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Abstract Time synchronization plays a key role in the wire-
less sensor networks (WSNs). Time synchronization is real-
ized by those messages that are time-stamped. But there are
several delay times during transmission after time stamp-
ing. Most of them are uncertain and contribute directly to
synchronization error. The uncertainties include send time,
channel access time, transmission time, and receive time. In
addition to the uncertainties, clock drift is also a main source
of time synchronization error. In this paper, we present a
time synchronization protocol that can be applied in the
multi-hop WSNs. The proposed protocol estimates the clock
drift between two nodes to keep them synchronized for du-
ration after once synchronizing. It uses lower communica-
tion overhead and establishes more robust synchronization
situations for all nodes in the network. By periodical re-
synchronization, the un-synchronization conditions such as
nodes failures or topology change can be easily overcome.
We implement our protocol in the Berkeley MICAz plat-
form. The experimenting scenarios are 5-node and 18-node
multi-hop topologies, and the re-synchronization periods are
30-second and 300-second. The experiment results show
that the average synchronization errors of all nodes run with
our protocol are ranged within several micro-seconds which
are better than the previous protocol.
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1 Introduction

A wireless sensor network (WSN) consists of hundreds or
thousands of low-cost sensors, which are capable of wireless
communication and data processing. Collaborative execu-
tion among a large set of sensor nodes is required for appli-
cations of WSNs [5, 6]. Most of the applications need sensor
nodes to be synchronized at the initial phase of the system
such as objects tracking [18] and events detection [19]. Fur-
thermore, time synchronization is essential for scheduling
algorithm such as Time Division Multiple Access (TDMA)
[17] which can be used to share the transmission medium
in the time domain to eliminate transmission collisions and
conserve energy. Therefore, time synchronization is an im-
portant issue of a sensor network as in all distributed sys-
tems. Many solutions exist for the traditional Internet and
distributed systems [1–3, 11]. It is unsuited to implement
the traditional time synchronization protocols on the sen-
sor nodes even they have been largely successful in Internet.
These Internet protocols assume the existence of a master
clock, constantly connected, and consistent communication
delays in data exchanges. Unfortunately, none of these as-
sumptions is true in WSNs. Although lots of time synchro-
nization protocols have been proposed in wireless ad-hoc
networks [4, 12], they are infeasible for wireless sensor net-
works. The time synchronization requirements differ dras-
tically in the context of sensor networks such as precision,
computation complexity, and storage constraint.

As the increasing attention to the time synchroniza-
tion problems in wireless sensor networks, numerous pro-
tocols suited to WSNs have been proposed [8–10, 13–
16]. Time synchronization protocols can be categorized into
three models. First is to figure out the event ordering. Many
applications of sensor networks rely on event ordering to ob-
tain useful information from sensed data. The clocks need
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not be synchronized at the moment event happens. An ap-
proach for sensor network based on this kind of synchro-
nization protocol was proposed in [7]. The second model is
to maintain relative clocks. In this model, every node records
the relative offset between its clock and the clock of any
other node in the network. Reference Broadcast Synchro-
nization (RBS) [8] is a protocol based on this model. The
third one is that every node maintains a clock that is syn-
chronized to a reference node. A global and unique time
scale throughout the network is maintained. There are many
protocols presented to solve the time synchronization prob-
lem in this model such as TPSN [16] and FTSP [13]. In this
paper, we are interested in the scenario of the second and
third models.

Time-stamping is an important operation of a sensor node
and it is necessary for time synchronization protocol. By
doing this operation at MAC layer, we can avoid the syn-
chronization error brought by the packet delivery between
the upper layers. But there still exist several delay times
during transmission after time stamping. These delay times
such as encoding, decoding, and propagation times are un-
certain and affect synchronization error directly. Besides,
clock drift is a main source of time synchronization error.
Therefore, in this paper, we propose a Ratio-based Time
Synchronization Protocol (RSP) to estimate the clock drift
between two nodes to keep them synchronized for dura-
tion after once synchronizing. We implement our protocol
and FTSP in the Berkeley MICAz platform to evaluate their
performance. The experimental results show that the aver-
age time synchronization error between two nodes in our
RSP protocol is less than that of FTSP. We also evaluate
the time synchronization error of our protocol in the scenar-
ios of 5-node and 18-node multi-hop topologies, and the re-
synchronization periods are 30-second and 300-second. The
experimental results show that the average synchronization
errors of all nodes run with our protocol are ranged within
several micro-seconds.

