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Abstract—Localization is a fundamental and essential issue for wireless sensor networks (WSNs). Existing localization algorithms can

be categorized as either range-based or range-free schemes. Range-based schemes are not suitable for WSNs because of their

irregularity of radio propagation and their cost of additional devices. In contrast, range-free schemes do not need to use received signal

strength to estimate distances. They only need simple and cheap hardware and are, thus, more suitable for WSNs. However, existing

range-free schemes are too costly and not accurate enough or are not scalable. To improve previous works, we present a fully

distributed range-free localization scheme for WSNs. We assume that only a few sensor nodes, called anchors, know their locations,

and the remaining (normal) nodes need to estimate their own locations by gathering nearby neighboring information. We propose an

improved grid-scan algorithm to find the estimated locations of the normal nodes. Furthermore, we derive a vector-based refinement

scheme to improve the accuracy of the estimated locations. Analysis, simulation, and experimental results show that our scheme

outperforms the other range-free schemes even when the communication radius is irregular.

Index Terms—Anchor nodes, localization, range based, range-free, wireless sensor networks.

Ç

1 INTRODUCTION

LOCALIZATION is a fundamental and essential issue for
wireless sensor networks (WSNs). Many of the applica-

tions and communication protocols of WSNs are based on
the location information of sensor nodes, such as calculating
the coverage of WSNs, tracking the location of events and
intruders, geographic-based routing, and geocasting [13],
[18], [19]. Since a WSN usually consists of thousands of low-
cost sensor nodes, it is not practical to equip each sensor
node with a positioning device such as the Global
Positioning System (GPS) [10], [17]. The more reasonable
solution is to assume that only a small portion of sensor
nodes (called anchors) obtain their location information via
GPS or the system administrator, and the remaining nodes
without location information (called normal nodes) can
estimate their locations according to the location informa-
tion of the anchors.

Many localization algorithms for WSNs have been
proposed recently. These localization algorithms for WSNs
can be categorized as either range-based or range-free
schemes. The range-based scheme determines the distance
between two different sensor nodes based on a variety of
information, such as Time of Arrival (TOA) [18], Time
Difference of Arrival (TDOA) [2], Angle of Arrival (AOA) [1],

and Received Signal Strength Indicator (RSSI) [16]. After the
distance has been determined, the location can be estimated
according to the distance information. The estimation of the
above time-of-flight technologies can be affected by multi-
path and noise. Moreover, these schemes often need to be
equipped with additional hardware. Consequently, range-
based schemes are impractical solutions for the resource-
limited WSNs.

Because of the drawbacks of ranged-based schemes, many
range-free localization schemes have been proposed, such as
Centroid [8], APIT [13], DV-HOP [10], CPE [14], DLE [20],
MCL [21], MSL [22], and UPL [25]. In ranged-free schemes,
the sensor nodes without location information (called
normal nodes) gather location information from nodes with
known locations (called anchors) and estimate their own
locations according to the location information of the
anchors. However, existing ranged-free schemes are either
too costly (cause heavy traffic load), not accurate enough, or
not scalable.

To improve previous works, we propose a Distributed
Range-Free Localization Scheme (DRLS) for static WSNs. In
the proposed scheme, each node gathers the nearby
anchors’ locations and then estimates its own location. We
propose an improved grid-scan algorithm, whose computa-
tion cost is lower than the original grid-scan algorithm [13],
to calculate the estimated locations of the normal nodes.
Furthermore, we derive a vector-based refinement scheme
to improve the accuracy of the estimated locations. The
estimated location is refined according to the combined
vectors formed by the target node (the normal node that is
currently estimating its location) and farther anchors. A
farther anchor is defined as the anchor that does not cover
the target node but covers the target node’s estimative
region. Analysis, simulation, and experimental results show
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that the proposed algorithm can improve the accuracy of
the estimated location.

The rest of the paper is organized as follows: Section 2
reviews some related works on localization. Section 3
describes our DRLS. Performance evaluation is shown in
Section 4. Conclusions are made in Section 5.

2 RELATED WORK

Many localization algorithms have been proposed recently
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [20], [21], [22], [23], [24], [25], [26]. The localization
algorithms can be classified into two categories, namely,
range-based and range-free schemes. The details of the two
schemes are shown as follows.

2.1 Range-Based Localization Schemes

The range-based localization schemes can be further
classified into TOA, TDOA, AOA, and RSSI measurements
based on the way they acquire distance information. TOA
measurement is commonly used to obtain range informa-
tion between two communicating nodes according to the
measurement of signal propagation time. The most basic
position system used in TOA measurement is GPS [18].
TDOA measurement is similar to TOA in that they both
require expensive hardware and use the signal propagation
time to derive range information. However, TDOA uses
ultrasound signals to help sensor nodes acquire distance
information. TDOA has been widely adopted by several
localization schemes in WSNs, such as the Cricket Location-
Support System [2]. In the Cricket system, the beacon nodes
periodically broadcast position information over RF and
ultrasound signals concurrently. A normal node will receive
the RF signal earlier than the ultrasound signal and,
afterward, calculates the time difference between the arrival
time of the RF signal and the ultrasound signal. The
distance measurement between the normal node and the
beacon node can then be determined. Measurements based
on the signal propagation time can be affected by multipath
fading and noise interference. Therefore, TOA and TDOA
are impractical solutions for WSNs.

