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Abstract—Localization is an essential and important research issue in wireless sensor networks (WSNs). Most localization schemes

focus on static sensor networks. However, mobile sensors are required in some applications such that the sensed area can be

enlarged. As such, a localization scheme designed for mobile sensor networks is necessary. In this paper, we propose a localization

scheme to improve the localization accuracy of previous work. In this proposed scheme, the normal nodes without location information

can estimate their own locations by gathering the positions of location-aware nodes (anchor nodes) and the one-hop normal nodes

whose locations are estimated from the anchor nodes. In addition, we propose a scheme that predicts the moving direction of sensor

nodes to increase localization accuracy. Simulation results show that the localization error in our proposed scheme is lower than the

previous schemes in various mobility models and moving speeds.

Index Terms—Localization, mobile sensors, wireless sensor networks.

Ç

1 INTRODUCTION

IN recent years, wireless sensor networks (WSNs) [1], [5]
have been widely used in a wide range of applications

such as military operations, medical treatments, and the
monitoring of animal activity and the environment in the
forest. The basic assumption in many applications is that
sensor nodes have to know their positions. For example,
the sensed data must combine with location information,
for a server instantly to know where an event has
happened. In order to get sensors’ positions, one simple
and precise solution is that each sensor node must carry
Global Positioning System (GPS) equipment. Unfortu-
nately, it is too expensive to realize and is useless indoors.
Moreover, most applications require coarse localization
accuracy. As such, the reasonable solution is that some
nodes of sensor network should be equipped with a GPS
device, while the others get their positions automatically
by a localization scheme. In general, the location-aware
nodes are called anchor nodes, and the remaining nodes are
called normal nodes.

Many localization schemes have been proposed in the
past few years. Most of them are designed for static sensor
networks [11], [13], [14], [20], [26]. However, some
applications assume that sensors are mobile and location-
aware. For example, in target tracking, the sensor nodes
know their areas by tracking locations of moving objects.

In addition, sensor nodes are mobile for enlarging the
sensing region. Thus, a designed localization scheme for
mobile sensor networks is necessary. A Monte Carlo
Localization (MCL) scheme specifically designed for a
mobile sensor network is proposed in [12]. In MCL, all
sensor nodes are mobile. Each normal node collects the
locations of its one-hop and two-hop anchor nodes via
message exchange, and constructs a new possible location
set in each time slot. The possible location set consists of
various coordinates where the normal node may locate.
The possible locations are also constrained by the commu-
nication range of anchor nodes and the moving region of
location set in the previous time slot. However, the
localization error with low anchor density in MCL does
not work well. The Mobile and Static sensor network
Localization (MSL�) [19] is one another range-free algo-
rithm that uses the Monte Carlo method. MSL� improves
localization accuracy by using the location estimation of all
neighbors (not just anchor nodes). The above methods are
time-consuming because they need to keep sampling and
filtering until enough samples are obtained to construct a
new possible location set in each time slot. A bounding-
box (BB) method used to reduce the scope of searching the
candidate samples is proposed in [22].

In this paper, we propose a distributed localization
approach based on the Monte Carlo method to improve the
localization error of previous work. The possible locations
of a normal node are not only constrained from anchor
nodes but also constrained from its one-hop normal nodes
whose locations are estimated from the anchor nodes.
Furthermore, each normal node predicts its moving
direction to filter some impossible positions from the
possible location set. Simulation results show that the
performance of our proposed scheme is better than those of
previous schemes.

The rest of this paper is organized as follows: In Section 2,
we review the related work of localization schemes. In
Section 3, we describe our proposed scheme. Simulation
results are shown in Section 4. Section 5 concludes this paper.
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2 RELATED WORK

The localization schemes can be divided into two categories:
range-based and range-free [25]. The range-based localiza-
tion schemes depend on calculating the absolute distance or
angle between two nodes. Each node can estimate distance
by Time of Arrival (TOA), Time Difference of Arrival
(TDOA), or Received Signal Strength Indicator (RSSI).
Under the TOA and TDOA approaches, we can calculate
the distance between any two sensor nodes according to the
signal propagation time between them and the velocity of
signal. With Angle of Arrival (AOA), the sensor node
usually equips directional antenna and estimates the
relative angle with neighbors. In [15], sensor nodes use
the RSSI value to infer the physical distance. After getting
the distance information, the node estimates its position by
triangulation or rigidity [8], [16].

On the contrary, the sensor node under range-free
schemes estimates its position by network connectivity
instead of absolute distance. Each sensor node confirms the
connectivity with neighbors by transmitting a packet and
estimates its location by gathering information from
neighboring nodes. It only achieves a low level of accuracy
in most situations, but it is easy to implement for WSNs.
Many range-free localization schemes for static sensor
networks have been proposed recently. In most localization
schemes, each normal node estimates its position by
collecting the locations of anchor nodes. The anchor nodes
are divided into near anchors and farther anchors. The normal
nodes can receive messages directly from near anchors.
Conversely, the farther anchors are two-hop away from the
normal nodes.