The rest of this paper is organized as follows. In Sect. 2,
we review the related work of time synchronization proto-
col. Then we describe our proposed protocol in Sect. 3. The
evaluated performance of our time synchronization protocol
is presented in Sect. 4. Finally, we offer our conclusion in
Sect. 5.

2 Related work

Time synchronization has been one of the important re-
search topics of wireless sensor networks in the past few
years. Extensive researches have been conducted on how
to transfer time or synchronized clocks that are distributed
over wireless sensor networks. Before studying other ex-
isting time synchronization algorithms, we first discuss the
main sources of time synchronization errors.

The adversaries of precise time synchronization in wire-
less networks include clock drift and uncertain delay times
in packet transmission. The clock drift is the time offset
between two different clocks at a fixed time period. Actu-
ally, the oscillator of each sensor node runs at the frequency
which is slightly different from other’s one. This phenom-
enon causes the clock to gradually diverge from each other.
Besides, the clock frequency is unstable due to environmen-
tal conditions, such as temperature, humidity, and clock’s
aging. Note that, because of clock drift, even if the clocks
of two nodes are synchronized at some time, they may not
agree the same time in the future. In addition to clock drift,
uncertain delay times in packet transmission also directly
impact on the required precision of time synchronization. To
realize these uncertain delay times, we will use the following
decomposition of message delivery delays first introduced in
[3] and later extended in [16].

The send time is spent to construct the message and issue
the send request to the MAC layer on the sender. It includes
kernel protocol processing and variable delays introduced
by operating system, e.g. context switching and system calls
overhead. This delay time is highly non-deterministic. The
access time is incurred by waiting for an accessible channel
for transmitting. This delay in WSN is varying from mil-
liseconds up to seconds depending on the current network
traffic and the MAC protocol in use. The transmission time
is the time for a sensor node to transmit a packet at physical
layer over a radio link. It depends on the length of the packet
and speed of the equipped radio. The propagation time is
the time taken by the packet to propagate over the wireless
link from sender to receiver once it has left the sender. It is
highly deterministic in WSN and can be negligible regard-
ing others. The reception time is the time for a sensor node
to receive the packet. It is the same as the transmission time.
Finally the receive time is similar to the send time. It is the
time to process the incoming message.

In [16], the authors present a method to completely elim-
inate the send, access, and receive times. Instead of time
stamping the packet at the application layer, they time stamp
the packet at the MAC layer. In other words, the packet is
time stamped when the packet is about to be transmitted or
received. Hence the above three delay times can be removed
by MAC layer time stamping. Therefore, clock drift is left as
the main source of time synchronization errors. In this paper,
we only consider to eliminate the clock drift error existing
among sensor nodes.

In the following, we review the existing algorithms that
deal with time synchronizations in sensor networks. The au-
thors in [8] proposed a Reference Broadcast Synchroniza-
tion (RBS) protocol. The key idea of RBS is to use the
broadcast nature of the wireless communication medium
to reduce delays in the synchronization protocol. Accord-
ing to the broadcast nature of the wireless communication
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medium, two receivers located within listening distance of
the same sender will receive the same message at approxi-
mately the same time. The receivers within the communica-
tion range of a broadcast message sent by a reference node
synchronize with one another, rather than with the reference
node. This is accomplished by having the reference node
broadcasts message to its neighbors. Recipients use the ar-
rival time of the message as a point of reference for com-
paring their clocks. The recipients then exchange this infor-
mation among themselves. In this way, they can compute
the clock offset with each other. The time offset is the time
difference between two sensor nodes.

The RBS scheme can be extended in two ways to achieve
higher synchronization precision. One is to increase the
number of reference messages broadcasted by the reference
node and average the clock offsets from multiple reference
messages. Instead of averaging the offsets, the other one is
to perform a least squares linear regression in a sequence of
m time offsets. This offers a fast and closed-form method
for finding the best fit line over time. One reference mes-
sage provides a synchronization point (local time of B , time
offset) to receiver B for the least squares linear regression.
After receiving m reference messages, m synchronization
points are gathered. And then the best fit line can be found
by these m synchronization points. By the line, the time off-
set of receiver B with respect to receiver A can be computed
with local time of receiver B .