AOA measurement estimates the relative angles between
neighbors. However, AOA measurement requires addi-
tional expensive hardware, such as a directional antenna or
a digital compass [11]. Consequently, AOA measurement is
not suitable for resource-limited WSNs.

RSSI is another approach based on the relation between
signal strength and distance. RADAR [16] is one of the
schemes adopting RSSI. Based on the radio propagation
theory, RSSI converts the received signal strength to the
distance between receiving nodes and transmitting nodes.
The formula of the radio propagation theory is composed of
the transmitted power, the received power, and the path
loss. However, problems of multipath fading, unstable
signal propagation, and background noise make the dis-
tance derived from RSSI inaccurate. The other works related
to range-based schemes can be found in [24], [25], and [26].

2.2 Range-Free Localization Schemes

Because of the drawbacks of ranged-based schemes, many
range-free solutions have been proposed. In the Centroid

algorithm [8], normal nodes collect location information
from their neighboring anchors and calculate their estimated
locations by using the Centroid formula. The Centroid
algorithm is simple and can get accurate estimated location
when the anchor ratio is high or the distribution of anchors is
regular. However, when the anchor ratio is low or the
distribution of anchors is not even, the estimated location
derived from the Centroid algorithm tends to be inaccurate.
In Fig. 1, the shaded region is the overlapping communica-
tion region of three anchors, namely, A1, A2, and A3. If
normal node N can receive beacons from neighboring
anchors A1, A2, and A3, it is rational for N to regard the
center of the shaded region as its own estimated location.
However, when using the Centroid algorithm, the estimated
location (denoted as N 0) of the normal node N is the average
of the coordinates of nodes A1, A2, and A3, which is
obviously outside the overlapping communication region.

Another range-free localization scheme, named APIT, is
proposed in [13]. By using beacons from neighboring
anchors, APIT repeats an area-based approach called the
Point-In-Triangulation (PIT) test with different combina-
tions of neighboring anchors to narrow down the normal
node’s estimative region. After the PIT test, the APIT
utilizes a grid-scan algorithm to derive the intersection
region of all the triangles and regards the center of the
intersection region as the estimated location of the normal
node. It is shown that the APIT scheme can achieve an
acceptable localization error when the anchor ratio is high
and the communication overhead is as low as the Centroid
algorithm’s. However, in APIT, the network area is divided
into many small square grids. The grid-scan algorithm
needs to scan these grids and judge if the square grid is in
the triangle region formed by the connected lines between
near anchors. The memory required to store the value of the
grid array is large, and since the sensor node has only a
small memory, APIT is not suitable for WSNs.

Based on the concept of distance vector (DV) routing,
DV-HOP is proposed in [10]. The anchors broadcast their
location package throughout the network. Other anchors can
obtain the minimum hop count to each anchor. Each anchor
can convert the hop count to physical distance and broadcast
the estimated average distance per hop to neighboring
normal nodes. Normal nodes can then calculate their
locations based on the received anchor’s location, the hop
count from the anchor, and the average per hop distance.

The Convex Position Estimation (CPE) algorithm [14]
uses convex optimization to estimate the position of the
sensor node. If a normal node can communicate with some
neighboring anchors, it means that there are connectivity
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constraints between the normal node and its neighboring
anchors. Since the location of the normal node must be
within the intersection of the communication regions of
these anchors, information such as locations and commu-
nication ranges of these nearby anchors can be used to
estimate the location of the normal node. Aside from this,
for the ease of calculating, the CPE algorithm defines the
estimative rectangle (ER), which bounds the overlapping
region and regards the center of the rectangle as the
estimated location of the normal node. The four sides of the
ER are parallel to the x-axis and the y-axis. For example, in
Fig. 2, the normal node N is within the communication
range r of three neighboring anchors, namely, A1, A2, and
A3. That is, there are connectivity constraints between the
normal node N and its neighboring anchors A1, A2, and A3.
By using combinations of these connectivity constraints, the
ER of the overlapping region, where a normal node N
resides, can be calculated. Finally, the node N 0, which is the
center of the ER, is the estimated location of the normal
node N . The CPE algorithm is a centralized localization
scheme since each normal node sends the collected
connectivity constraints back to a centralized controller.
The centralized controller then estimates the location of
every normal node and floods the estimated location back
to every normal node. Thus, the global solution can be
acquired. However, the traffic load is heavy, and the CPE
algorithm scales poorly when the network is large.

The CPE algorithm [14] has also been improved in a
distributed version in [15]. In this distributed algorithm,
normal nodes improve their estimated locations by incor-
porating connectivity constraints, as well as constraints
imposed by a moving target. The normal nodes acquire an
initial estimated location by using connectivity constraints
and then use detection or nondetection of a moving target
to update their estimated locations. In reality, it is difficult
to move a target successfully in large-scale WSNs, and
constraints imposed by the moving target cannot be
acquired. Thus, this distributed algorithm scales poorly
because of the size of the WSNs.

In the Distributed Location Estimating (DLE) algorithm
[20], each node without location information only needs to
collect the location information of neighboring nodes and
then calculate the ER to estimate its location. Aside from
this, DLE uses some rules to adjust the estimative region

according to the relative locations of the normal nodes and
the farther beacon nodes. Thus, the accuracy of the normal
node’s estimative region can be improved by discarding
the communication area of the beacon node (called the
farther beacon node), which does not cover the normal
node, from the original estimative region. However, the
rules used to adjust the estimative region sometimes
overdiscard the communication area, which does not
cover the normal node and can lead to an estimative
error when calculating the estimated location. The range-
free localization schemes for WSNs with mobile nodes can
be found in [21], [22], and [23].

