
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 4, JULY 2009 795

An Obstacle-Free and Power-Efficient Deployment
Algorithm for Wireless Sensor Networks

Chih-Yung Chang, Jang-Ping Sheu, Senior Member, IEEE, Yu-Chieh Chen, and Sheng-Wen Chang

Abstract—This paper proposes a robot-deployment algorithm
that overcomes unpredicted obstacles and employs full-coverage
deployment with a minimal number of sensor nodes. Without
the location information, node placement and spiral movement
policies are proposed for the robot to deploy sensors efficiently to
achieve power conservation and full coverage, while an obstacle
surrounding movement policy is proposed to reduce the impacts
of an obstacle upon deployment. Simulation results reveal that
the proposed robot-deployment algorithm outperforms most ex-
isting robot-deployment mechanisms in power conservation and
obstacle resistance and therefore achieves a better deployment
performance.

Index Terms—Deployment, obstacle, placement, robot, wireless
sensor networks (WSNs).

I. INTRODUCTION

R ECENT advances in digital electronics, microprocessors,
and wireless communication have made sensors smaller,

low powered, and cheaper to manufacture [1]. Due to these
attractive characteristics, wireless sensor networks (WSNs) are
now widely applied to many applications, which include envi-
ronmental monitoring, tracking, precision agriculture, military
surveillance, smart homes, and so on [2]–[7]. WSNs are large-
scale distributed systems composed of a large number of sen-
sors and a few sinks. Sensors are responsible for collecting the
sensed information and sending them to sinks in a multihop
manner. A sink is the interface between the sensors and users,
executing tasks that include accepting the user’s command,
delivering the data request criteria to the sensors, collecting
the interested data from the sensors, and integrating them to
provide the user with advanced uses.

Developing a good deployment algorithm is one of the most
important issues for an efficient WSN. In the literature, existing
deployment algorithms can be classified into three categories:
stationary sensor, mobile sensor, and mobile robot. Several

Manuscript received February 13, 2007; revised May 24, 2008. First pub-
lished April 17, 2009; current version published June 19, 2009. This work was
supported in part by the National Science Council, Taiwan. This paper was
recommended by Associate Editor A. Ollero.

C.-Y. Chang, Y.-C. Chen, and S.-W. Chang are with the Department
of Computer Science and Information Engineering, Tamkang University,
Tamsui 25137, Taiwan (e-mail: cychang@mail.tku.edu.tw; ycchen@wireless.
cs.tku.edu.tw; swchang@wireless.cs.tku.edu.tw).

J.-P. Sheu is with the Department of Computer Science and Information
Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (e-mail:
sheujp@cs.nthu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCA.2009.2014389

random deployment schemes [8], [9] have been proposed for
the deployment of stationary sensors. The random deployment
scheme is simple and easy to implement. However, to ensure
full coverage, its number of deployed sensors is extremely
larger than the actual required number of sensors. The random
deployment of stationary sensors may result in an inefficient
WSN wherein some areas have a high density of sensors while
others have a low density. Areas with high density increase
hardware costs, computation time, and communication over-
heads, whereas areas with low density may raise the problems
of coverage holes or network partitions. Other works [10]–[13]
have discussed deployment using mobile sensors. Mobile sen-
sors first cooperatively compute for their target locations ac-
cording to their information on holes after an initial phase of
random deployment of stationary sensors and then move to tar-
get locations. However, hardware costs cannot be lessened for
areas that have a high density of stationary sensors deployed.

Another deployment alternative [14]–[17] is to use the robot
to deploy static sensors. The robot explores the environment
and deploys a stationary sensor to the target location from
time to time. The robot deployment can achieve full coverage
with fewer sensors, increase the sensing effectiveness of sta-
tionary sensors, and guarantee full coverage and connectivity.
Aside from this, the robot may perform other missions such
as hole-detection, redeployment, and monitoring. However,
unpredicted obstacles are a challenge of robot deployment and
have a great impact on deployment efficiency. One of the most
important issues in developing a robot-deployment mechanism
is to use fewer sensors for achieving both full coverage and
energy-efficient purposes even if the monitoring region contains
unpredicted obstacles.

Obstacles such as walls, buildings, blockhouses, and pill-
boxes might exist in the outdoor environment. These obsta-
cles significantly impact the performance of robot deployment.
A robot-deployment algorithm without considering obstacles
might result in coverage holes or might spend a long time
executing a deployment task. In the literature, Batalin and
Sukhatme [14] assume that the robot is equipped with a com-
pass which makes it aware of its movement direction. A robot
movement strategy that uses deployed sensors to guide a robot’s
movement as well as sensor deployment in a given area is pro-
posed. Although the proposed robot-deployment scheme likely
achieves the purpose of full coverage and network connectivity,
it does not, however, take into account the obstacles. The next
movement of the robot is guided from only the nearest sensor
node, raising problems of coverage holes or overlapping in the
sensing range as the robot encounters obstacles. Aside from
this, during robot deployment, all deployed sensors stay in an

1083-4427/$25.00 © 2009 IEEE

Authorized licensed use limited to: Tamkang University. Downloaded on July 12, 2009 at 08:52 from IEEE Xplore. Restrictions apply.

796 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 4, JULY 2009

active state in order to participate in guiding tasks, resulting in
an inefficiency in power consumption.

To handle obstacle problems, a previous research [17] has
proposed a centralized algorithm that uses global obstacle
information to calculate for the best deployment location
of each sensor. Although the proposed mechanism achieves
full coverage and connectivity using fewer stationary sensors,
global obstacle information is required, which makes the de-
veloped robot-deployment mechanism useful only in limited
applications.

This work aims to develop an obstacle-free robot-
deployment algorithm. Unpredicted obstacles are taken into
consideration in the proposed mechanism so full coverage can
be likely achieved with the deployment of a minimal number of
sensors. Moreover, most deployed sensors may stay in a sleep
state to reduce power consumption during robot deployment.
Simulation results show that the proposed algorithm signifi-
cantly reduces the total number of deployed stationary sensors,
achieves full coverage, and saves on energy consumption.