In [16] the authors proposed a time synchronization pro-
tocol for the wireless sensor networks, called Timing-sync
Protocol for Sensor Networks (TPSN). The algorithm works
in two phases: level discovery phase and synchronization
phase. In the level discovery phase, a hierarchical tree struc-
ture is established. The reference node is assigned to level 0
initially, and every sensor node will be assigned a level dur-
ing this level discovery phase. In the synchronization phase,
a pair-wise synchronization is performed along the edges of
this structure to establish a global time scale through the net-
work. A sensor node belonging to level i synchronize to a
sensor node belonging to level i − 1. Each node is synchro-
nized by exchanging two synchronization messages with its
parent node. Eventually, all nodes in the network synchro-
nize their times to the reference node. However, the TPSN
did not handle the clock drift, which limits its performance.

The authors in [13] proposed a robust and low commu-
nication overhead synchronization protocol, called Flooding
Time Synchronization Protocol (FTSP). The FTSP achieves
time synchronization between a sender and possibly multi-
ple receivers utilizing a single radio message time-stamped
at the both sender and receiver sides. A single, dynami-
cally elected node, called the reference node of the network,
maintains the global time and all other nodes synchronize
their clocks to the local time of the reference node. The
nodes form an ad-hoc structure to transfer the global time

from the reference node to all the nodes. The FTSP syn-
chronizes the receivers to the time provided by the sender of
the broadcast message. The broadcast message contains the
sender time-stamp which is the global time. The receivers
get the corresponding local time from the local clock when
receiving the message. In this way, one broadcast message
provides a synchronization point (global time, local time) to
each of the receivers. The difference between the global and
local time of a synchronization point estimates the time off-
set of the receiver. And the FTSP estimated the clock drift
using linear regression through the synchronization points
as suggested in RBS.

3 Ratio-based time synchronization protocol (RSP)

The purpose of the RSP is to perform wide time-synchroniz-
ation of all nodes in the network with multi-hop topology.
The RSP use two synchronization messages to synchronize
the clock of the receiver with that of sender. By marking the
time-stamp of the message in MAC layer, some delay time
in handling the transmission can be eliminated and the accu-
racy is also enhanced. The RSP also can extend to multi-hop
synchronization. One node in the network would be elected
as a synchronization root by the leader election algorithm
[13]. This root node will maintain the global time. All other
nodes synchronize their clocks to that time of the root. The
nodes in the wireless sensor network construct a tree struc-
ture and the root of this tree is the synchronization root. The
global time of the root is flooding out to the nodes through
the tree structure.

The local clock time of a sensor device is provided by
the quartz oscillator inside itself. In the time t of the Co-
ordinated Universal Time (UTC), we use Ci(t) to present
the local clock time of a sensor node i. The following is the
transformation formula between t and Ci(t):

Ci(t) = ai(t) × t + bi (1)

where ai(t) is the drift ratio and bi is the offset of node i’s
clock at time t . The oscillator’s frequency is not stable dur-
ing working so that the value ai(t) is changed with time.
And bi for each node will also be different due to the time
to switch on.

By (1), the local clock times of two sensor nodes i and j

have the following relationship:

Cj (t) = θij × Ci(t) + φij . (2)

The parameters θij and φij represent the relative drift ra-
tio and offset between the clocks of nodes i and j . As two
nodes in the WSN want to execute the RSP, one of them
would be a reference node and the other one is being syn-
chronized to it. The reference node initiates the synchro-
nization procedure by sending two continuous synchroniza-
tion messages SyncMsg1 and SyncMsg2 with time-stamps T1
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Fig. 1 Timing diagram for synchronization procedure of RSP

Fig. 2 Expression of linear interpolation with the four time-stamps

and T3, respectively. All the neighboring nodes get the corre-
sponding local time (T2 and T4) from its local clock when re-
ceiving the synchronization messages. Consequently, those
nodes collect four time-stamps information as shown in
Fig. 1. Then, each node can calculate the clock drift ratio
between the reference node and itself from the four time-
stamps, which is θ = (T3 − T1)/(T4 − T2).