2.3 Motivation and Contributions

To improve the localization accuracy and to lower the
computation cost of previous works, we propose a DRLS for
WSNs. The contributions of the proposed scheme are
shown as follows:

. Different from APIT, in DRLS, each normal node
gathers two-hop information during the beacon
exchange phase so that it can collect both positive
and negative connectivity constraints to refine its
estimated location. Since each normal node only
uses local information to estimate its own location,
DRLS is scalable.

. The grid-scan phase of DRLS combines the ideas of
ER and grid scan so that we can not only improve the
accuracy of the estimated location, but also greatly
reduce the grid-scan costs. We believe that no one
has ever combined the ideas of ER and grid scan.

. Many existing range-free algorithms use connectiv-
ity constraints to estimate location. However, con-
verting the connectivity constraints into vector and
using the resultant of the vectors to refine the
estimated location are novel ideas. We believe that
these ideas have not been proposed before.

3 DISTRIBUTE RANGE-FREE LOCALIZATION

SCHEME

The DRLS is designed for a WSN whose sensor nodes are
randomly deployed in a squared region, wherein every
sensor node has a unique ID. Once a sensor node is
deployed, it will no longer change its location. In the DRLS,
we assume that only a small percentage of sensor nodes,
called anchors, get their own location information via GPS
or some other mechanism. The other nodes without location
information are called normal nodes. By collecting beacons
from anchors, DRLS uses the combinations of connectivity
constraints gathered from anchors to reduce the scope of the
estimative region in which a normal node resides. An
improved grid-scan algorithm is then used to derive a more
accurate estimated location. Finally, a vector-based refine-
ment scheme is used to further improve the accuracy of the
estimated location. There are three phases in the DRLS
algorithm. In the first phase, each sensor node exchanges
beacons so as to collect connectivity constraints. In the
second phase, each normal node uses the improved grid-
scan algorithm to get its initial estimated location. In the
third phase, the normal node uses the vector-based
refinement scheme to improve the accuracy of its estimated
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location. The detailed description of each phase is shown in
the following sections.

3.1 Beacon Exchange

In the first phase, every anchor gathers the ID and location
information of anchors within two hops via two-hop
flooding and then broadcasts the collected information to
normal nodes within one hop. We will explain why the
anchors need to gather the information of other anchors
(including ID and location) within two hops using the
following examples. In Fig. 3, the normal node N is within
the intersection of the communication regions of anchors A1

and A2. We name anchors A1 and A2 as the near anchors of
the normal node N , and we regard the center of the
intersection as the initial estimated location of the normal
node N . On the other hand, anchor A3’s communication
region does not cover node N but covers the intersection of
the communication regions of anchors A1 and A2. Anchor
A3 is named as the farther anchor of the normal node N . As
shown in Fig. 3, the shaded region, which is derived by
discarding anchor A3’s communication region from the
intersection of anchors A1 and A2’s communication regions,
is the region where node N may reside. To derive a more
accurate estimated location, node N needs to gather not
only the information (including ID and location) of near
anchors A1 and A2, but also the information of the farther
anchor A3, so that it can further refine its estimated location
according to the relative location of the farther anchor and
the near anchors’ overlapping communication region.

In Fig. 4, N is the normal node. A1 and A2 are the farther
and near anchors of node N , respectively. The farthest
possible distance between the farther anchor A1 and the
near anchor A2 is no more than twice the communication
range ð2rÞ, as shown in Fig. 4. By two-hop flooding, each
normal node can collect the location information of near
anchors and farther anchors from the near anchors and,
thus, improve the accuracy of the estimated location. As the
farther anchor is closer to the normal node, it has greater
impact on location estimation.

Fig. 5 shows the detail of the beacon exchange via two-
hop flooding. Three normal nodes and four anchors are
shown in Fig. 5. For the ease of explanation, we will show
how the normal node N1 collects the location information
from both near anchors and farther anchors via two-hop
flooding. A2 is the near anchor, and A1 and A3 are the
farther anchors of the normal node N1. Since the distance

between A2 and A1 (or A3) is less than 2r, by using two-hop
flooding, the near anchor A2 can gather the ID and location
information from the farther anchors A1 and A3. Since the
distance between anchor A4 and anchor A2 is more than 2r,
and anchor A4 is too far to affect the estimated location of
the normal node N1, anchor A2 will not be able to gather the
ID and location information of anchor A4. After each anchor
has collected the location information of anchors within two
hops, each anchor will broadcast the collected location
information to normal nodes within one hop. The normal
node N1 will then receive the beacon from its near anchor
A2. Finally, every node will have the ID and the location
information of both near and farther anchors.

3.2 Improved Grid-Scan Algorithm

After finishing the first phase, each normal node can use the
connectivity constraints collected from both near and
farther anchors to estimate its location. The connectivity
constraints can be further categorized as either “positive
connectivity constraints” or “negative connectivity con-
straints.” If a normal node is within the communication
range of the anchors, we can say that there are positive
connectivity constraints between the normal node and the
near anchors. Fig. 6 shows examples of positive connectivity
constraints. When a normal node receives a beacon from a
near anchor, the normal node comes within the commu-
nication range of the anchor. Additionally, when a normal
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Fig. 3. The impact of the farther anchor.