The rest of this paper is organized as follows. Section II
first reviews related work; then, the network model and the
basic concept of this paper are given. Section III gives the
details of the robot-deployment algorithm. The node placement
and spiral movement policies are proposed without considering
the existence of obstacles. Section IV presents the obstacle
handling mechanism and discusses the energy conservation
issue. The performance study is presented in Section V. Finally,
conclusions are drawn in Section VI.

II. RELATED WORK AND BASIC CONCEPTS

This section initially describes related work on robot deploy-
ment. Later on, the network environment and basic concepts of
this paper are introduced with examples.

A. Related Work

Compared with random deployment, using the robot to step-
wise deploy static sensors in a specific region can give full
sensing coverage with fewer sensors. Previous research [14]
assumes that the robot is equipped with a compass and is able
to detect obstacles. Each sensor has a communication range rc

and a sensing range rs. To guide the robot’s movement, each
deployed sensor maintains a time duration for each direction,
whether south, east, north, or west, that the robot did not visit.
The longer the time length, the higher priority the direction is.
When the robot intends to make a movement decision, it com-
municates with the closest deployed sensor, queries the time
length of each direction, and then selects one direction with the
highest priority to be the direction of its next movement.

Although the robot-deployment algorithm developed in [14]
likely achieves the purpose of full coverage and network con-
nectivity, the next movement of the robot is guided by only
one sensor, resulting in it taking a long time to achieve full
coverage and requiring more sensors due to a big overlapping
area. As shown in Fig. 1(a), assume that sensors sk and sj were
previously deployed in the monitoring area and sensor si is
the most recently deployed sensor. According to the guiding

Fig. 1. Drawback of the algorithm in [14] is due to the situation where the
next movement of the robot is guided by only one sensor. (a) Coverage hole.
(b) Many overlapping areas. (c) Improved deployment.

of sensor si, the robot will move east and deploy sensor si+1,
resulting in a hole this time even though sensor sk is in the
communication range of the robot. A sensor will be deployed
to the hole after a long period. Fig. 1(b) shows another example.
Assume that the distance between si and sk is smaller than rs.
The robot only guided by si may deploy a sensor si+1 to the
location that overlaps a lot of the sensing regions of sk and
sj , requiring more sensors to be deployed on the whole target
region. This paper develops an efficient robot-deployment algo-
rithm. The robot will be guided by si and sk at the same time to
achieve full coverage and network connectivity purposes using
fewer deployed sensors. The improved deployment in this case
is shown in Fig. 1(c). The overlapping area among the sensing
ranges of si, si+1, and sk is minimal, achieving full coverage
by using fewer sensors.

In addition, the algorithm proposed in [14] does not consider
power conservation. Since all sensors have no knowledge on
when the robot will revisit them, all sensors should be active
and therefore consume significant energy. Power conservation
should be taken into consideration in developing the robot-
deployment algorithm wherein most deployed sensors may stay
in sleep mode during the robot-deployment process. Aside
from this, the robot movement policy proposed in [14] also
leaves holes whenever an obstacle is encountered. Fig. 2 shows
the robot starting to deploy sensor s1 and then moving south
to deploy sensors s2 and s3, leaving a hole in the target
region.

This paper aims to develop a robot-deployment algorithm
that has the following characteristics. The robot deploys sensors
in a way that fewer sensors are deployed but are likely to
achieve full coverage. As for power conservation, most de-
ployed sensors can stay in sleep mode to conserve energy. In ad-
dition, the developed deployment algorithm can resist obstacles
so that fewer sensors need to be deployed to achieve full sensing
coverage even if there are obstacles in the monitoring area.

Authorized licensed use limited to: Tamkang University. Downloaded on July 12, 2009 at 08:52 from IEEE Xplore. Restrictions apply.

CHANG et al.: OBSTACLE-FREE AND POWER-EFFICIENT DEPLOYMENT ALGORITHM FOR WSNs 797

Fig. 2. Robot movement policy leaves a hole when an obstacle is encountered.

B. Network Environment and Protocol Overview

1) Network Environment: This paper assumes that the robot
is aware of its own location information. This assumption can
be achieved if the robot is equipped with both GPS and compass
modules which provide the current location and moving direc-
tion of the robot, respectively. Although the GPS localization
system might have an inaccuracy range, the other localization
system based on the compass module could help estimate
the current location of the robot according to the movement
direction provided by the compass as well as the distance,
which can be calculated based on the rotation rate of the robot’s
wheels. We also assume that the monitoring field is a 2-D plane
where there may exist obstacles in the field and that the robot is
embedded with a radio system that enables it to communicate
with deployed sensors in a wireless manner. Aside from this,
the robot is also able to discover unknown obstacles as it moves
closer to them. Let symbol sm denote a sensor, 0 ≤ m ≤ N ,
where N is the number of sensors required for full coverage.
The communication range is denoted by rc, while the sensing
range is denoted by rs, and they both satisfy the relation
rc ≥ √

3rs. Given two locations p and q in the monitoring
field, symbol d(p, q) represents the distance of p and q. In the
following, an example is given to illustrate the basic idea of the
proposed robot-deployment protocol.

2) Node Placement and Spiral Movement Policies: To de-
ploy fewer sensors to achieve full coverage, a node placement
policy is used, as illustrated in the following. If the distance
between any two sensors is equal to

√
3rs, then there should

be no hole and only minimal overlap in the area. The node
placement policy is that the robot deploys a sensor for every
distance of

√
3rs. In addition to the placement policy, a spiral

movement policy is adopted as a strategy for the robot move-
ment. That is, the robot would move clockwise in a spiral way.
As shown in Fig. 3, sensors si, 1 ≤ i ≤ 17, have been deployed
by the robot that uses the spiral movement policy. According to
the node placement and spiral movement policies, a robot can
deploy a sensor every

√
3rs distance in a spiral manner. Thus,

the deployed region achieves full coverage without holes, and
the overlapping sensing areas among the deployed sensors are
minimal.

Fig. 3. Sensor placement and spiral movement policies.

Fig. 4. Basic deployment concept when the robot encounters an obstacle.