According to the ratio, each node can estimate the local
time of reference node in the following way.

(TR − T0) : (TS − 0) = (T3 − T1) : (T4 − T2)

⇒ (TR − T0) × (T4 − T2) = TS × (T3 − T1)

⇒ TR = TS × T3 − T1

T4 − T2
+ T0, (3)

where TS represents the local time of sensor node and TR

represents the corresponding local time of the reference
node. Additionally, T0 (= φ) is the initial offset between ref-
erence node and sensor node. In other words, the T0 is the
local time of reference node when the local time of senor
node is 0. It can be calculated using linear interpolation with
the four time-stamps as shown in Fig. 2. Thus, the T0 can be
derived as follows.

(T4 − 0) : (T2 − 0) = (T3 − T0) : (T1 − T0)

⇒ T4 × (T1 − T0) = T2 × (T3 − T0)

⇒ T0 = T1 × T4 − T2 × T3

T4 − T2
. (4)

Therefore, we can derive (5) from (3) and (4):

TR = TS × T3 − T1

T4 − T2
+ T1 × T4 − T2 × T3

T4 − T2
. (5)

By (5), each sensor node can estimate the local time of ref-
erence node, that is, the global time of the network.

In the above equation, we assume that the oscillators of
the sender and receiver run in a stable frequency during the
WSN working period. However, the oscillator frequency of
each sensor node varies unpredictably due to various physi-
cal effects in practice. It results that there exists a time differ-
ence between the estimated local time of the reference node
and its real local time. As time goes on, the time difference
becomes more and more. In our RSP, the reference node will
broadcast a synchronization message to the sensor nodes pe-
riodically. Let Tsend denote as the received time-stamp of the
reference node and Tsend denote as the corresponding time-
stamp of the sensor nodes. Then, each sensor node will re-
place T3 and T4 with Tsend and Trecv to estimate the new
local time of the reference node by (5). However, the time
difference between T3 − T1 (or T4 − T2) will become more
and more as time goes on.

In the following, we will consider the impact of time in-
terval for time synchronization. Since the MCU of the sensor
platform in general has limited calculating capacity, it would
cause some error at the number behind the decimal point.
Thus, the smaller synchronization time interval will have the
larger estimation error in (5). Besides, the clock drift is un-
stable and changed with time. As using a large time interval,
the relative drift ratio of two sensor nodes will become un-
reliable. Therefore, the time-stamps of (5) are needed to be
refreshed if the time interval is larger than a threshold α. In
our protocol, we will select two new pairs of (T1, T3) and
(T2, T4) in (5) if the time difference between T3 − T1 (or
T4 − T2) is larger than α. To replace the time-stamps of (5),
each node will keep the latest k pairs of time-stamps Tsend

and Trecv. When a sensor node receives a new T3 (Tsend)

sent from the reference node and finds that the time differ-
ence between T3 − T1 is larger than α, it will select a stored
pair of time-stamps Tsend and Trecv which are received be-
fore as the new T1 and T2. To reduce the numerical compu-
tation error for the MCU, the new T1 and T2 must satisfy the
condition of T3 − T1 (or T4 − T2) larger than a threshold β .

For example, assume the synchronization message is sent
by the reference node per 3 minutes, and α and β is set to
15 and 8 minutes, respectively. Each node records the latest
k = 5 pairs of time-stamps Tsend and Trecv. After the sixth
time synchronizations, a sensor node will receive new time-
stamp Tsend and use it to replace T3. The sensor node will
find that T3 − T1 = 18 minutes > α. It will choose a lat-
est pair of Tsend and Trecv as the new T1 and T2 such that
T3 − T1 > β . In this case, we will select the fourth received
Tsend and its corresponding Trecv as the new T1 and T2, re-
spectively, such that T3 − T1 (or T4 − T2) > 8 minutes.
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In the following, we will extend our RSP from single-
hop network to multi-hop one. Here, we assume each sen-
sor node has a unique ID in the WSN. First, a root node
is elected by the leader election algorithm in [13]. When a
node is elected as the root in the WSN, it sets itself being
a reference node. Then it broadcasts the time synchroniza-
tion massages to the neighborhood nodes periodically. Any
node received two continuous synchronization messages can
use (5) to estimate the local time of the reference node. The
local time of the reference node here is the global time.
These neighborhood nodes then are turned into synchro-
nized ones. Next, they also set themselves being reference
nodes and do the same operations. The time synchroniza-
tion messages transmitted by the synchronized nodes con-
tain the time-stamps which are the global times estimated
by them when being transmitting. Using these global times,
other nodes received the messages can calculate the global
time and become synchronized eventually.