Fig. 4. Relative locations of the near anchor and the farther anchor.

Fig. 5. Beacon exchange via two-hop flooding.



node receives beacons from several anchors, the normal
node is within the intersection of these near anchors’
communication regions. Therefore, the normal nodes can
estimate their own location according to the positive
connectivity constraints of near anchors. In Fig. 6, the
shaded region is the region where the normal node may
reside, and we call the shaded region the “estimative
region.” Increasing positive connectivity constraints may
lead to a smaller estimative region, as shown in Fig. 6c.

For the ease of estimation, we use a square that bounds
the communication region of the anchor to represent the
communication region of the anchor, as shown in Fig. 7a.
The ER of the normal node is defined as the intersection
of those squares that bound the communication regions of
anchors. The four sides of the ER are either parallel with
the x-axis or with the y-axis. Fig. 7 shows the ER of the
estimative regions in Fig. 6. The definition of our ER is
different from that of the CPE algorithm’s [14] and is
easier to compute. In some cases, since our ER may not
totally fit the estimative region, it is not rational to regard
the center of our ER as the initial estimated location of the
normal node.

Thus, we use an improved grid-scan algorithm to
calculate the initial estimated location of the normal node.
The grid-scan algorithm has been previously used by
APIT [13], which is also a range-free localization scheme.
Unlike the grid-scan algorithm, which scans each grid in
the whole network area, the improved grid-scan algorithm
merely scans each grid in the ER. We use the improved
grid-scan algorithm to calculate the estimative region and
regard the center of the estimative region as the initial
estimated location of the normal node. The detail of the
algorithm is described in the following paragraphs.

For the ease of explaining the improved grid-scan
algorithm, we define some notations below. Assume that
the length of the ER is equal to L� S, the width of the ER

is equal to W � S, and the edge length of the grids is equal
to S, as shown in Fig. 8. The ER of the normal node is
divided into a set of grids G ¼ fG1; G2; . . . ; Gng, where n is
equal to L�W . Each grid is assigned an initial value 0.
Ci represents the center of the grid Gi. If Ci is within the
communication range of m near anchors, the value of the
grid Gi increases by m. Therefore, the grid value indicates
the number of anchors whose communication region
covers the center of the grid. Once all grid values are
computed, the grids with the greatest grid values are the
regions where the normal node may reside.

Figs. 9 and 10 are examples that show how the improved
grid-scan algorithm works. First, as shown in Fig. 9, the ER of
normal node N is calculated. Then, the ER is divided into
smaller grids, and the initial value of each grid is set to 0.
Finally, by judging whether each grid overlaps with the
communication region of each near anchors A1, A2, and A3,
the final value of each grid is obtained. In Fig. 10, the grid
with the greatest grid value (3) is the grid whose center is
covered by the communication regions of all the three near
anchors. These grids form a region where nodeN may reside.

Assume that there are k grids with the greatest grid
value. The coordinate of the initial estimated location can be
derived from the coordinates of the k grids’ center. By
summing up the x-coordinates of the centers of the k grids
and dividing the sum by k, we can derive the x-coordinate
of the initial estimated location. Using this same method,
we can also derive the y-coordinate of the initial estimated
location. In Fig. 10, N 0 is the initial estimated location of the
normal node N . Reducing the size of the grid may reduce
location errors caused by granularity. However, it increases
the calculation load. In our simulation, the grid size is set to
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0:1r� 0:1r so as to guarantee the estimative accuracy and so
that it would not cost too much computation time.

3.3 Refinement

The initial estimated location derived by the improved grid-
scan algorithm can be further refined according to
“negative connectivity constraints.” If a normal node can
acquire the locations of farther anchors through its
neighbors, we can say that there are negative connectivity
constraints between the normal node and the farther
anchors. The initial estimated location of the normal node
can be refined according to the relative location of the
farther anchors and the intersection of the near anchors’
communication regions.

3.3.1 The Impact of the Farther Anchor

Figs. 11 and 12 show the impact of the farther anchors. The
more the farther anchor’s communication region overlaps
with the intersection of the near anchor’s communication
region, the more refinement will be obtained for the initial
estimated location. In Fig. 11, anchorsA2 andA1 are the near
and farther anchors, respectively, of the normal node N .
According to the positive connectivity constraint mentioned
in Section 3.2, the normal node N will calculate its ER and
then use the improved grid-scan algorithm to obtain its
initial estimated location N 0, which is equal to the only near
anchor A2.

We use the concept of repulsive virtual force (VF) to
represent the impact made by each farther anchor on the
initial estimated location of the normal node. The intensity
of the VF is proportional to how much the communication
region of a farther anchor overlaps with the intersection of
the near anchors’ communication regions. Here is an
example to explain it. In Fig. 12, the line L1 is the straight
line that passes through the farther anchor A1 and the initial
estimated location N 0. We define DinvasionA1 (the invasion
distance of farther anchor A1) as the segment of line L1

within the intersection of the farther anchor’s communica-
tion region and the intersection of the near anchors’
communication regions. The more the communication

region of the farther anchor overlaps with the near anchors’
communication region, the longer DinvasionA1 becomes.
Thus, the intensity of the VF is proportional to the length of
DinvasionA1. The direction of the VF is from the farther
anchor A1 toward the initial estimated location N 0.