3) Obstacle Resistance: The developed robot-deployment
protocol likely achieves a full-coverage deployment even if
the global information of obstacles is unavailable. When the
robot encounters obstacles, it moves around them to deploy
sensors and eliminate the impact of obstacles on deployment.
During the execution of the deployment task, the robot switches
between steady and obstacle states, depending on whether it
comes across obstacles. The state is maintained by the robot and
the deployed sensors. Initially, the robot stays in a steady state.
As shown in Fig. 4, the robot uses the spiral movement policy to
deploy sensors si, 1 ≤ i ≤ 9. As the robot encounters obstacles,
it marks s9 as an initiator and switches to obstacle state. After
that, the robot surrounds the obstacle, deploys sensors si, 10 ≤
i ≤ 27, and sets them to be in the obstacle state. When the robot
encounters sensor s3, which is the first encountered sensor in a
steady state, the robot switches from obstacle to steady state and
deploys sensors si, 28 ≤ i ≤ 36, according to the node place-
ment and spiral movement policies. Once the robot encounters
the obstacle or any sensor staying in the obstacle state, it treats
those sensing regions of sensors si, 10 ≤ i ≤ 27, that stay in

Authorized licensed use limited to: Tamkang University. Downloaded on July 12, 2009 at 08:52 from IEEE Xplore. Restrictions apply.

798 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 4, JULY 2009

Fig. 5. Optimal deployment of sensors si, sj , and sk .

obstacle state as virtual obstacles and uses a similar way to over-
come these obstacles. In the obstacle state, the robot maintains
the locations of the deployed sensors in Stack. Whenever the
robot moves to a location that is surrounded by the deployed
sensors, it pops the location from Stack and moves to it until
the robot is not surrounded by the deployed sensors. Fig. 4
shows an example to illustrate how the robot copes with the
dead-end problem. Let pos(s) denote the location of a deployed
sensor s. When the robot deploys sensor s44, it subsequently
pops locations pos(s43) and pos(s42) from Stack and deploys
a new sensor s45. Finally, the robot deploys sensors around the
obstacle until the deployed sensors cover the entire monitor-
ing area.

III. ROBOT-DEPLOYMENT ALGORITHM

This section describes the deployment algorithm that
achieves full coverage with fewer sensors. The algorithm
mainly consists of a node placement policy and a spiral move-
ment policy.

A. Node Placement Policy

Let si, sj , and sk denote three deployed sensors as shown
in Fig. 5. The sensing region of each sensor is denoted by
a dotted circle. Let rs and rc denote the sensing range and
communication range of each sensor, respectively. To deploy
fewer sensors while maintaining full sensing coverage, the
overlapping of the sensing region of sensors si, sj , and sk

should be minimal. Therefore, the three sensors should be
deployed in a way as shown in Fig. 5, wherein sensors si, sj ,
and sk intersect exactly at a point p. With this deployment,
the distance between two neighboring sensors is

√
3rs. To

prevent the neighboring sensors from losing communication,
this paper assumes that the communication range rc is equal
or larger than

√
3rs. The following gives a node placement

policy.
1) Node Placement Policy: The robot deploys a sensor for

every
√

3rs distance.
When the robot deploys a sensor in the monitoring region,

it provides the deployed sensor with the current location infor-
mation. Upon receiving the location information, the deployed
sensor maintains this information for later use.

Fig. 6. Movement trajectory of the robot. (a) Spiral movement. (b) Six
cardinal directions.

B. Spiral Movement Policy

To overcome the obstacle, the robot adopts the spiral move-
ment policy. As shown in Fig. 6(a), the robot moves clockwise
in a spiral way and deploys sensors si, 1 ≤ i ≤ 7, every

√
3rs.

To present the spiral movement policy, several terms are given
in the following.

Definition: Cardinal Direction: In a spiral movement, the
robot moves in one of six cardinal directions, denoted by d1,
d2, d3, d4, d5, and d6, as shown in Fig. 6(b). Every two adjacent
directions have an included angle of π/3.

Definition: Level and Round: In a spiral movement, the
trajectory of a robot movement can be viewed as a layered
hexagon where level 0 consists of node s1 and level 1 consists
of nodes s2 up to s7, and so on, as shown in Fig. 6(a). Nodes
that lie on direction line d5 are referred to as the starting nodes
of each layer. The round is defined by the movement of a robot
starting from the starting node to the next starting node.

As shown in Fig. 6(a), nodes s1, s6, and s17 are the starting
nodes of rounds 0, 1, and 2, respectively. The first round of the
spiral movement consists of the trajectory moving from node s1

to node s6. The second round of the spiral movement consists
of the trajectory moving from node s6 to node s17.

Definition: Direction Sequence Dk: A direction sequence
Dk of a spiral movement consists of movement directions in
the kth round.

As shown in Fig. 6(a), the direction sequence D1

is {d1, d3, d4, d5, d6}. The direction sequence of D2 is
{d1, d1, d2, d3, d3, d4, d4, d5, d5, d6, d6}.

In the kth round, the robot moves according to the sub-
sequent directions in Dk. For example, in the first round of
spiral movement, the robot moves according to the direction
sequence D1 = {d1, d3, d4, d5, d6}. That is, the robot moves
in direction d1 for a distance of

√
3rs and, after, deploys

a sensor. The robot then moves in direction d3 for a dis-
tance of

√
3rs and then deploys another sensor. Following the

movement directions listed in D1, as the robot moves in the
last direction d6 and deploys a sensor, the movement of
the first round is finished. The robot will then start the move-
ment of the second round according to the direction sequence
D2 = {d1, d1, d2, d3, d3, d4, d4, d5, d5, d6, d6}. Following the
direction sequence in each round, a spiral movement will be
achieved. In the following, the rules for generating a direc-
tion sequence for a spiral movement are proposed. Let dk

i

denote k consecutive appearances of di in Dk. The direc-
tion sequence Dk of the kth round in the spiral movement

Authorized licensed use limited to: Tamkang University. Downloaded on July 12, 2009 at 08:52 from IEEE Xplore. Restrictions apply.

