + B[i] + \text{Carry}) \mod 2 \\
\quad \text{Carry} = (A[i] + B[i] + \text{Carry}) / 2 \\
\text{C}[0] = \text{Carry}
\]

2.3.6. Observe that the \textbf{while} loop of lines 5–7 of the INSERTION-SORT procedure in Section 2.1 uses a linear search to scan (backward) through the sorted subarray \(A[1…j-1] \). Can we use a binary search (see Exercise 2.3-5) instead to improve the overall worst-case running time of insertion sort to \(\Theta(n \lg n) \)?

Solution:

No. Although you can find the position of \(A[j] \) in \(O(\lg j) \), you need to move \(j-1 \) elements in the worst case. So, binary search cannot improve the overall worst-case running time of insertion sort to \(\Theta(n \lg n) \).