In Fig. 11, the normal node N has only one near anchor
A2, and there is no intersection between the near anchor A2

and the farther anchor A1’s communication region. Thus,
the intensity of the VF caused by the farther anchor A1 is
zero, and the initial estimated location N 0 does not need to
be corrected. In Fig. 12, there is an intersection between the
communication regions of the farther anchor A1 and the
near anchor A2. It is obvious that the farther anchor A1

invades the communication region of the near anchor A2

and causes the VF to push the initial estimated location
toward the lower right. As shown in Fig. 12, the stronger the
VF is, the greater DinvasionA1 becomes. In Fig. 12, the
refined estimated location N 0 is much closer to the real
location of the normal node N . How to derive the VF is
described in Section 3.3.2.

3.3.2 Refinement of the Estimated Location

The refinement phase runs concurrently at each normal
node. In Fig. 13, node N is a normal node, node A1 is the
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Fig. 11. Initial estimated location.

Fig. 12. The VF is proportional to the DinvasionA1.



near anchor of node N , and nodes A2, A3, and A4 are the

farther anchors of node N . In this example, there is only one

positive connectivity constraint, so the location of the near

anchor A1 is also the initial estimated location N 0 of the

normal node N . The VF caused by the farther anchor A2 is

denoted as V FA2, and the direction of V FA2 is from the

farther anchor A2 toward the initial estimated location N 0.

V FA2 will push N 0 toward the upper right. Similarly, V FA3

and V FA4 will push N 0 toward the lower left and upper left,

respectively. The intensity of V FA2, V FA3, and V FA4 is

proportional to the length of each Dinvasion. Finally, the

initial estimated location N 0 of the normal node N is pushed

according to the intensity and direction of the resultant

virtual forces (RVFs). We derive the relation between the

intensity of V F and the length of Dinvasion by observing

the following example.
In Fig. 14, DinvasionA4max is the maximum possible

invasion distance of the farther anchor A4 toward the

near anchor A1. When there is only one near anchor,

DinvasionA4max is equal to the diameter ðacÞ of near

anchor A1’s communication region. When DinvasionA4 ¼
DinvasionA4max ¼ ac, we need to push N 0 from the center

to the boundary of A1’s communication region, so we

have jV FA4j ¼ jV FA4 maxj ¼ jN 0aj. Since the intensity of V F

is proportional to the length of Dinvasion, we can derive

the intensity of V FA4 (denoted jV FA4j) with the following

equation:

jV FA4j ¼ jDinvasionA4j �
jV FA4 maxj

jDinvasionA4 maxj
:

Let VA4 be the unit vector in the direction from the farther

anchor A4 toward the initial estimated location N 0. VA4 can

be derived with the following equation:

VA4 ¼
DinvasionA4
���������!
jDinvasionA4j

; where DinvasionA4
���������!

is vector cb
!
:

Assume that the vector to represent V FA4 is denoted as

V FA4
���!

. We can derive V FA4
���!

with the following equation:

V FA4
���! ¼VA4 � jV FA4j

¼ DinvasionA4
���������!
jDinvasionA4j

� jDinvasionA4j �
jV FA4 maxj

jDinvasionA4 maxj

¼DinvasionA4
���������!� jV FA4 maxj

jDinvasionA4 maxj
:

Assume that the line passes through the farther anchorAi

and the initial estimated location N 0 is denoted as Li, the

segment of line Li within the intersection of the farther

anchor’s communication region and the intersection of the

near anchors’ communication regions is denoted as

DinvasionAi, the maximum possible invasion distance of

the farther anchor Ai is denoted as DinvasionAimax, the

corresponding VF is denoted as V FAimax, and the vector to

represent V FAi is denoted as V FAi
���!

. To derive V FAi
���!

, we need

to calculate the coordinates of the two end points of

DinvasionAimax and DinvasionAi. To derive the coordinates

of the two end points of DinvasionAimax, the normal node N

computes the coordinates of the two intersection points of

line Li and the boundary of the estimative region. The two

intersection points of line Li and the boundary of the near

anchors’ communication regions that are closest to N 0 are

the two end points of DinvasionAimax (e.g., points a and c in

Fig. 14). Between the two end points of DinvasionAimax, the

end point that is closer to the farther anchor Ai is regarded

as the end point of both DinvasionAimax and DinvasionAi
(e.g., point c in Fig. 14). To derive the coordinate of the other

end point of DinvasionAi, the normal node N computes the

coordinates of the intersection points of line Li and the

boundary of the communication regions of the farther

anchor Ai. The intersection point of line Li and the

boundary of the farther anchor Ai’s communication region

between N 0 and one of the end points of DinvasionAimax
(e.g., point c in Fig. 14) is regarded as the other end point of

DinvasionAi (e.g., point b in Fig. 14).

1116 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 7, NO. 9, SEPTEMBER 2008

Fig. 13. Relation between V FA4 and DinvasionA4.

Fig. 14. Relation between V F and Dinvasion.



For example, in Fig. 15, the intersection points of line L3

and the boundary of the communication regions of near
anchors A1 and A2 are b, c, e, and f . Among points b, c, e,
and f , points c and e are closest to N 0, so they are regarded
as the two end points of DinvasionA3max. Between points c
and e, point c is closer to the farther anchor A3, so it is
regarded as the end point of both DinvasionA3max and
DinvasionA3. The intersection points of line L3 and the
boundary of the communication regions of the farther
anchor A3 are a and d. Point d is between N 0 and point c, so
it is regarded as the other end point of DinvasionA3.