CHANG et al.: OBSTACLE-FREE AND POWER-EFFICIENT DEPLOYMENT ALGORITHM FOR WSNs 799

can be automatically generated by the robot according to the
following:

Dk =
{
dk
1 , dk−1

2 , dk
3 , dk

4 , dk
5 , dk

6

}
, k ∈ Z+.

For example, the robot can generate the movement direction
sequence Dk using

k = 1, D1 = {d1, d3, d4, d5, d6}
k = 2, D2 = {d1, d1, d2, d3, d3, d4, d4, d5, d5, d6, d6}
k = 3, D3 = {d1, d1, d1, d2, d2, d3, d3, d3, d4, d4, d4,

d5, d5, d5, d6, d6, d6} and so on.

Therefore, the robot will move according to the following
spiral movement policy.

Spiral Movement Policy: The robot moves a distance of√
3rs in a specific direction according to the direction sequence

Dk in the kth round and then deploys a sensor, where

Dk =
{
dk
1 , dk−1

2 , dk
3 , dk

4 , dk
5 , dk

6

}
, k ∈ Z+.

IV. OBSTACLE HANDLING

This section introduces the obstacle handling mechanism that
overcomes unknown obstacles in order to achieve full-coverage
deployment. Two types of states are used to distinguish whether
the robot encounters obstacles, namely, the steady and obstacle
states. In the steady state, the robot moves and deploys sensors
following the aforementioned spiral movement and sensor de-
ployment policies. When the robot encounters an obstacle, it
switches from steady to obstacle state and moves and deploys
sensors according to an obstacle surrounding movement policy
which is introduced in the following to reduce the negative
impacts of an obstacle upon deployment.

A. Obstacle Surrounding Movement Policy

To reduce the impact of an obstacle upon deployment, the
obstacle surrounding movement policy is employed in this
section. When the robot encounters obstacles, it switches from
steady to obstacle state. In the obstacle state, the robot adopts
the obstacle surrounding movement policy, in which the robot
moves clockwise around the obstacle and deploys sensors to
have full coverage. Some terms are introduced first to make
the illustration clear. The guiding sensor is the most recently
deployed sensor. Note that the guiding sensor is closest to the
robot. The reference sensor refers to the deployed sensor that
is second closest to the robot. It is observed that the distances
between any pair of three locations, including the expected
location, the location of the guiding sensor, and the location
of the reference sensor, are exactly

√
3rs apart. Let the initiator

denote the last guiding sensor that guides the robot to encounter
the obstacle. Let the leaving sensor denote those sensors that
are nearby the obstacles and are deployed in steady state. As
shown in Fig. 7, sensor s9 is the initiator, and sensor s3 is the
leaving sensor.

To implement the obstacle surrounding movement policy,
the robot moves along the obstacle in a clockwise direction.

Fig. 7. Obstacle surrounding movement policy.

Fig. 8. Example wherein the robot applies the obstacle surrounding move-
ment policy to overcome obstacles. (a) Robot applies the obstacle surrounding
movement policy in obstacle state. (b) Robot treats the sensors with obstacle
state as virtual obstacles and switches from steady and obstacle state to
overcome obstacles.

More specifically, when the robot encounters the obstacle, it
always moves around the obstacle in a clockwise direction
until a leaving sensor is found. Take the example shown in
Fig. 7. When the robot encounters the obstacle, it switches to
the obstacle state and selects the guiding sensor s9 as its ini-
tiator. Applying the obstacle surrounding movement policy, the
robot then deploys sensors s10–s27 around the obstacle. As the
robot deploys s27, it communicates with the leaving sensor s3.
This indicates that the robot has deployed sensors around the
obstacle. Sensors that have been deployed by the robot in
obstacle state are considered virtual obstacles, so that later, the
robot may also adopt the obstacle surrounding movement policy
to deploy sensors around these virtual obstacles (Fig. 8).

The following gives the details on how the robot in the
obstacle state calculates the expected location for deploying
its next sensor. The ultrasonic or laser sensor equipped on
the robot is able to detect the distance between the farthest
point of an obstacle boundary and the robot. For example,
as shown in Fig. 9, the robot can detect that the distance to
the farthest irregular boundary is k centimeters. Therefore, the

Authorized licensed use limited to: Tamkang University. Downloaded on July 12, 2009 at 08:52 from IEEE Xplore. Restrictions apply.

800 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 4, JULY 2009

Fig. 9. Robot uses an ultrasonic sensor or a laser sensor to detect the distance
of the farthest point of the obstacle boundary and the robot. Robot treats an
irregular boundary as a regular boundary B1.

Fig. 10. Example that illustrates the details of the obstacle surrounding
movement policy. (a) Example of the boundary problem wherein the robot
needs to deploy a sensor at the boundary of an obstacle. (b) Case wherein the
robot deploys sensors to surround the obstacle.

robot can treat an irregular boundary as a regular boundary
B1 and determine the expected location for deploying a new
sensor.

Fig. 10(a) shows an example to illustrate how the robot
deploys a sensor when it encounters an obstacle boundary.
Assume that the robot has recently deployed a sensor sb at
location b and intends to move a distance of

√
3rs so that it can

deploy a sensor at location c. However, the robot encounters an
obstacle boundary before it arrives at location c. The robot then
switches from steady to obstacle state, notifying sensor sb to
play the role of a leaving sensor and trying to move along the
obstacle boundary in a clockwise direction until it arrives at a
location, for example, d, where the distance between locations b
and d is

√
3rs. The robot then deploys another sensor sd at

location d. Afterward, the robot continues to move along the
obstacle boundary in a clockwise direction and deploys a sensor
every

√
3rs distance. Fig. 10(b) shows the result of deploying

a number of sensors around an obstacle. Whenever the robot
deploys a sensor se at location e and is aware that it is within
the communication range of the leaving sensor sb, it selects
sb and sa to play the roles of guiding and reference sensors,
respectively, and then adjusts its location for deploying its
next sensor. The adjustment procedure will be presented in
a later section. After this, the robot switches from obstacle
to steady state and deploys its next sensor at the adjusted
location.