The authors in [4] proposed a Centroid algorithm. Each
sensor node collects the positions of near anchor nodes and
averages these positions as the estimated location. The
transmission range of a sensor node is also a useful term for
localization scheme [6]. In the Convex Position Estimation
(CPE) algorithm [7] and Distributed Location Estimating
(DLE) algorithm [21], the transmission region of the near
anchor is represented by a square, and the normal node is
located in the overlapping region of multiple squares that is
called the Estimated Rectangle (ER). The estimated location
with CPE and DLE is the central point of the area of ER.

Except for the messages from anchor nodes, the
information received from location-unaware normal nodes
is also useful in localization scheme. In Sextant [9], the
authors proposed the relative constraints from the neigh-
boring normal nodes. Some localization schemes proposed
in [23], [24] increase the accuracy by using the moving
anchor nodes. The anchor node moves around the dis-
tributed field and periodically broadcasts a beacon packet
with its current position. Each normal node can collect more
information from mobile anchors, and then, the localization
error decreases.

The MCL scheme for mobile sensor networks is
proposed in [12]. There are two basic assumptions in
MCL to make the localization problem for mobile sensors
simple. First, the time is divided into several time slots.
Second, the maximum moving distance of every sensor
node in each time slot does not exceed Vmax. In MCL, each
anchor node periodically forwards its actual location to

two-hop neighbors. If a normal node receives messages
from anchors, its location is restricted by anchor constraints
that determine where the normal node is possibly located
inside the region. The anchor constraints can be sorted into
near anchor constraints and farther anchor constraints. A near
anchor constraint is the communication region with
radius R centered on the location of a near anchor. A
farther anchor constraint is the region within (R, 2R)
centered on the location of a farther anchor. After gathering
the locations of anchors, the normal node starts to estimate
its location. The process for estimating the location of a
normal node can be separated into three phases: initial
phase, prediction phase, and filtering phase.

During the initial phase, each normal node constructs a
possible location set L0 ¼ fl00; l10; l20; . . . l49

0 g that consists of
50 coordinate points, called samples, used to represent its
possible located positions. Each normal node in each time
slot t then establishes a new possible location set Lt. In the
prediction phase, each normal node selects new samples
from the circle with radius Vmax centered on each sample of
Lt�1. Since these selected samples are the possible located
positions of the normal node, they must locate within all
near anchor constraints and farther anchor constraints. In
the filtering phase, the impossible samples located outside
the anchor constraints will be removed from the new
location set Lt. For getting enough samples, the prediction
and filtering phases will be repeated until the sample set Lt
is fulfilled by 50 samples. The estimated location of the
normal node is determined by the average of the locations
of 50 samples.

For example, in Fig. 1, assume that a normal node N in
time slot j can receive the location messages transmitted
from anchor nodes A and B. Then, normal node N needs to
generate new samples to represent its possible locations in
current time slot j. The new samples are randomly selected
from the circle with radius Vmax centered on each sample of
the last time slot, where Vmax represents the maximum
moving distance of a normal node during a time slot.
However, the newly selected samples must be located in the
communication range of anchor nodes A and B, as shown
in the shaded region of Fig. 1. For example, LS1 is a valid
sample selected in time slot j� 1. Normal node N will
randomly generate a new sample from the circle with
radius Vmax centered on LS1. The new generated sample
will be verified whether it is located in the communication
range of anchor nodes A and B or not. If the new sample
cannot satisfy the anchor constraint, we will randomly
generate another new sample based on LS1 until a sample
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Fig. 1. An example for choosing valid samples.



can satisfy the constraint. In Fig. 1, S3 is a valid new sample
for LS1 but S1 and S2 are not valid samples, which are not
located in the communication range of anchor nodes A and
B. Normal node N will repeat the above procedures to
replace all the samples generated in time slot j� 1. It may
cost several times of sampling to find a valid sample. After
finding the enough new samples, normal node N can
estimate its current location as the average locations of these
valid samples.

The Monte-Carlo-Localization-Boxed (MCB) scheme
based on MCL is proposed in [2]. The anchor constraints
are bounded by squares, which are called anchor boxes.
Thus, the new samples in time slot t are randomly chosen
from the overlapping rectangle of anchor boxes and the
extended region of previous sample region in time slot
t� 1. The anchor information is not only used in the
filtering phase, but also in the prediction phase. MCB
successfully decreases the probability of choosing wrong
samples and increases the efficiency on sample selection,
but it cannot reduce the localization error if MCB and MCL
have the same number of valid samples.