Therefore, we haveDinvasionA3
���������!¼cd!,DinvasionA3max¼ce,

and V FA3 max ¼ N 0e. Assume that the coordinates of

points c, d, e, and N 0 are denoted as ðxc; ycÞ, ðxd; ydÞ, ðxe; yeÞ,

and ðxn0 ; yn0 Þ, respectively. We have cd
!¼ðxd�xc; yd�ycÞ,

jDinvasionA3 maxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxe � xcÞ2 þ ðye � ycÞ2

q
, jV FA3 maxj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxe � xn0 Þ2 þ ðye � yn0 Þ2
q

, and in a similar manner, we can

derive VFA4
���!

and VFA5
���!

. By summing up VFA3
���!

, VFA4
���!

, and

VFA3
���!¼ cd!� jV FA3 maxj

jDinvasionA3 maxj¼ðxd�xc; yd�ycÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxe�xn0 Þ

2þðye�yn0 Þ
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxe�xcÞ2þðye�ycÞ2
p �

V FA5
���!

, we can derive RFV .
After a normal node has calculated its own estimated

location through the above three phases, it will broadcast its
own estimated location, as well as the location information
collected before to its one-hop neighbors. Thus, a normal
node, which does not have any neighboring anchors, will
regard these neighboring normal nodes as anchors and use
location information collected from these normal nodes to
estimate its own location. When a new node joins the
network, it will send a beacon packet to request location
information from its one-hop neighbors. After collecting the
location information from its one-hop neighbors, the new
node can then estimate its own location. The pseudocode of
our DRLS is shown as follows:

Distributed Range-Free Localization Scheme:

For each anchor node: Gather the ID and locations of

anchors within two hops via two-hop flooding and then

broadcast the collected anchors’ locations to normal nodes

within one hop.

For each normal node: Use the improved grid-scan

algorithm to calculate the initial estimated location using

the following steps:

1) Divide the ER into a set of grids.
2) For each grid within ER do

Calculate the number (denoted as m) of near

anchors whose communication region covers

the center of the grid and increases the grid

value by m.

End for

3) Let xn0 ¼
Pk

i¼1 xi=k and yn0 ¼
Pk

i¼1 yi=k, where

ðxn0 ; yn0 Þ is the coordinate of the initial estimated
location N 0, ðxi; yiÞ are the coordinates of the ith grid

with the greatest grid value, and k is the number of

grids with the greatest grid value.

If there exists at least one farther anchor node overlapping

with the intersection of the near anchors’ communication

regions then /* Refinement Scheme */

Correct the initial estimated location using the following

steps:
For each farther anchor Ai do

1) Calculate the coordinates of the two end points of

Dinvasionimax (denoted as ai and ci) and

Dinvasioni (denoted as bi and ci).

2) Let V Fi
��!¼Dinvisioni�������!�jV Fimaxj=jDinvisionimaxj
¼ cb!� jacj

�
jN 0aj.

End for

Let RFV ¼
Pn

i¼1 V Fi
��!

, where n is the number of farther

anchors.

Correct the initial estimated location by adding RFV to

the initial estimated location.

End if

Broadcast the estimated location information to its neighbors.

4 PERFORMANCE EVALUATION

In this section, we compare the performance of the proposed

DRLS with that of the existing range-free localization

schemes mentioned in Section 2.2, including the Centroid

method [8] and the CPE localization scheme [14]. We do not

compare them with the APIT and DLE because the sensor

nodes are not homogeneous in APIT and DLE, which means

that the communication range of the anchor is larger than

that of the normal node. However, in our DRLS, all sensor

nodes are homogeneous and have the same fixed commu-

nication range r, where r is the communication range of the

sensor nodes. In DRLS, nodes and anchors are randomly

distributed in a 10r� 10r square region. Each node has a

unique ID, and the size of the grid is 0:1r� 0:1r to guarantee

the estimative accuracy and so that it would not cost too

much calculation time and memory. We do not discuss

collision problems in the simulations because we assume

that they can be solved by the MAC layer protocols.
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Fig. 15. Example of two near anchors and three farther anchors.



4.1 Simulation Parameter

We use NS2 as the simulator. In the simulation, we vary

two parameters, the anchor ratio and the radio propagation

patterns. The anchor ratio is defined as m=ðnþmÞ, where n

is the number of normal nodes, and m is the number of

anchors in the WSN. We vary the radio propagation pattern

in the simulation because the assumption of a circular

communication range is not realistic in the real world. The

problems of multipath fading, unstable signal propagation,

and background noise make the communication radius of

the sensor node unfixed. To verify that the DRLS is usable

in the real world, we use the radio model proposed in [13].

In this model, the communication radius of the sensor node

is irregular, and the notation DOI is used to represent the

degree of irregularity. There are the upper bound and the

lower bound of the communication radius. The upper

bound is the ideal communication radius r, and the lower

bound is proportional to ð1�DOIÞ. For example, if the

upper bound is r and the DOI is 0.5, then the lower bound is

ð1�DOIÞ ¼ 0:5r. If a sensor node is outside the upper

bound of the communication radius of another sensor node,

it will not receive the beacon packets from that sensor node.