In our proposed RSP, every synchronization message
comprises five main fields which are Send_ID, Seq_num,
Time_stamp, Sync_root, and New_root. Send_ID is the ID
of the node which sends the synchronization message.
Seq_num is a sequence number. As the root generates a
new synchronization message to transmit, it increases this
variable by one. Each node will keep k nearest received
synchronization messages. Time_stamp is the global time
estimated by the transmitter, and the receiver uses it to es-
timate the global time. Sync_root is the root ID which is
reserved by the synchronized nodes. New_root is used to

announce that a new root node is elected. In order to keep
the network nodes synchronize to the same root, each sen-
sor node has a local variable, My_root_ID, referred to the
current reference root’s ID of the network. As receiving a
synchronization message whose Sync_root field is smaller
than its My_root_ID, the node will uses the new root’s
global time-stamps to calculate its clock drift ratio θ and
offset φ.

Our RSP is a tree-based synchronization scheme which is
activated from the root node. As soon as the root is elected
by the leader election algorithm, it will start the time syn-
chronization procedure. Firstly, the root starts the time syn-
chronization by sending the messages which contain the
time-stamp information and sender ID. The nodes within the
root’s radio range receive the synchronization packets. Then
they will correct their local clocks and become synchronized
nodes. All synchronized nodes broadcast the new synchro-
nization messages like the root. All non-synchronized nodes
receive the synchronization messages will do the same ac-
tions as the nodes receiving message from the root. The
above procedures will repeat until each node complete the
same work. Finally, the network forms a virtual synchro-
nization tree structure. A node will discard the redundancy
messages sent from its neighbors. Finally, each node will
synchronize with its parent node until the tree is broken due
to the dead root.

A summary of our protocol is presented as follows:

Algorithm 1: Ratio-Based Time Synchronization
Input:

msg; /* time synchronization message */
α,β; /* thresholds for time synchronization */
T = {(Tx, Ty)|(Tx, Ty) : the recent received k pairs of time-stamps };

Output:
θ,φ; /* the relative drift ratio and offset to the synchronization root */

Main()
{ My_root_ID = My_ID;/∗ declare myself as the synchronization root */

Broadcast time synchronization message msg periodically;
Loop:

if (Receive any synchronization message msg)
{if (My_root_ID > msg.Sync_root ) /* Check if a more suitable root exists. */

{if (My_root_ID == My_ID) stop the broadcast of time synchronization message msg;
T1 = msg.T ime_stamp;/∗ the transmitter’s clock time */
T2 = My_local_t imestamp;/∗ the receiver’s clock time */
My_root_ID = msg.Sync_root;
My_parent = msg.Send_ID;
My_sync_seq = msg.Seq_num;
T ← �;T ← T ∪ (T1, T2); }

else if (My_Parent == msg.Send_ID and My_sync_seq < msg.Seq_num )
{T3 = msg.T ime_stamp;T4 = My_local_t imestamp;
My_sync_seq = msg.Seq_num;
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if (T3 − T4 > α)

{Find a timestamp pair (Tx,Ty) from T such that T3 − Tx > β;
T1 = Tx;T2 = Ty; }
θ = (T3 − T1)/(T4 − T2);
φ = (T1 × T4 − T2 × T3)/(T4 − T2)

T ← T ∪ (T3, T4);
Broadcast a new synchronization message msg;}

else
Discard msg; }

go to Loop;
}

Each node in the network may lost synchronization mes-
sages due to the tree structure is broken. When a node cannot
receive the synchronization messages in the expected period
time from its parent node, it will actively send a synchro-
nization request back to its parent node. If it cannot get any
response from the parent node in Max_Req times of the re-
quest, the node broadcasts a request to all its neighbors to
ask a new parent node. The synchronized neighboring nodes
which receive the request will send the synchronization mes-
sage backward to it. When the node receives the first syn-
chronization message and confirms its validity, it will record
the sender as its new parent node. All recorded time-stamps
sent from the old parent node are dropped. The node will use
the time-stamps sent from the new parent to follow the time
synchronization.