B. Switching From Obstacle to Steady State

When the robot encounters a leaving sensor, it switches to
steady state and tries to apply the spiral movement policy. The

Fig. 11. Robot determines a location for deploying its next sensor from
candidate locations D and D′ as it switches from obstacle to steady state.

robot broadcasts a message to find its guiding and reference
sensors. Upon receiving the message, the sensors in steady
state then detect the signal strength of the robot and send
information on the signal strength back to the robot. After, the
robot selects two sensors with the highest signal strengths to be
its guiding and reference sensors. The robot adjusts its location
and deploys a sensor to the expected location.

The following gives the procedure for calculating the ad-
justed location. When the robot encounters a leaving sensor,
it switches its state from obstacle to steady and selects guid-
ing and reference sensors. Recall that each deployed sensor
maintains its location information. The robot then adjusts its
location for deploying its next sensor based on the locations
of the guiding and reference sensors. As shown in Fig. 11,
let G(xg, yg) and R(xr, yr) be the locations of the guiding
and reference sensors, respectively, and let the location for
deploying the next sensor be D(xd, yd). Next, we discuss how
to calculate D(xd, yd) based on the information of G(xg, yg)
and R(xr, yr). In Fig. 11, the circle represents the sensing range
of each sensor. The optimal deployment location for the next
sensor is D(xd, yd) where

|DG| = |DR| = |GR| =
√

3rs. (1)

The equation of line GR can simply be calculated by

GR :
yr − yg

xr − xg
x − y + yr − yr − yg

xr − xg
xr.

Next, we intend to calculate the coordinates of location C so
that the value of xd can be derived accordingly. The coordinates
of location C can be derived based on the slope and length of
line AD. Since line AD is perpendicular to line GR, the slope
and length of line AD are derived by

slopeAD =
xg − xr

yr − yg
|AD| =

(
3
2

)
rs. (2)

From the fact that

slopeAD =
xg − xr

yr − yg
=

|CD|
|AC| |CD|2 + |AC|2 = |AD|2

we have the following:

[(xg − xr)a]2 + [(yr − yg)a]2 =
(

3
2
rs

)2

. (3)

Authorized licensed use limited to: Tamkang University. Downloaded on July 12, 2009 at 08:52 from IEEE Xplore. Restrictions apply.

CHANG et al.: OBSTACLE-FREE AND POWER-EFFICIENT DEPLOYMENT ALGORITHM FOR WSNs 801

According to (3), the value of a is

a =
3rs

2
√

(xg − xr)2 + (yr − yg)2
. (4)

The value of xd can therefore be derived based on (3)
and (4):

xd =
xr + xy

2
− a(xg − xr).

Similarly, the value of yd can be derived using

yd =
yr + yg

2
+ a(yr − yg).

Note that the two locations D and D′ both satisfy (1), as shown
in Fig. 11. The robot selects a location Dnext closest to the last
deployed sensor from candidates D and D′.

Fig. 8 shows an example of the robot switching from obstacle
to steady state. In Fig. 8(a), the robot finds the leaving sensor s3

and switches its state from obstacle to steady. After, the robot
broadcasts a message to neighboring steady sensors. Upon
receiving the signal strength reports from the neighboring sen-
sors, the robot selects sensor s3 that has the strongest strength as
its guiding sensor and selects sensor s4 as its reference sensor.
Then, the robot adjusts its location and deploys sensor s28.
After this, the robot applies the deployment protocol designed
for steady state. As shown in Fig. 8(b), the robot deploys
sensors from s28 up to s36.

When the robot moves to a sensor with an obstacle state,
the robot again switches its state from steady to obstacle and
treats the sensors in the obstacle state as virtual obstacles. Then,
the robot adopts the obstacle surrounding movement policy
and moves around the obstacles in a clockwise direction to
deploy sensors. The robot deploys sensors around the obstacles
until it reaches a leaving sensor. As shown in Fig. 8(b), after
the robot deploys sensor s36, it finds that sensor s10 is in
the obstacle state. The robot switches its state from steady
to obstacle. After, the robot treats sensors s10–s27, whose
states are obstacle, as virtual obstacles. The robot then de-
ploys sensors around the obstacle until it encounters leaving
sensor s28. In total, the robot deploys sensors s37–s56 around
the virtual obstacles and then switches to steady state. The
robot adopts movement and deployment rules designed for
steady and obstacle states until the termination condition is
satisfied.

C. Layer Information and Energy Conservation

The layer information is important for energy conservation.
Another use of layer information is to determine the next
movement direction when the robot stays in steady state. When
the robot stays in steady state, it moves layer by layer and
notifies the deployed sensor with the current layer information.
Let the layer information maintained by the robot be k when
it encounters the obstacle. The robot switches from steady to
obstacle state and deploys m sensors by applying the obstacle
surrounding movement policy before it encounters the leaving

Fig. 12. Execution of Algorithm Termination.

sensor. After this, the robot switches from obstacle to steady
state and increases the layer number by one, continuing to
deploy sensors in a spiral movement manner. As it deploys m
sensors, the robot provides them with the layer information of
k, regardless of their physical locations. Since the deployment
of sensors near the obstacle highly depends on the obstacle
shape, the layer information is useless in helping the robot
determine the moving direction. To simplify the maintenance
of layer information for the robot staying in the obstacle state,
the robot need not change its layer number whenever it switches
from steady to obstacle state.

To save on energy consumption, only deployed sensors that
belong to the largest layer stay in active mode, while other
sensors stay in sleep mode for energy conservation. When
the robot deploys a sensor, for example, s, with layer k, it
broadcasts the layer information to this sensor. Upon receiving
the layer information, each sensor compares its maintained
layer number with k. In case the maintained layer is smaller
than k, it can switch to sleep mode. This technique can work
correctly for all deployed sensors, regardless of whether they
are deployed in steady or obstacle states.

D. Algorithm Termination

The robot will terminate the deployment process once the
monitoring area has full coverage. The robot can then perform
other missions such as maintaining network stability.