The sampling approach in MCL successfully draws the
possible locations of normal nodes. However, MCL and
MCB adopt the static number of samples and filter the
impossible samples by using the information from anchors
only. There are two drawbacks in the above methods. First,
in low anchor density, each normal node gets less anchor
constraints, and the estimated location error becomes large.
Second, in high anchor density, each normal node gets more
location constraints from anchors, and the possible located
region of the normal node becomes small. This will increase
the possibility for the selected samples to get close to each
other. If the overlapping region of anchor constraints is
fairly small, a few samples may be enough to represent the
possible located positions of a normal node. Moreover, it is
difficult to find many valid samples in a small region.
Therefore, too many close samples in a small region cannot
increase the localization accuracy, but instead cause un-
necessary waste of memory and computation overhead.

The MSL� scheme [19] is another range-free algorithm
that uses Monte Carlo method. In MSL�, the authors
improve on MCL by using the information from all one-
hop and two-hop neighbors of normal nodes and anchor
nodes. Each normal node adapts information from only
those neighbors that have better location estimated than it.
This modification results in faster convergence of the
localization error and better estimation of the locations.
However, there exist two disadvantages for the MSL�

scheme. First, MSL� has lower location accuracy in higher
mobility environment. Second, MSL� spends a lot of
communication cost in forwarding location information.
In [22], the authors proposed a localization algorithm (BB)
that can reduce the computation cost of obtaining the
samples. The BB scheme can achieve higher location
accuracy under higher density of common neighbor nodes.

3 OUR PROPOSED SCHEME

Since the location of a normal node is estimated from the
average locations of valid samples, the location estimated by
the normal node will be close to its actual position if the valid

samples are near to the actual position of the normal node. In
our Improved MCL (IMCL) localization scheme, we propose
three constraints including anchor constraint, neighbor
constraint, and moving direction constraint to confine the
region of the valid samples near the actual position of the
normal nodes. The assumptions of our scheme are the same
as MCL: time is discrete. A few sensors, called as anchor
nodes, already know their locations. In each time slot, anchor
nodes broadcast their physical locations and the remaining
nodes estimate their locations after gathering location
information from the neighboring nodes. The maximum
moving distance of all nodes during one time slot will not
exceed Vmax, and the communication range of all sensors is
fixed by R.

Our proposed IMCL consists of three phases: sample
selection phase, neighbor constraint exchange phase, and
refinement phase. In each time slot, each normal node
executes these three phases once and gets its estimated
location. In the first phase, each normal node determines
the number of samples by the location information received
from anchors, and then, chooses samples in the possible
location set. In the second phase, each normal node
broadcasts its possible located region to neighbors. In the
last phase, the samples will be refined by neighbor
constraint and moving direction constraint to improve the
localization error. Finally, each normal node can estimate its
location as the average of the locations of samples in the
location set. The detail of each phase is described as follows:

3.1 Sample Selection Phase

In this phase, each normal node gathers the locations of
neighboring anchor nodes and selects samples to represent
its possible located positions. The samples are selected from
the circle with radius Vmax centered on each sample in the
last time slot. The selected samples must be placed in the
sampling region whose sampling points satisfy the near
anchor and farther anchor constraints as shown in the
region with oblique lines of Fig. 2. Note that a sampling
point satisfying near anchor constraint means that the point is
located within the intersection region of near anchors. And
a sampling point satisfying farther anchor constraint means
that the point is within 2R communication range but is not
in R communication range of the farther anchor. For
example, the small triangles in Fig. 2 are valid samples
which satisfy the near anchor constraint and farther anchor
constraint. The valid samples are filtered out and become
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the actual samples to represent the possible positions of a
normal node in this phase. In fact, the sampling region
becomes smaller and the selected samples will be close to
each other if there are more anchor constraints. A lot of
samples located in a small region cannot increase the
localization accuracy, but they will waste memory space
and computation cost. Thus, in IMCL, each normal node
will dynamically adjust the number of the samples, which is
proportional to the area of sampling region.

At the beginning of IMCL, each anchor node broadcasts
its physical location to its one-hop neighbors. This informa-
tion packet will be forwarded to two-hop neighbors of the
anchor nodes. After collecting packets from near anchors
and farther anchors, each normal node will decide the
number of samples based on the size of sampling region.
However, the area of the sampling region is irregular and it
is difficult to calculate for the resource-limited sensors.
Thus, a rectangle surrounding the sampling region called
ER is used to replace the exact sampling region on deciding
the number of samples.

Each normal node utilizes squares with edge length 2R
and 4R to surrounding near anchor constraint and farther
anchor constraint, respectively. The overlapping region of
these squares is defined as an ER. An example with two
near anchors and one farther anchor is shown in Fig. 2.
Assume that sensor N can receive packets from near
anchors A1 and A2, and farther anchor A3. Thus, sensor N
will locate in the ER region, which is the intersection area of
the three squares with centered at A1, A2, and A3,
respectively. The boundaries of ER can be easily calculated
by comparing the borders of all squares.