On the other hand, if a sensor node is inside the lower

bound of the communication radius of another sensor node,

it can always receive the beacon packets from that sensor

node. The radio range in any direction varies randomly

between the upper bound and the lower bound. The radio

pattern is shown in Fig. 16.
In the following, we compare the mean error and the

communication costs among each of the localization
schemes through simulations and real experiments. We
also analyze the computation costs among each of the
localization schemes. The localization error is the distance
between the estimated location and the physical location of
the normal node, and the mean error can be calculated as
the average localization error of all normal nodes.

Fig. 17 shows the impact of simulation times on the size
of the confidence interval. As the simulation times increase,
the size of the confidence interval becomes smaller.
Similarly, as the number of sensor nodes increases, the size
of the confidence interval becomes smaller. We have
observed that the size of the confidence interval gradually
converges when the simulation times approach 100. There-
fore, we obtain the simulation results from 100 times of
simulations for each set of parameters. In the worst case, the
ratio of the size of the 95 percent confidence interval to the

mean value is less than 0.04, which should be able to give
statistical meaning to collected data.

4.2 Effect of Varying Anchor Ratio

In this section, we vary the anchor ratio to see its impact on
the mean error. The area size of the WSN is 10r� 10r. The
total number of sensor nodes is 200. We vary the number of
anchors from 10 to 95. Fig. 18 shows the impact of the
anchor’s ratio on the mean error. As the number of anchors
increases, the mean error decreases. More near anchors may
bring more positive connectivity constraints to reduce the
size of the estimative region and, thus, increase the accuracy
of the initial estimated location. The farther anchors may
bring even more negative connectivity constraints to refine
the initial estimated location and, thus, increase the
accuracy of the estimated location. The decreasing curve
tends to become smooth when the number of total anchors
is over 70. When the ratio of the anchors goes over a certain
degree, the size of the estimative region cannot be greatly
reduced, and thus, the impact becomes smaller. DRLS
performs better in terms of accuracy because the Centroid
and CPE only utilize the positive connectivity constraints to
acquire the estimated location.

In Fig. 19, we demonstrate the mean error range of the
DRLS and other localization schemes. The mean error range
is proportional to the difference between the maximum
mean error and the minimum mean error. The DRLS is
more stable compared to other localization schemes because
its mean error range is much smaller than the others.

4.3 Communication Costs

In this section, we vary the anchor ratio to see its impact on
communication costs. The results can be found in Fig. 20. As
the ratio of anchors increases, communication costs also
increase. The communication costs of the Centroid scheme
are the lowest because it only collects one hop information,
while the DRLS collects both positive and negative
connectivity constraints by two-hop flooding. Therefore,
the communication costs of the DRLS scheme are higher
than that of the Centroid scheme. However, with both
positive and negative connectivity constraints, the DRLS
scheme can acquire more accurate estimated location. Thus,
there is a trade-off between the localization accuracy and
the communication costs. The communication costs of the
CPE scheme are much higher than those of the other
localization schemes because the CPE is a centralized
localization scheme. The normal nodes need to send
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Fig. 16. Radio propagation pattern.

Fig. 17. Simulation times versus the size of the confidence interval

ðAnchor ratio ¼ 40 percent; DOI ¼ 0:7Þ.



location information back to the central controller, which
will calculate the estimated location of each normal node
and then send back to each normal node.

4.4 Effect of Varying Density of Nodes

In this section, we fix the ratio of anchors and vary the
number of sensor nodes to see the impact of a node’s
density on the mean error. The area size is fixed ð10r� 10rÞ.
The ratio of anchors is set at 40 percent. The number of
sensor nodes varies from 50 to 250. In Fig. 21, we can see
that the mean error decreases as the number of nodes
increases. In addition, the DRLS performs better than other
localization schemes.

4.5 Effect of Irregular Communication Radius

In this simulation, we demonstrate the impact of irregular
communication radius on the mean error of the DRLS and
other localization schemes. The total number of sensor

nodes is fixed at 200. In Fig. 22, the ratio of anchors is tuned
between 7.5 percent and 47.5 percent. As the DOI increases,
the possibility that a normal node cannot hear beacon
packets from near anchors or farther anchors increases, and
thus, the mean error also increases. As shown in Fig. 22, we
can see how DOI affects the mean error of each localization
scheme. The mean error of DRLS increases as the DOI
increases because the normal node will receive less beacon
packets from both near anchors and farther anchors.
However, the mean error of the DRLS is still lower than
that of other localization schemes because of the refinement
scheme. Thus, the DRLS is more robust than other schemes.
The reason why the mean error of Centroid and CPE
increases with DOI is that the normal node receives less
beacon packets from near anchors. As shown in Fig. 22, as
the ratio of anchors increases, the possibility that a normal
node will receive the beacon packets from near anchors or

SHEU ET AL.: A DISTRIBUTED LOCALIZATION SCHEME FOR WIRELESS SENSOR NETWORKS WITH IMPROVED GRID-SCAN AND... 1119

Fig. 18. Anchor ratio versus mean error ðnumber of sensor nodes ¼ 200Þ.

Fig. 19. Anchor ratio versus mean error range.



farther anchors also increases and, thus, improves the
accuracy of the estimated location. When the ratio of
anchors is low, the DRLS scheme performs much better
than the other two schemes in terms of accuracy, which
indicates that the DRLS scheme can achieve the same
accuracy as the Centroid and CPE schemes with a lower
ratio of anchors, thus reducing the hardware cost.