Here, we consider the root crashes or shuts down due to
the exhausted power. If a node detects that its root parent
crashed, it will become the new root node and starts the new
time synchronization procedure. When a node declares itself
as the new root, it will start a short synchronization period.
In such situation, the interval of the first two synchronization
messages is shorter than the regular one. It will promote the
non-synchronized nodes to be synchronized as soon as pos-
sible.

4 Experiments

In order to test and verify the performance of our RSP al-
gorithm, we implement RSP and FTSP on the MICAz plat-
form based on TinyOS. The FTSP protocol was designed by
Vanderbilt University [13]. Based on our best knowledge,
FTSP has the smallest time synchronization error in WSNs.
Its source code program for TinyOS is public. There is one
32-bit system time in each MICAz and it will increase every
1 µs. In our experiments, all nodes need to report their cur-
rent global time at the same time. To achieve this job, we
add another two nodes which do not attend the time syn-
chronization procedure. One is being a query node and re-
sponses for broadcasting a query message periodically; the

other one is a sink which collects the packets sent by the syn-

chronized nodes. All experiment topologies are set forcibly

in software, and hence the query node and the sink can di-

rectly communicate with all nodes in the experiment scenar-

ios. Thus, just one-hop transmission is used for query proce-

dure and this can effectively reduce the additional synchro-

nization errors during packet transmission. After the net-

work start to synchronization procedures, the query node

will broadcast a query packet periodically. Each synchro-

nized node receives this packet at the same time. They will

immediately access their global time as receiving the packet

and then send their global time to the sink. The query in-

tervals of the following experiments are all set to 10 sec-

onds.

We first observed the synchronization errors of RSP and

FTSP between two nodes. Each experimental result was the

collection of 200 query data. In Fig. 3(a), we show the syn-

chronization errors between two nodes of our protocol. In

the 30-second re-synchronization case, the average absolute

synchronization error is 0.42 µs and the synchronization er-

ror at 0 µs is 58%. All synchronization errors are between

2 µs and −2 µs. In the 300-second re-synchronization case,

the synchronization error at 0 µs becomes 28% and the aver-

age absolute synchronization error increases to 1.73 µs. The

error range is distributed between 7 µs and −7 µs.

The experimental results of FTSP are shown in Fig. 3(b).

In the 30-second re-synchronization case, the synchroniza-

tion error at 0 µs just takes 7.5% and the average absolute

synchronization error is 3.33 µs. All synchronization errors

are distributed between 8 µs and −2 µs. In the 300-second

re-synchronization period, the synchronization error at 0 µs

becomes about 5% and the average absolute synchroniza-

tion error increases to 8.47 µs. The error range is distributed

between 23 µs and −20 µs. According to the above results,

the RSP outperforms the FTSP no matter how long of the

time re-synchronization period was set.
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Fig. 3 The distribution of the
errors in single-hop

(a) RSP (b) FTSP

Fig. 4 The linear topology for multi-hop

The second experiment was designed to observe the in-
dividual and cumulative synchronization errors as adding a
hop for RSP. A 5-node topology for this experiment scenario
is shown in Fig. 4. Each node can only communicate with its
neighbors. The node with ID 0 is the reference one. The pe-
riod of the time synchronization was set 30 seconds and 300
seconds, respectively. It totally runs one hour for this exper-
iment.

In Fig. 5, we show the synchronization errors of multi-
hop with linear topology. The x-axis represents the experi-
ment time and the y-axis represents the average error within
one re-synchronization period. For example, if the period of
the time re-synchronization was set to 300 seconds, the data
point in the result graph represented the average value of
all collected errors during the last 300-second period. And
all errors are compared with the reference node. For 30 sec-
onds period, all four nodes’ errors are under 4 µs as shown
in Fig. 5(a). As the period is increased to 300 seconds, the
maximum error becomes 8.5 µs as shown in Fig. 5(b). It is
shown that our RSP still performs well as the period was
enlarged. The maximum error of one node is the maximum
value among all collected errors from it and the average error
of one node is the average one from it. As re-synchronizing
per 30 seconds, the average of node 1 and node 4 were
0.44 µs and 0.88 µs respectively; the maximum errors over
all nodes were between 2 µs and 4 µs. When synchronizing
through one new node, the error increased less than 1 µs.
In the 300-second period of time synchronization, the aver-
age errors of all nodes during the whole experiment become
larger and are between 1.53 µs to 3.83 µs. The overall max-
imum error happens at the node 4 and the value is 16 µs.
From the above results, if the node is far from the reference
node, the synchronization error would increase due to the
more transmission hops.