Although the ER does not show the actual shape of the
possible sampling region, it can show the area variations of
the possible sampling region. Thus, each normal node will
evaluate the number of samples k according to the area
of ERLet k ¼ dMax Num� ðERArea=ERThresholdÞe, where
ERArea, ERThreshold, and Max Num denote the area of ER,
a threshold value, and the maximum number of samples,
respectively. In order to avoid the excess number of
samples, k is set to Max Num if ERArea � ERThreshold. In
our simulations, each normal node will receive at least one
near anchor constraint in most situations. Therefore,
ERThreshold is set to 4R2, which is equal to the area of ER
surrounded with one near anchor constraint. Once the

number of samples is determined, each normal node picks
k valid samples that are randomly generated from the
region with radius Vmax centered on samples in the last time
slot and located in the sampling region.

Note that in the first time slot, a normal node has no
sample in the last time slot, and one way to select the first
set of samples is that randomly choose k samples from ER.
Here, we use a more effective method. Each normal node
divides the area of ER into grids. The default length of a
grid side is set to 0:25R (R is the radius of communication
range). The center points of grids become the initial
samples, as shown in Fig. 3. Then, each grid is scanned to
check if its center point can satisfy the near anchor constraint
and farther anchor constraint.

3.2 Neighbor Constraint Exchange Phase

In the MCL scheme, each normal node only uses the
constraints arising from anchor nodes, and it does not work
well in low anchor density. If a normal node does not
receive any anchor’s information, it will estimate its
position by utilizing the samples selected in the last time
slot, and the localization error will become large until the
new location information from the anchors is received. In
order to improve localization accuracy, each normal node in
IMCL can rely on the constraints arising from the anchor
nodes and neighboring normal nodes. An additional
constraint is that each normal node must locate in the
communication range of its neighboring normal nodes.
Note that the location of a normal node is estimated from its
neighbor locations and there exists error between the
estimated and actual positions. If we directly use the
estimated locations to be the positioning constraints of
normal nodes, it may increase the localization error of the
normal nodes.

An example is illustrated in Fig. 4. Assume that the
normal node N3 has two neighboring normal nodes N1 and
N2 whose estimated locations are EN1 and EN2, respec-
tively. The possible located region of N3 will be located in
the overlapping region of the two circles centered on N1 and
N2, as shown in Fig. 4. If we use EN1 and EN2 as the actual
positions of N1 and N2, N3 will be considered in the
overlapping region of two circles centered on EN1 and EN2.
However, the overlapping region centered on N1 and N2 is
different with the overlapping region centered on EN1 and
EN2. In order to reduce the localization error accumulated
from the neighboring normal nodes, each normal node will
broadcast its possible located region instead of its estimated
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Fig. 3. The sample filtering procedure in the first time slot.

Fig. 4. The overlapping region centered on N1 and N2 versus the
overlapping region centered on EN1 and EN2.



position to neighbors. In this paper, the possible located
region of a normal node is enclosed by the distribution
region of samples selected in the sample selection phase of
current time slot. Since the distribution region of samples is
irregular, each normal node will estimate its possible
located region as follows:

First of all, each normal node calculates its central point
Ct(xc; yc) of samples selected in the sample selection
phase. The variables xc and yc are calculated by averaging
the x-coordinate and y-coordinate of samples, respectively.
Then, each normal node constructs a two-dimensional
coordinates and uses (xc; yc) as the origin. The coordinates
are partitioned into eight directions and each direction
differs by 45 degree. The selected samples can be divided
into eight groups according to their direction angles
beginning with positive x-axis. The reason of partition
the selected samples into eight groups will be explained in
later. An example is shown in Fig. 5a. The solid circle
represents the central point Ct(xc; yc) of samples, and
samples are denoted as triangles. Assume that a sample s
is placed in (xs; ys). The direction angle of sample s can be
calculated by (1):

�s ¼ tan�1 ys � yc
xs � xc

� �
: ð1Þ

The distance between s and central point Ct(xs; ys) is

Ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xs � xcð Þ2þ ys � ycð Þ2

q
: ð2Þ

In order to estimate the possible located region of each
normal node, we will pick up the sample s with the longest
Ds in each group. The longest Ds of each group is used as
the sector radius of the corresponding sector, and each
normal node can form its possible located region by
consisting of eight sectors with the origin (xc, yc), as shown
in the shaded region of Fig. 5b. Then, each normal node
broadcasts a possible located region packet with the origin
(xc, yc) and eight sectors’ radii to its neighboring nodes.
When a normal node A receives a location packet sent from
its neighboring normal node B, the estimated location of
node A will be constrained in the region which extends R
from node B’s possible located region called neighbor
constraint. An example of the neighbor constraint is shown
in Fig. 5b in which the radius of each sector is increased by
R from the possible located region.

