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1 Introduction 
The mobility of the MANET nodes can change the network 
topology frequently and unpredictably. The network is 
independent and without a fixed infrastructure or centralised 

server. There are a multitude of software applications on the 
Internet with TCP/IP protocol, and they all need a unique IP 
address to communicate with each other across the 
networks. This represents an IP-related application in  
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which the nodes are tightly coupled with their identities.  
As a result, the IP address assignment scheme is an 
important issue for IP-related networks. Because of the 
characteristics of network behaviour, a new node cannot 
participate in unicast-communication for transferring a 
bundle of data until it has obtained a unique IP address. 

Most MANET researches pre-assign the IP-related 
information of a node statically. This IP-related information 
includes an IP address, a net-mask, and a default gateway. 
In traditional wired networks, nodes are assigned IP-related 
information by a centralised server like the Dynamic Host 
Configuration Protocol (DHCP) (Droms, 1997) server. 
However, this mechanism is not suitable for the MANET 
environment, because each node in the MANET can move 
and leave dynamically, and none of the nodes can handle  
all of the information and topology. Therefore, the nodes 
should be capable of being dynamically configured  
through self-configuration (Mcauley and Manousakis, 2000) 
when they enter into the wireless networks. A scheme is 
required which can operate in a stand-alone fashion, which 
self-organises autonomous networks, with a low overhead 
of control messages. 

Several researchers have addressed the IP address 
assignment in the MANET (Misra et al., 2001; Mohsin and 
Prakash, 2002; Nesargi and Prakash, 2002; Park et al., 2002; 
Perkins et al., 2001; Vaidya, 2002; Weniger and Zitterbart, 
2002; Zhou et al., 2003). There are three ways of IP  
auto-configuration for MANET. First, the trial and error 
policy is used in conflict-detection allocation (Perkins et al., 
2001; Vaidya, 2002; Weniger and Zitterbart, 2002). In this 
scheme, a new node randomly chooses an IP address and 
issues a request for approval from all the configured nodes 
in the MANET. Each configured node will check the 
request. If any of them detects a conflicting IP address then 
the newly-joined node will be informed, and will then 
randomly choose another IP address. This procedure will be 
repeated until there is no conflict of having a duplicate 
address. The disadvantage of this method is that the time 
required for obtaining a new IP address depends upon the 
number of available IP addresses. 

In the second method, the IP-address pools are  
pre-allocated by the disjointing method in conflict-free 
allocation (Misra et al., 2001; Mohsin and Prakash, 2002). 
This scheme pre-assigns a segment of the unused IP-address 
pool to a newly-joined node from its parent node. This way, 
the IP address allocation has disjoint address pools, and the 
nodes can be sure that the allocated addresses are unique.  
It is evident that the advantage of this method is that the  
IP-address pool will be allocated quickly. However, this 
method cannot guarantee a uniform distribution of the IP 
address pools in the Mobile Ad Hoc Networks (MANETs). 
Therefore, the cost of sending a large number of control 
messages with broadcasting messages within the network in 
order to invoke an IP address is high. 

Third, the ‘all IP addresses status’ is consistent in a  
best-effort allocation at each node (Nesargi and Prakash, 
2002). Each node in the MANET knows the current  
IP-address pool state. This method tries to assign an unused 

IP address from a consistent IP-address pool at each node to 
a newly-joined node and uses the conflict detection 
mechanism to confirm the assignment. The disadvantages of 
this method are that the mutual exclusion algorithm causes a 
massive overhead of control messages in the network for the 
consistent IP-address pool, and a long latency for invoking 
an IP address. 

In this paper, we propose a conflict-free IP address 
assignment scheme for the MANET. In this proposed 
scheme, some nodes in the MANET are assigned as 
coordinators, and the first one is named C-root. Each 
coordinator is responsible for assigning IP addresses to the 
newly-joined nodes in the MANET. Each coordinator must 
report its IP-address pool status to the C-root periodically. 
When a new node enters the wireless networks, it must 
listen for a while to its neighbour nodes in order to find the 
closest coordinator through exchanging the hello messages. 
There are many protocols using hello messages (Chakeres 
and Belding-Royer, 2002; Clausen et al., 2001; Ogier et al., 
2002; Perkins et al., 2002; Weniger and Zitterbart, 2002) for 
exchanging information between neighbours. This allows 
the new node to obtain an IP address without flooding the 
network with messages. In order to maintain the IP-address 
pools efficiently, the distributed coordinators will be 
organised into a dynamic tree topology called C-tree by 
exchanging hello messages. The virtual C-tree is used to 
back-up the coordinators’ IP-address pools, collect IP 
addresses from the leaving nodes, and record the status of 
the IP-address pools. The simulation results show that our 
proposed scheme has a lower control-message overhead for 
invoking an IP address than previous schemes (Mohsin  
and Prakash, 2002), and that it can consistently maintain the 
IP-address pools. 

The rest of this paper is organised as follows. Section 2 
presents the previous works of the IP-address assignment in 
the MANETs. Section 3 presents our proposed scheme. 
Simulation and experimental results are shown in Section 4. 
Finally, we draw our conclusion in Section 5. 

2 Previous works 
The wireless network is constructed by a group of nodes 
with network configuration parameters. Some parameters 
are required to be unique for each node in the wireless 
networks, such as the IP address. A node can join and leave 
the wireless network at any time and free to move arbitrarily 
during its session in the MANET. The nodes in the MANET 
could be formed spontaneously by people with no network 
infrastructure. The network size and topology are dynamic 
and unpredictable in the MANET. 