4.6 Analysis of Computation Costs

The computation cost of Centroid is the lowest because each
normal node only needs to compute the average coordi-
nates of the neighboring anchors. The total computation
cost of the Centroid scheme is n, where n is the total
number of normal nodes. As for the computation cost of
CPE and DRLS, both CPE and DRLS need to calculate the
ER. However, CPE needs to calculate the exact rectangle
that bounds the intersection of the communication regions,
while DRLS only needs to calculate the intersection of the

rectangles that bound the communication regions of
neighboring anchors. Therefore, it is easier to compute the
ER of DRLS than that of CPE. Assume that the average
number of each normal node’s neighboring anchors is k.
Then, there are Cðk; 2Þ ¼ kðk� 1Þ=2 pairs of anchors to form
kðk� 1Þ=2 ERs for each normal node to calculate the
intersection of the kðk� 1Þ=2 ERs. Hence, the total compu-
tation cost of CPE is nkðk� 1Þ=2. However, to derive the ER
of DRLS, each normal node only needs to calculate the
intersection of the k rectangles that bound each of the
communication regions of the k anchors. Hence, the total
computation cost to calculate the ER of the DLRS is nk.
After the ER is computed, the DRLS needs to scan grids in
the ER and calculate the resultant of the VFs. Because the
area size of the ER is no greater than 4r2 and the grid size is
0:1r� 0:1r, the number of grid is no more than 400, and the
computation cost of grid scan is no more than 400k, where r
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Fig. 20. Ratio of anchors versus communication overhead.

Fig. 21. Density of nodes versus mean error ðRatio of anchors ¼ 40 percentÞ.



is the communication radius. Hence, each node’s computa-
tion cost of grid scan can be considered as Ck, where C is
the number of grids. As for the calculation of the resultant
of the VFs, each node’s computation cost is m, where m is
the average number of farther anchors. The total computa-
tion cost of the DRLS scheme is nððC þ 1ÞkþmÞ.

4.7 Experimental Results

To demonstrate the accuracy of the proposed scheme, we
have implemented the CPE, Centroid, and the proposed
scheme in a real WSN, which is formed by 15-25 Octopus I
sensor nodes, as shown in Fig. 23. The Octopus I is an IEEE
802.15.4-compliant wireless sensor node, which is com-
posed of an AVR Atmega128 microcontroller and a Chipcon
CC2420 module. The Chipcon CC2420 supports 32 power
levels setting for data transmission. According to our
experiments, the maximum transmission range is able to
reach 80 m, and the minimum transmission range is around
20 cm in an open environment. For the ease of measuring
the location of each sensor node and collecting the
estimated results, in the following experiments, we use
the minimum transmission power level for data transmis-
sion and assume that the communication radius of each
sensor node is 20 cm. Although the testbed is an obstacle-
free environment, we believe that it can still reflect the
effects of irregular communication radius and unreliable
transmissions. The network size is 150 cm � 105 cm, the
radio frequency is 2.4 GHz, and the RF power is �25 dBm.
The experiments are done by tuning two parameters: the
density of sensor nodes and the ratio of anchors. Each result
is derived from 20 experiments.

4.7.1 Impact of Node’s Density

To see the impact of node’s density on mean error, the
total number of sensor nodes is tuned between 15 and 25.
The ratio of anchors is fixed at 33 percent. Fig. 24 shows
the impact of node’s density on mean error. Similar to the
simulation results, as the number of sensor node increases,

the mean error decreases. As the node density increases,
more location information can be collected, thus improv-
ing the accuracy of the estimated location. The DRLS
scheme still outperforms the other schemes because it uses
both positive and negative connectivity constrains to refine
the estimated locations.

4.7.2 Impact of the Ratio of Anchors

To see the impact of anchor’s ratio on mean error, the ratio
of anchors is tuned between 20 percent and 33 percent. The
total number of sensor nodes is fixed at 25. Fig. 25 shows
the impact of anchor’s ratio on mean error. Similar to the
simulation results, as the ratio of anchors increases, the
mean error decreases. As the ratio of anchors increases,
more connectivity constraints can be collected, thus
improving the accuracy of the estimated location. The
DRLS scheme still outperforms the other schemes because it
uses both neighboring and farther anchors’ location
information to refine the estimated locations.
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Fig. 22. DOI versus mean error ðanchor ratio ¼ 7:5 percent � 47:5 percentÞ.

Fig. 23. The testbed of our experiments.



5 CONCLUSIONS

Localization is a fundamental and essential issue for WSNs.
To reduce the communication and computation cost and
improve the accuracy of the estimated location, we have

proposed a fully distributed range-free localization scheme
for WSNs. In the proposed scheme, each normal node
gathers the necessary information via two-hop flooding and

is thus scalable. Aside from this, each normal node uses a
simplified approach to calculate the ER and the proposed

improved grid-scan algorithm to find the initial estimated
locations of the normal node, thus reducing the computa-
tion cost. Furthermore, we have proposed a vector-based

refinement scheme to correct the initial estimated location
of the normal node, thus improving the accuracy of the
estimated location. Analysis, simulation, and experimental

results have shown that the proposed scheme can achieve
better accuracy than the other localization schemes with

reasonable communication and computation costs, even
when the communication radius is irregular.
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