Here, we explain why the samples are partitioned into
eight sectors to present the possible located region of a
normal node. It is obvious that partitioning the samples of a
normal node into more sectors is more close to the shape of
the possible located region of the normal node. According
to our simulations, the localization error decreases as the
number of sectors increases. However, the improvement of
localization error is stable when the number of sectors is
larger than eight. This is because that the difference of the
possible located region of a normal node estimated by using
eight sectors and more than eight sectors is very small.
Therefore, we adopt eight sectors to estimate the possible
located region of a normal node.

3.3 Refinement Phase

In this phase, each normal node refines samples selected in
the sample selection phase. All impossible samples are
filtered by constraints, including the neighbor constraint
received from the neighboring normal nodes and moving
direction constraint achieved by predicting the moving
direction of normal nodes. In order to keep the number of
valid samples, if one sample does not satisfy the new
constraints, the normal node generates a new valid one to
replace it. After receiving neighbor constraint, each normal
node checks if each sample satisfies the neighbor constraint.
An example is shown in Fig. 6. Assume that node N1

receives two neighbor constraints from normal nodes N2

and N3 and their central positions are CN2 and CN3,
respectively. Assume that S1 and S2 are samples of node N1

selected in the sample selection phase. S1 is a valid sample
that satisfies the neighbor constraints of normal nodes N2

and N3. On the contrary, sample S2 is an invalid sample
because it cannot satisfy the neighbor constraint of node N2.
Therefore, we will select a new sample to replace S2.

An additional constraint called moving direction constraint
refers to the prediction of the moving direction of normal
nodes. Since a mobile sensor node may not change its
moving direction during a short time in real applications,
we can utilize the estimated locations in the previous two
time slots to predict the possible moving direction of a
normal node in current time slot. Let Et�1 and Et�2 be the
estimated locations of a normal node N in time slots t� 1
and t� 2, respectively. In time slot t, the probability of
node N moving along the direction of Et�1Et�2 is larger
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Fig. 5. (a) Samples are divided into eight groups. (b) The possible
located region with neighbor constraint.

Fig. 6. Sample refinement with neighbor constraint.



than in other directions. Since the locations Et�1 and Et�2

are not exact locations of node N , the moving direction of
node N will relax with an angle ��. That is, if the angle of
moving direction Et�1Et�2 is � corresponding to x-coordi-
nate, the possible range of moving direction is relaxed to
[����], as shown in Fig. 7. Therefore, the moving constraint
is the sector centered on Et�2 with angle [����].

Since the mobile node may change its moving direction
in each time slot, the moving constraint is used only if the
following condition holds. Let Ct denote the central point
location that is calculated in neighbor constraint exchange
phase in time slot t. If the central point Ct is located in the
moving constraint range, it means that the moving direction
of normal node in the current time slot is highly related to
the previous two time slots. Thus, adopting the moving
constraint in the refinement phase can help decrease the
localization error. On the other hand, we do not adopt the
moving constraint. For example, in Fig. 7, if the central
point Ct of a normal node is located in CNa, the moving
constraint will be adopted. If it is located in CNb, we will
not take the moving constraint into consideration. If we
adopt the moving constraint, all samples of the normal node
will be verified by the moving constraint. For example, if we
use the moving constraint in Fig. 7, sample S1 is a valid
sample but S2 is an invalid one.

In order to confirm if all samples in Lt satisfy all
constraints and keep enough samples, each normal node
will generate new valid samples to replace the invalid ones.
Finally, the estimated location in current time slot t can be
calculated by averaging the x-axis and y-axis values of all
valid samples. The summary of IMCL is shown below.

Improved MCL Localization Scheme Algorithm

For each anchor node in each time slot t: Anchor node

broadcasts a packet with its position. This packet will be
forwarded to two-hop neighbors.

For each normal node in each time slot t:

Phase 1: Sample Selection Phase

1. Determines the number of samples k according to

the area of ER.

2. Selects k valid samples, which satisfy the anchor

constraints, from the regions with radius Vmax
centered on each of k samples in time slot t� 1.

Phase 2: Neighbor Constraint Exchange Phase

1. Each normal node estimates its possible located

region from the k samples selected in Phase 1 and

broadcasts the possible located region to

neighboring nodes.

Phase 3: Refinement Phase

1. Filter impossible samples by neighbor constraint

and moving direction constraint.

2. Generate new valid samples to replace the

invalid ones.