The following scenarios include turning off some nodes,
changing the root node, and adding new nodes into the net-

(a) Re-synchronization per 30 seconds

(b) Re-synchronization per 300 seconds

Fig. 5 The experiment results of 5 nodes with linear topology

work. This experiment was divided into several time dura-
tions. Each one had different network states. By the above
actions, the topology of the network is changed as time goes
on. It simulated the situations of the real WSN during op-
erating. The general network topology is shown in Fig. 6.
There are total 18 MICAz nodes deployed in a grid mode
and each one has an ID number over it in the figure. Each
node can only communicate with its neighbors which are
connected by the lines in the figure. We use two time syn-
chronization periods, 30 seconds and 300 seconds in this
topology. If no synchronization message is received after six
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Fig. 6 The multi-hop scenario.
The nodes drawn with dash line
are turned off. The nodes drawn
with solid line are active. The
nodes drawn with bold solid line
are the roots

time requests, each node would broadcast a request to all its
neighbors to ask a new parent node.

The experiment took about 5 hours and each hour had a
different topology state. Each individual state is as the fol-
lowing. At the first state (from Start to t1), nodes with num-
bers 16, 17, and 18 were turned off and other nodes were
turned on. The node with number 1 (currently the smallest
ID number) was the reference of the network. The longest
hop count from the reference to other nodes is 3. At the be-
ginning of the next state (from t1 to t2), node with number 1
was turned off and the node with number 2 became the new
reference node. The longest hop count is increased to 4. At
the third state (from t2 to t3), nodes with numbers 5 and 6
were turned off. The longest hop count becomes 5. At the
forth state (from t3 to t4), one node with number 11 was
turned off and the longest hop count is increased to 6. At
the final state (from t4 to End), we turned off the node with
number 14 and turned on the nodes with numbers 16, 17,
and 18. The longest hop count from the reference node is
increased to 7. Each state was kept run one hour.

For the above network topology, the synchronization er-
rors graph is shown in Fig. 7. We now firstly concentrate
upon the 300-second re-synchronization period. As at the
initial stage, all nodes were manually switched on, each
node’s clock started at different time. Then for the compe-
tition of the root among nodes, there is a short period that
all nodes are unsynchronized at the beginning of the experi-
ment. Thus at the initial stage, no error results are shown in
the figure. In the first few minutes, the average errors grow-
ing as the time goes on. It is because the elected root com-
pletes the first time synchronization by using a short syn-
chronization interval (30 seconds). By such an interval, it

Fig. 7 The synchronization errors of the scenarios in Fig. 4

cannot fully represent the clock drift within the nodes and
the function to transfer to the global time could not be es-
timated accurately for a long period. The average errors of
synchronized nodes then increased gradually before the next
re-synchronization procedure. When the new synchroniza-
tion packet was received, the global time was estimated by
the new time-stamps. The average errors were soon reduced
to quite small. By querying per 10 seconds, we can ob-
viously see the change of the average errors. The average
errors was quite small while each time completing a new
round of re-synchronization process.

At the second topology (time t1), the elected root was
forced to be turned off. All nodes detected that no new syn-
chronization packet at the expected time period. Later, they
also did not get any response while actively querying their
parent nodes for the synchronization message. At this time,
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Table 1 The average and
maximum errors for the five
multi-hop scenarios

Error (µs) Re-synchronize every 30 s Re-synchronize every 5 min

Avg. Max. Avg. Max.

start ∼ t1 0.7 9 4.19 55

t1 ∼ t2 1.16 8 4.55 38

t2 ∼ t3 1.35 9 5.43 29

t3 ∼ t4 1.13 9 5.77 40

t4 ∼ end 1.01 8 7.54 37

they would start competing to be the new root of whole net-
work by executing the root election algorithm. During the
competing period, all nodes still were synchronized by the
old synchronization messages. But it was apparent that the
average errors in the figure became larger and larger for a
long time before the new root was elected. While the new
root was elected and the new tree structure was built, the
new synchronization procedure started operating. The aver-
age error decreased to quite small value immediately.