This section presents how the robot terminates the deploy-
ment process. If the robot adopts the movement and deployment
rules but does not deploy any sensor for a period of time T ,
this means that each location was monitored by at least one
sensor. The robot selects the nearest sensor to be the terminating
sensor. The robot will then keep executing the movement and
deployment rules. If the robot encounters a terminating sensor

Authorized licensed use limited to: Tamkang University. Downloaded on July 12, 2009 at 08:52 from IEEE Xplore. Restrictions apply.

802 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 4, JULY 2009

Fig. 13. Considered monitoring areas that might contain obstacles.
(a) Scenario 1: Rectangular area. (b) Scenario 2: Circular area. (c) Scenario 3:
U-shaped obstacle existing in the rectangular area. (d) Scenario 4: X-shaped
obstacle existing in the rectangular area. (e) Scenario 5: Multiple obstacles
existing in the rectangular area.

twice but does not deploy any sensor in the monitoring field,
the robot terminates the deployment process. As shown in
Fig. 12, after a period of time T , the robot does not deploy
any sensor on the monitoring field. Next, it selects sensor s49

as the terminating sensor. The robot will then keep executing
the movement and deployment rules. When the robot encoun-
ters sensor s49 again, the robot terminates the deployment
process.

E. Robot-Deployment Algorithm

The following gives a formal description of the proposed
robot-deployment algorithm.

Notations:
si: the sensor that its ID = i, i ∈ Z+.
sg: guiding sensor
ss: initiator
se: leaving sensor
sr: reference sensor
st: terminating sensor
C_R, cri: the current round of the robot and si.

TABLE I
SIMULATION PARAMETERS

Fig. 14. Average number of deployed sensors in different monitoring areas.

C_D, cdi: the current direction of the robot and si.
C_S, csi: the current state of the robot and si.
(0) Initialization

set dm = {0, 5/3π, 4/3π, π, 2/3π, 1/3π}, 1 ≤ m ≤ 6.
set C_R = 0, C_S = steady_state,
Drop a sensor s1

If (no obstacle encounters) then
C_S = steady_state

else
C_S = obstacle_state

(1) Case 1: C_S = steady_state
If (new round begins: C_R = end or a round) then

If (C_R �= 0 and C_R �= 1) then
broadcast sleep_msg〈C_R〉

produce Dk={dk
1 , dk−1

2 , dk
3 , dk

4 , dk
5 , dk

6} through C_R
then robot deploys sensors according to Dk

else (C_R �= end or a round)
send record_msg〈C_R,C_D,C_S〉 to si−1

select sg and sr by broadcasting search_beacon
robot moves in C_D direction listed in Dk for a
distance of

√
3rs and deploy si

If (no sensors deployed during period time T) then
send termination_msg to sg as st

If (robot encounters st again without deploying any
sensor)

Authorized licensed use limited to: Tamkang University. Downloaded on July 12, 2009 at 08:52 from IEEE Xplore. Restrictions apply.

CHANG et al.: OBSTACLE-FREE AND POWER-EFFICIENT DEPLOYMENT ALGORITHM FOR WSNs 803

Fig. 15. Relationship between the number of sensors and the coverage percentages in different scenarios. (a) Scenario 1: Rectangular area. (b) Scenario 2:
Circular area. (c) Scenario 3: U-shaped obstacle. (d) Scenario 4: X-shaped obstacle. (e) Scenario 5: Multiple obstacles.

then
algorithm termination

If (obstacle encounters obstacle or
csMRDS = obstacle_state)
then

C_S = obstacle_state
send set_msg to sg to play the role of ss

broadcast obstacle_msg and the sensors near obstacle
record themselves as se

(2) Case 2:C_S = obstacle_state
Generate the local information of the obstacle
If (robot encounters se)

C_S = steady_state
broadcast ref_msg to find sg and sr and then deploy
si at expected location

If (robot locates in sensing range of some sensor sk) then
move clockwise around the obstacle without deploy-
ment of sensor

else
deploy a sensor and move clockwise around the
obstacle

If (no sensors deployed during period time T) then
send termination_msg to sg as st

If (robot encounters st without deploying any sensor)
then

algorithm termination

V. PERFORMANCE STUDY

This section compares the performance of the pro-
posed obstacle-free and power-efficient deployment algorithm
(OFPE) with another related work, Efficient Exploration with-
out Localization (EEL) [14].

1) Simulation Environment: The performance study uses
five different shapes of monitoring fields where obstacles may
exist, as shown in Fig. 13. In each simulation, the initial location
of the robot is randomly determined in the monitoring field.
The cardinal direction that the robot first faces is east. The
other cardinal directions are separated clockwise per π/3(d2 =
5/3π, d3 = 4/3π, d4 = π, d5 = 2/3π, d6 = π/3). All sensors
have the same capability. The communication and sensing
ranges are rc and rs, respectively, where rc ≥ √

3rs. Table I
details the values set for the simulation parameters.

For fairness, the predefined distance in [14] is equal to the
best deploying distance

√
3rs. The performance is evaluated in

terms of the average number of deployed sensors, the average

Authorized licensed use limited to: Tamkang University. Downloaded on July 12, 2009 at 08:52 from IEEE Xplore. Restrictions apply.

804 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 4, JULY 2009

Fig. 16. Average moving distance in various scenarios.

moving distance, the power consumption, and the number of
check circles. The simulation results are obtained from the
average of 20 runs.

2) Average Number of Deployed Sensors: Fig. 14 shows the
number of sensors used in different monitoring fields. OFPE
takes into account the obstacles so that there would be no
coverage holes and the overlapping area of the sensing range
would be minimal. As a result, OFPE outperforms EEL by at
least 28.64% and at best 44.41%.

Fig. 15 shows the relationship between the number of sensors
and the coverage percentages in several different monitoring
areas. In particular, Fig. 15(a) and (b) shows the coverage
percentage without the existence of obstacles in two monitoring
areas. Without the impact of obstacles on deployment, the
coverage percentages of EEL and OFPE are similar. However,
EEL deploys more sensors than OFPE in achieving a similar
coverage percentage. Fig. 15(c), (d), and (e) shows the perfor-
mance in terms of coverage percentage when U- and X-shaped
obstacles exist in the monitoring areas. With the impacts of
obstacles on deployment, the OFPE outperforms EEL in cov-
erage percentage. The proposed OFPE can overcome obstacles
and efficiently reduce the impact of obstacles in deployment
efficiency. However, in case the number of obstacles increases,
these obstacles would significantly impact OFPE and EEL. This
phenomenon can be found in Fig. 15(e).