3. Average the x-axis and y-axis of all valid samples to
get the estimated location in the current slot.

4 SIMULATION RESULTS

In order to verify the efficiency of our proposed IMCL
scheme, we compare the performance of our protocol IMCL
with the MCL [12], MSL� [19], and BB [22] schemes through
ns-2 simulator. In our simulations, time is divided into slots
and each time slot is equal to 100 seconds. The commu-
nication range (R) of all sensor nodes, including anchor
nodes and normal nodes, is set by 50 m. All sensor nodes
are randomly distributed in a 10R� 10R sensing field. We
adopt the modified random-way point mobility model [3],
[12] on normal nodes and anchor nodes and each sensor
randomly chooses its destination, and then, moves toward
it. The moving distance of a sensor in each time slot is
randomly selected from [0, Vmax]. The unit of measure of
Vmax is expressed by R. For example, if the Vmax is 20 m, we
denote Vmax ¼ 0:4R. Furthermore, the anchor node density
(Ad) is defined as m/(nþm), where n and m are the
number of normal nodes and number of anchor nodes,
respectively. The estimated error of each normal node is the
distance between the estimated position and actual physical
location. We evaluate the localization schemes by the
localization error, which is the average value of estimated
error of all normal nodes.

In IMCL, there are three important variables: the range of
angle to predict the moving direction (��), the maximum,
and minimum number of samples. In order to understand
how these variables affect the localization error of IMCL, we
analyze the performance of IMCL under different simula-
tion parameters. The most suitable parameters will be
picked and used in simulations of the following sections.
First, we will determine the variable �� in the following
simulations. Here, the total number of sensors is 350,
Vmax ¼ R, and Ad ¼ 8%. As shown in Fig. 8, �� is varied
from 15 to 180 degrees. The percentage of improved
localization error of normal nodes with different �� is
defined as (Error180� � Error��)/Error180� , where Error��

is the localization error with the predicted moving angle
��. When �� ¼ 180�, the normal nodes filter their samples
without using the moving constraint. In our simulation,
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Fig. 7. The moving constraint formed with the estimated locations in
previous time slots t� 1 and t� 2. Fig. 8. The improved ratio of localization error with different ��.



when �� is 45 degree the percentage of improved
localization error achieves 12 percent. As the angle
increases, the percentage goes down. This is because the
tolerable angle error of predicting the moving direction is
too large to filter the impossible samples, which are located
on incorrect moving direction. However, when the angle is
less than 30 degree, each normal node may filter too many
right samples, and the localization error goes higher. With
these results, we set �� ¼ 45� in all following simulations.

Another important variable is the number of samples. In
order to study the effect of the number of samples, the
number is varied from 10 to 100. When the number of
samples is greater than or equal to 50, the localization error
is constant at 0:28R in our simulations. In order to reduce
the memory space and computation cost, Max Num is set
at 50 in all the following simulations. In our proposed
IMCL, sample number k is dynamically adjusted with the
area of ER except in the first time slot. In order to observe
the effect of the adaptive number of samples for localiza-
tion error, we fix Max Num to 50, and let Min Num be the
minimum number of samples. Then, k is equal to
Min Num if k < Min Num according to the formula k ¼
dMax Num� ðERArea=ERThresholdÞe which is proposed in
Section 3.1. In our simulations, when Min Num is varied
from 50 to 10, the maximum variation of localization error
is only 0:01R. Thus, the localization error is not affected by
reducing the number of samples.

4.1 Localization Error

In the following, we demonstrate the localization error of
MCL, MSL�, BB, and IMCL. The total number of sensors is
350, Vmax ¼ R, and Ad ¼ 8%. The simulation time is set at
30 time units, and the results are shown in Fig. 9. In the
beginning, each normal node does not collect enough
precise samples, and the localization error is large. When
simulation time goes by, the possibility that the normal
node would select the accurate sample is increased. As
simulation time passes 10 time units, the localization error
becomes stable and fluctuates lightly about a constant
value. Accordingly, the localization error in each simula-
tion is the average of the last 20 time slots. To reduce the
simulation error, each simulation result is obtained from
the average of 20 simulation runs. As shown in Fig. 9, the
localization errors of MCL (0:482R), BB (0:487R), and
MSL�ð0:412RÞ are larger than the localization error of
IMCL (0:286R). The localization error of IMCL without

moving constraint (IMCL w/o MC) (0:324R) is a little
higher than IMCL with moving constraint.

Here, we study the average number of samples used in the
four schemes. The total number of sensor nodes is fixed at
350 and Vmax is set byR. In Fig. 10, as the anchor node density
is 8 percent, each normal node in MCL, MSL�, and BB keeps
50 samples during each time slot. However, the sample
number of IMCL is varied between 31 and 38 except in the
first time slot and the average number of samples is about 34.
For IMCL, when the anchor node density is increased to
15 percent, the average number of samples reduces to 21.
Simulation results show that IMCL utilizes fewer samples
than other schemes, and thus, saves the memory usage. Note
that it may cost several times of sampling to find a valid
sample for all schemes. In our experiments, each node
generates 451 (376) samples in average to get 34 (21) valid
samples in IMCL when the anchor node density is 8 percent
(15 percent). On the other hand, the average times of a
normal node to find 50 valid samples for MCL, BB, and MSL�

are 1,279, 167, and 868, respectively, when the anchor node
density is 8 percent. When the anchor node density is
increased to 15 percent, the average times of a normal node to
find 50 valid samples for MCL, BB, and MSL� arise to 2,536,
213, and 1,728, respectively. It is more time-consuming for
the MCL, BB, and MSL� schemes to find 50 valid samples in a
smaller sampling region.