At the third topology (time t2), some nodes near the root
were turned off. The little influence happened at the net-
work. The longest hop of the network was increased and
the average errors were larger than those at the normal sit-
uations. It is because the nodes near the shutdown nodes
need to find their new parent nodes to be synchronized again.
Therefore, the average errors were kept high before all nodes
were synchronized once more. After two rounds of the syn-
chronization procedure, the errors would be immediately re-
duced to the normal level.

At the next topology (time t3), just one node was turned
off. The effect for this change was not so obvious. All nodes’
average errors kept in the normal range. Subsequently when
the new nodes were joined to the network (time t4), the
longest hop count from the root was 7. It was the longest dis-
tance from the root during the whole experiment. The new
nodes were synchronized with the network after receiving
the synchronization packets. So after being synchronized,
their estimated global times were collected to calculate the
average errors. The average errors stably varied at the nor-
mal range and no obvious effect came into existence.

Figure 7 also presents the other experiment results with
the 30-second synchronization period. At that period, the av-
erages errors among the whole experiment were under 10 µs.
When the root was turned off, the errors became a little
large. It got pretty low synchronization errors as the syn-
chronization period was shorter. The figure highlights the
differences between the two synchronization periods.

We also calculated the average and maximum errors
for the five periods of this experiment, respectively. Ta-
ble 1 lists the values for the 30-second and 300-second re-
synchronization experiments. The results reflected in Ta-
ble 1 indicated that the interval of the re-synchronization

period was significantly associated with the synchronization
accuracy. The additions on the hop count from the root to
the edge node in the 30-second re-synchronization period
were no strong relationship for the synchronization errors.
But it rose in the 300-second one since the average error is
increased from 4.19 µs to 7.54 µs after adding the longest
hop count. The maximum errors of the five periods in the
30-second re-synchronization period almost were the same.
It was no high correlative with the change of the network
topology. The overall maximum error, 55 µs, in the 300-
second re-synchronization period appeared in the first ex-
periment period. It was caused by the root which did the
first time synchronization by a short synchronization inter-
val. But after that, all synchronized nodes never got such
high errors.

5 Conclusion

This paper proposes a Ratio-based Time Synchronization
Protocol (RSP) in wireless sensor networks. By way of the
periodical synchronization messages and the uncomplicated
formulas, the presented RSP keeps the network nodes syn-
chronized. The protocol provides that all kinds of applica-
tions or systems can operate with it and will not be affected
during working. As soon as some applications require the
accuracy of the time synchronization, the RSP can reach the
requirements by do related works. On the other way, if the
network applications are focused on the energy saving, it
also can be made.

Our RSP maintains the tree structure to keep the net-
work nodes synchronized effectively. With co-operating the
periodical time-stamp packet transmission, it can be soon
to recover the non-synchronized situations. The condition
of failed root could be found in a specified time. Then the
new root is elected from them to start the new round of
time synchronization. Also some node losing synchroniza-
tion with its reference node can retrieve in synchronized
state by choosing one of the neighbor nodes. By these char-
acteristics of RSP, all the terrible conditions against the time
synchronization can be reduced to minimum. Therefore, the
RSP can provide the good robustness and increase the effi-
ciency for time synchronization.
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We implement our proposed RSP and FTSP in the MI-
CAz platform with TinyOS and evaluate their effectiveness.
According to the experimental results, the average time syn-
chronization error between two nodes in our RSP protocol
is less than that of FTSP. Next, two scenarios of multi-hop
topologies are also set up to experiment our RSP protocol.
In the chain topology, the performance of 30-second re-
synchronization period is better than that 300-second one.
Then the RSP is tested on a larger network topology. The
presented RSP still accomplishes great accuracy and good
robustness by simulating the variance of the network situa-
tion in the real experiments. The results show the proposed
RSP can be applied to the majority of the WSN applica-
tions.
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