3) Average Moving Distance: The movement policy and the
shape of the monitoring region determine the moving distance
for the robot when deploying sensors to achieve full cover-
age. Fig. 16 shows the average moving distance by applying
OFPE and EEL in a rectangular or circular region. The OFPE
requires smaller distances than EEL because the robot move-
ment of EEL is only guided by a single deployed sensor, so
this deployment easily results in many small holes, requiring
the robot to move to further deploy sensors to achieve full
coverage. Another limitation is that EEL did not take obstacles
into consideration in developing its robot-deployment algo-
rithm. Different shapes of obstacles, including the U, X, and
M shapes, are randomly generated in the rectangular and cir-
cular monitoring regions. When the robot encounters obstacles,
EEL results in many holes and thus requires additional move-
ments to achieve full coverage.

4) Average Power Consumption: Fig. 17(a) shows the
average power consumption of robot movement, which is
proportional to the average moving distance. The OFPE out-

Fig. 17. Power consumption of robot movements and communications.
(a) Power consumption in robot movements. (b) Power consumption in
communications.

performs EEL by a 48.67%–63.13% improvement in terms
of power consumption. In addition to the factor of robot
movement, the number of transmitting, receiving, and idle
listening packets created during the deployment process also
impacts the power consumption of the robot and the deployed
sensors. Fig. 17(b) shows the required average power con-
sumption of the robot and the deployed sensors from packet
transmissions and idle listening. By applying OFPE, most
deployed sensors stay in sleep mode. As a result, OFPE out-
performs EEL by a 64.54%–82.09% improvement in power
consumption.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a robot-deployment algorithm that ef-
ficiently handles the problem of obstacles and likely achieves
the purposes of power conservation and full coverage with the
deployment of fewer sensors. The proposed robot-deployment
algorithm consists of steady and obstacle states. In steady state,
spiral movement and node placement policies are proposed
to achieve energy conservation and full coverage using fewer
deployed sensors. When the robot encounters an obstacle, its
algorithm switches to obstacle state wherein the robot adopts
the obstacle surrounding movement policy to move and deploy
sensors, reducing the impacts of obstacles on deployment.
Furthermore, the robot treats sensors that are deployed in
obstacle state as virtual obstacles and deploys sensors layer
by layer according to the spiral movement policy. Simulation
results show that the proposed algorithm significantly reduces
the number of deployed sensors and improves the resistance

Authorized licensed use limited to: Tamkang University. Downloaded on July 12, 2009 at 08:52 from IEEE Xplore. Restrictions apply.

CHANG et al.: OBSTACLE-FREE AND POWER-EFFICIENT DEPLOYMENT ALGORITHM FOR WSNs 805

to obstacles. Future work can consider a team of robots that
cooperatively execute the same deployment task in a distributed
manner. Furthermore, a WSN is typically expected to work for a
long period of time. Sensors in some regions might fail because
of energy exhaustion. Another possible work in the future could
focus on developing an efficient robot redeployment algorithm
that maintains full coverage by deploying fewer sensors within
a reasonable time duration.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[2] M. Krysander and E. Frisk, “Sensor placement for fault diagnosis,”
IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 38, no. 6,
pp. 1398–1410, Nov. 2008.

[3] A. Chen, T. H. Lai, and D. Xuan, “Measuring and guaranteeing quality
of barrier-coverage in wireless sensor networks,” in Proc. 9th ACM Int.
Symp. Mobile Ad Hoc Netw. Comput. (MobiHoc), Hong Kong, Jun. 2008,
pp. 421–430.

[4] J. M. Kay and J. Frolik, “An expedient wireless sensor automaton
with system scalability and efficiency benefits,” IEEE Trans. Syst.,
Man, Cybern. A, Syst., Humans, vol. 38, no. 6, pp. 1198–1209,
Nov. 2008.

[5] R. Kleinberg, “Geographic routing using hyperbolic space,” in Proc.
26th Annu. Joint Conf. IEEE Comput. Commun. Societies (INFOCOM),
Anchorage, AK, May 2007, pp. 1902–1909.

[6] Z. Gao, T. Breikin, and H. Wang, “Reliable observer-based control against
sensor failures for systems with time delays in both state and input,”
IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 38, no. 5,
pp. 1018–1029, Sep. 2008.

[7] J. M. Glasgow, G. Thomas, E. Pudenz, N. Cabrol, D. Wettergreen, and
P. Coppin, “Optimizing information value: Improving rover sensor data
collection,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 38,
no. 3, pp. 593–604, May 2008.

[8] C. Y. Chang and H. R. Chang, “Energy-aware node placement, topology
control and MAC scheduling for wireless sensor networks,” Comput.
Netw., vol. 52, no. 11, pp. 2189–2204, Aug. 2008.

[9] W. Li and C. G. Cassandras, “A minimum-power wireless sensor network
self-deployment scheme,” in Proc. Annu. IEEE WCNC, New Orleans, LA,
Mar. 2005, vol. 3, pp. 1897–1902.

[10] G. L. Wang, G. H. Cao, and T. LaPorta, “Movement-assisted
sensor deployment,” in Proc. 23rd Annu. Joint Conf. IEEE Comput.
Commun. Societies (INFOCOM), Hong Kong, Mar. 2004, vol. 4,
pp. 2469–2479.

[11] G. L. Wang, G. H. Cao, T. LaPorta, and W. S. Zhang, “Sensor reloca-
tion in mobile sensor networks,” in Proc. 24rd Annu. Joint Conf. IEEE
Comput. Commun. Societies (INFOCOM), Miami, FL, Mar. 2005,
pp. 2302–2312.