4.2 Impact of the Anchor Node Density

In order to analyze the effect of the anchor node density on
localization error, we keep the total number of sensors to
350, Vmax ¼ R, and vary the anchor node density from 1 to
15 percent. The simulation results are shown in Fig. 11. As
increasing the anchor node density, each normal node gets
more anchor constraints to reduce the possible located
region, and thus, the accuracy of estimated location arises.
The localization error of each scheme also gets close as the
number of anchor nodes increases. The localization error in
IMCL is always lower than other three schemes. In low-
density state of anchor nodes (�5%), the improved
accuracy of our scheme is much better than MCL, MSL�,
and BB schemes. Therefore, our protocol can utilize fewer
anchor nodes to reach the same performance as MCL,
MSL�, and BB. MSL� has the worst performance as the
anchor node density is lower than 9 percent. As the anchor
node density goes higher than 9 percent, MSL� has lower
localization error than MCL.
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Fig. 9. Comparison of localization error for Vmax ¼ R.
Fig. 10. Number of samples.



4.3 Impact of the Number of Normal Nodes

In this experiment, we fix the number of anchor nodes ¼ 28,
Vmax ¼ R, and vary the number of normal nodes to see the
impact on localization error. The simulation results are
shown in Fig. 12. The localization error of each scheme goes
down as the number of normal nodes is increased.
Although MCL only uses the location information of one-
hop and two-hop anchor neighbors, increasing the number
of normal nodes provides a higher probability for a normal
node to have two-hop anchor neighbors, and thus, the
localization accuracy improves. In BB, MSL�, and IMCL, as
the number of the normal nodes goes up, each node can get
more locations of one-hop normal nodes and two-hop
anchor nodes and have lower localization error. However,
the localization error in IMCL will keep stable when the
number of normal nodes reaches 480.

4.4 Impact of the Moving Speed

Here, we show the effect of the moving speed to localization
error. The total number of sensor nodes is 350 and the
anchor node density is fixed by 8 percent. We vary Vmax
from 0:2R to 2R. Fig. 13 shows that the localization error of
IMCL is lower than those of MCL and BB with various
moving speeds. The localization error of our scheme is also
better than MSL� as Vmax is equal or larger than 0:5R.
Therefore, our protocol is more suitable than MSL� if the
network topology is changed quickly.

4.5 Impact of the Irregular Communication Range

There are many physical and environmental factors that
affect the wireless signal transmission range. In order to

simulate real environment, we assume that the communica-
tion region of sensors is irregular by adopting an irregular
radio model. The degree of irregularity is denoted by DOI.
Assume that the communication range under the different
direction is randomly chosen from [ð1-DOIÞ �R, R]. For
example, if DOI ¼ 0:5, the communication range is ran-
domly selected from [0:5R, R]. Thus, as DOI goes up, the
variance of the maximum transmission range under
different direction is increased.

In the DOI model, the farther anchor’s position of a
normal node may locate within the communication range
R of the normal node. Therefore, a conflict between the
near anchor constraint and farther anchor constraint may
happen in the sample selection phase. For example, in
Fig. 14, assume that the anchor nodes A1, A2, and A3 are
within the communication range of normal node N1, but
the packet broadcasted by the anchor node A3 cannot be
received by node N1 due to the impact of DOI. If node N1

receives the packet of node A3 through near anchor A2,
the node A3 will become the farther anchor of node N1.
Since the distance from any point in the overlapping area
of near anchors A1 and A2 to the farther anchor A3 is
smaller than R, we cannot find any sample that can satisfy
the near anchor and farther anchor constraints for node
N1. Therefore, when a normal node cannot find any valid
sample within a number of trials, we will ignore the
farther anchor constraint.

In the simulations of various DOI, the total number of
sensors is 350, Vmax ¼ R, and Ad ¼ 8%. In Fig. 15, the
localization error arises for all schemes as the degree of
irregularity increases. However, the localization error of
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Fig. 12. Number of normal nodes versus localization error.

Fig. 13. Maximum moving distance (Vmax) versus localization error.

Fig. 14. The farther anchor A3 is within the communication range R
of N1.

Fig. 11. Anchor node density versus localization error.



IMCL is lower than those of MCL, MSL�, and BB. The
improved accuracy is at least 30, 28, and 31 percent with
regard to MCL, MSL�, and BB, respectively. The localization
error of MSL� is more sensitive than other schemes as DOI is
increasing. This is because that MSL� uses both the locations
of two-hop normal nodes and anchor nodes for localization.