[12] A. Sekhar, B. S. Manoj, and C. S. R. Murthy, “Dynamic coverage mainte-
nance algorithms for sensor networks with limited mobility,” in Proc. 3rd
IEEE Int. Conf. Pervasive Comput. Commun. (PerCom), Kauai Island, HI,
Mar. 2005, pp. 51–60.

[13] S. Chellappan, X. Bai, B. Ma, D. Xuan, and C. Xu, “Mobility limited
flip-based sensor networks deployment,” IEEE Trans. Parallel Distrib.
Syst., vol. 18, no. 2, pp. 199–211, Feb. 2007.

[14] M. A. Batalin and G. S. Sukhatme, “Efficient exploration without local-
ization,” in Proc. 2003 IEEE Int. Conf. Robot. Autom. (ICRA), Taipei,
Taiwan, Sep. 2003, vol. 2, pp. 2714–2719.

[15] M. A. Batalin and G. S. Sukhatme, “Coverage, exploration and deploy-
ment by a mobile robot and communication network,” in Proc. Int.
Workshop IPSN, Apr. 2003, pp. 376–391.

[16] M. A. Batalin and G. S. Sukhatme, “Sensor coverage using mobile
robots and stationary nodes,” in Proc. SPIE Conf. Scalability Traffic
Control IP Netw. II (Disaster Recovery Netw.), Boston, MA, Aug. 2002,
pp. 269–276.

[17] Y. C. Wang, C. C. Hu, and Y. C. Tseng, “Efficient deployment algorithms
for ensuring coverage and connectivity of wireless sensor networks,” in
Proc. 1st IEEE Int. Conf. Wireless Internet (WICON), Visegrad-Budapest,
Hungary, Jul. 2005, pp. 114–121.

[18] G. T. Sibley, M. H. Rahimi, and G. S. Sukhatme, “Robomote: A tiny
mobile robot platform for large-scale sensor networks,” in Proc. IEEE
ICRA, Washington, DC, May 2002, pp. 1143–1148.

Chih-Yung Chang received the Ph.D. degree
in computer science and information engineering
from National Central University, Taipei, Taiwan,
in 1995.

He was with the faculty of the Department of
Computer and Information Science, Aletheia Univer-
sity, Taipei, as an Assistant Professor in 1997, where
he was the Chair from August 2000 to July 2002.
Since August 2002, he has been with the Department
of Computer Science and Information Engineering,
Tamkang University, Tamsui, Taiwan, where he was

an Associate Professor and is currently a Full Professor. He was an Associate
Guest Editor of the Journal of Information Science and Engineering (2008),
the Journal of Internet Technology (2004 and 2008), and the Journal of Mobile
Multimedia (2005) and was a member of the Editorial Board of the Tamsui
Oxford Journal of Mathematical Sciences (2001–2008) and the Journal of
Information Technology and Applications (2008). His current research interests
include wireless sensor networks, Bluetooth radio networks, ad hoc wireless
networks, and WiMAX broadband technologies.

Dr. Chang is a member of the IEEE Computer and Communication Societies
and the Institute of Electronics, Information and Communication Engineers
Society.

Jang-Ping Sheu (SM’98) received the B.S. de-
gree in computer science from Tamkang University,
Tamsui, Taiwan, in 1981 and the M.S. and Ph.D. de-
grees in computer science from National Tsing Hua
University, Hsinchu, Taiwan, in 1983 and 1987,
respectively.

He was the Chair of the Department of Computer
Science and Information Engineering, National Cen-
tral University, Jhongli City, Taiwan, from 1997 to
1999, where he was the Director of the Computer
Center from 2003 to 2006. He is currently a Chair

Professor of the Department of Computer Science and Information Engineer-
ing, National Tsing Hua University. He is an Associate Editor of the Inter-
national Journal of Ad Hoc and Ubiquitous Computing and the International
Journal of Sensor Networks. He was an Associate Editor for the Journal of the
Chinese Institute of Electrical Engineering, the Journal of Information Science
and Engineering, the Journal of the Chinese Institute of Engineers, and the
Journal of Internet Technology. His current research interests include wireless
communications and mobile computing.

Dr. Sheu is a member of the Association for Computing Machinery and the
Phi Tau Phi Society. He is an Associate Editor for the IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS. He was the recipient of the
Distinguished Research Awards from the National Science Council of the
Republic of China in 1993–1994, 1995–1996, and 1997–1998, the Distin-
guished Engineering Professor Award from the Chinese Institute of Engineers
in 2003, the certificate of Distinguished Professorship from the National Central
University in 2005, and the K.-T. Li Research Breakthrough Award from the
Institute of Information and Computing Machinery in 2007.

Authorized licensed use limited to: Tamkang University. Downloaded on July 12, 2009 at 08:52 from IEEE Xplore. Restrictions apply.

806 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 4, JULY 2009

Yu-Chieh Chen received the B.S. degree in com-
puter science and information engineering from
Ming Chuan University, Taipei, Taiwan, in 2005 and
the M.S. degree in computer science and informa-
tion engineering from Tamkang University, Tamsui,
Taiwan, in 2007, where he has been working toward
the Ph.D. degree in the Department of Computer
Science and Information Engineering since then.

His research domains include wireless sensor net-
works, ad hoc wireless networks, mobile/wireless
computing, and WiMAX.

Mr. Chen won many scholarships in Taiwan and participated in many
wireless sensor networking projects.

Sheng-Wen Chang received the B.S. degree in
computer science and information engineering from
Tamkang University, Tamsui, Taiwan, in 2004,
where he has been working toward the Ph.D. degree
since 2005 in the Department of Computer Science
and Information Engineering.

He has published extensively in the wireless net-
working area. His research interests are WiMAX,
wireless sensor networks, Bluetooth radio networks,
wireless mesh networks, and ad hoc wireless net-
works, concerning both theoretic and algorithm

design.
Mr. Chang is a student member of the IEEE Computer and Communication

Societies and the Institute of Electronics, Information and Communication
Engineers Society. He has won many scholarships in Taiwan and participated
in many Bluetooth and wireless sensor networking projects.

Authorized licensed use limited to: Tamkang University. Downloaded on July 12, 2009 at 08:52 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