4.6 Impact of the Mobility Model

In many protocols, the mobility model plays an important
role in performance results. We show the effect of different
mobility models on localization accuracy. Here, we adopt
three mobility models. The first one is the modified random
waypoint mobility model used in previous simulations.
Another one is the random direction mobility model
proposed in [18]. A sensor node under this mobility model
randomly selects one direction between 0 and 359 degrees.
In each time slot, each sensor randomly generates a velocity
and moves along the assigned direction with the given
velocity. Upon reaching the boundary of the sensing field,
the sensor node chooses another direction and velocity. The
last model is modified from boundless simulation area
mobility model [10]. The generation of velocity and moving
direction in this model is the same with the random
waypoint model, but the variable quantity of velocity and
direction with two continued time slots will not exceed the
limit of acceleration (��) and the limit of angle variance
(�!). In our simulations, we set �� ¼ 0:6R per time slot
and �! ¼ 10�.

Here, the total number of sensor nodes is 350, the anchor
node density is fixed by 8 percent, and the Vmax of all nodes
is set to R. In Fig. 16, the simulation results show that the
mobility models will affect the localization error of sensor
nodes. In the random waypoint model, most sensor nodes
will aggregate in the middle area of the sensing field [17]. In
the other two mobility models, all sensor nodes will
uniformly distributed in the sensing field. Thus, most
sensors in the random waypoint model gather more
anchors’ information than in the other two models, and
then, the localization error in the random waypoint model
is lower than in the other two. In Fig. 16, we can see that the
localization error of IMCL is lower than that of MCL, MSL�,
and BB for different mobility models. The variation of
localization error in our IMCL scheme is also smaller than
other schemes. Thus, the IMCL is robust with various
mobility models.

4.7 Communication Cost

The number of packets sent by nodes per time slot for the
four schemes is shown in Table 1. In all schemes, the anchor
nodes need to broadcast their locations to one-hop and two-
hop neighbors in each time slot. In addition, since the
normal nodes and anchor nodes in MSL� need to flood their
packets two-hop away, MSL� has the largest communica-
tion overhead among all schemes. The MCL scheme has the
least communication overhead since each anchor node only
forwards its actual location to two-hop neighbors. In our
scheme and BB, the anchor nodes forward their packets to
two-hop neighbors but the normal nodes forward their
packets to one-hop neighbors only.

Furthermore, in Table 1, we also show the number of
bytes transmitted in each time slot for all schemes. Each
anchor packet includes IP header, sender’s ID, anchor’s ID,
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Fig. 15. Degree of irregularity (DOI) versus localization error.

Fig. 16. Various mobility models versus localization error. (a) The
modified random waypoint mobility model. (b) The random direction
mobility model. (c) The modified boundless mobility model.



anchor coordinate, and hop count. The size of an anchor
packet is 34 bytes. The normal nodes of the four schemes
except MCL need to forward their packets to one-hop
neighbors or two-hop neighbors too. In MSL�, the packets
sent by a normal node include IP header, sender’s ID,
estimated location, hop count, and the coordinates with
weights of 50 valid samples in the last time slot. The
packet size of normal nodes in MSL� is 634 bytes. In BB,
the packet sent by a normal node includes IP header,
sender’s ID, estimated location, hop count, etc. The packet
size of normal nodes in BB is 46 bytes. In IMCL, the
packets sent by a normal node includes IP header, sender’s
ID, estimated location, hop count, eight sectors’ lengths,
etc. The packet size of normal nodes in IMCL is 66 bytes.
Since MCL only has anchor packets, it has the minimum
number of transmission bytes. Therefore, the communica-
tion overhead of our scheme is comparable to BB but
much better than MSL�.

5 CONCLUSIONS

Many applications in WSNs must combine with locations of
sensor nodes. In order to get location information, many
localization schemes are proposed to automatically estimate
sensors’ positions. In the mobile sensor networks, the
localization scheme becomes difficult to implement because
of node mobility. Thus, developing a simple localization
scheme with low estimated error is a big challenge for
mobile sensor networks. In this paper, we proposed a
distributed localization scheme called IMCL to improve the
localization accuracy of the previous schemes. We add two
more sampling constraints, the neighbor constraint and
moving direction constraint, to improve the localization
error of the previous work. The normal nodes need to
exchange their possible located regions with each other for
the neighbor constraint. To reduce the communication cost,
we use a simple sectoring scheme to represent the possible
located region of each normal node. To reduce the
computation cost and memory occupation, the number of
samples is adaptive to the estimated sampling region. Thus,
the proposed scheme is suitable to be implemented on the
resource-limited sensor nodes. With the simulation results,
our scheme has lower localization error than the previous
work in most scenarios.
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