As mentioned previously, DHCP (Droms, 1997)  
server is commonly used for the purpose of dynamically 
assigning unique IP addresses in traditional wired networks. 
Since the DHCP server cannot guarantee to be accessed by 
each node in the MANET, therefore the DHCP server 
cannot be suitable for MANETs. An alternative is to use a 
manual manipulation. However, manual assignment is very  
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cumbersome, in general. Several researches to solve this 
problem can be divided into the following three categories 
(Zhou et al., 2003): 

Conflict-detection allocation. This is a ‘trial and error’ 
policy (Perkins et al., 2001; Vaidya, 2002; Weniger and 
Zitterbart, 2002). A newly-joined node randomly chooses an 
IP address and issues a request for approval from all the 
configured nodes in the MANET. Each configured nodes 
will check the request. If any of them detect an IP address 
conflict then the new node will be informed, and will then 
randomly choose another IP address. This procedure will be 
repeated until there is no conflict of having a duplicate 
address. The previous work (Perkins et al., 2001) presents a 
simple duplicated address detection mechanism that can 
discover the duplicated IP address within a bounded time. 
The following describes the mechanism in Perkins et al. 
(2001) briefly. Let node A generate a random IP address.  
To determine if the address is already being used by another 
node, node A floods a ‘route request’ for that randomly 
selected IP address. The purpose of the route request is to 
find a route to a node with the selected address. If the 
chosen address is indeed already used by another node, the 
‘route reply’ will be sent back to node A. Thus, absence of a 
route reply can be considered as an indication that no other 
node has been assigned the same address chosen by node A. 
The disadvantage of this method is that the time required for 
obtaining a new IP address depends upon the number of 
available IP addresses. 

Conflict-free allocation. In this method, the IP-address 
pools are pre-allocated by the disjointing method in  
conflict-free allocation (Misra et al., 2001; Mohsin and 
Prakash, 2002). This scheme pre-assigns a segment of the 
unused IP-address pool to a newly-joined node from its 
parent node. This way, the IP address allocation has disjoint 
address pools, and the nodes can be sure that the allocated 
addresses are unique. The following gives an example to 
detail the mechanism in Mohsin and Prakash (2002).  
Let node A be an initial node and obtain an IP-address pool 
ranging from 192.168.1.0 to 192.168.1.255. When a new 
mobile node B enters the network, the node B broadcasts a 
message to invoke an IP address and waits for a response. 
The response message may come from more than two 
nodes, and node B will choose the first response node to 
invoke an IP address. If the node A receives a request for an 
IP address, node A divides its IP-address pool into two 
halves. The bottom half will belong to node B and its 
remaining IP-address ranges from 192.168.1.128 to 
192.168.1.255. The first IP address of the bottom half is 
assigned to node B. The procedure will proceed until the run 
out of the IP-address pool. It is evident that the advantage of 
this method is that the IP-address pool will be allocated 
quickly. However, the cost for sending a large amount of 
control messages with broadcasting messages within the 
network in order to invoke an IP address is high.  
In addition, it cannot guarantee a uniform distribution of the 
IP-address pools in the MANET. 
 

Best-effort allocation. This method tries to assign an unused 
IP address from a consistent IP-address pool at each node to 
a newly-joined node and uses conflict detection mechanism 
to make confirmation. The previous work (Nesargi and 
Prakash, 2002) presents an IP address assignment  
scheme based on a distributed mutual exclusion algorithm. 
Each node in the MANET knows the current IP-address 
pool state. Assignment of a new address requires approval 
from all other nodes in the network. Assume that nodes A, B 
and C have been in the MANET and a new mobile node D 
wants to join into the MANET. Node D approaches node C, 
then node C selects an available IP address and floods 
messages to inform nodes A and B in the MANET. Node C 
waits for approval from nodes A and B in the MANET. 
When the message is approved by nodes A and B,  
node C will assign this available IP address to node D.  
The disadvantages of this method are that the mutual 
exclusion algorithm causes a massive overhead of control 
messages in the network for the consistent IP-address pool, 
and a long latency for invoking an IP address. 

Our proposed scheme belongs to the conflict-free allocation 
class. To avoid spending large control overhead for 
invoking an IP address with broadcasting messages, we use 
the exchanging hello messages scheme to let each node 
know the routing path to its closest coordinator. Then a new 
node enters the MANETs; it should listen for a while to its 
neighbour nodes to find a path to the closest coordinator 
through exchanging the hello messages. 

3 Distributed IP address assignment scheme 
This section presents a distributed IP address assignment 
scheme. Note that we do not consider the cases of network 
partition and mergence (Ojeda-Guerra et al., 2005; Zhou  
et al., 2003). In the proposed scheme, nodes are classified 
into coordinators and common nodes. The first assigned 
coordinator to initiate the IP addresses assignment is  
named the C-root. The coordinators handle the IP-address 
pool and are responsible for assigning an IP address to a 
newly-joined node. The nodes in the MANET will 
periodically exchange their IP-related information via hello 
messages. The hello messages information will help a new 
node to know where the closest coordinator is, and invoke 
an IP address from the coordinator. A coordinator tree  
C-tree is constructed to maintain the IP-address pools status. 

3.1 IP-address assignment 

The proposed scheme uses the hello messages to 
periodically exchange the coordinators’ information.  
The exchanged information includes the coordinator’s ID 
and the hop count distance to the coordinator. Each common 
node in the MANET will record the closest coordinator’s 
ID, the number of hops, and the up-stream node to the 
closest coordinator. A newly-joined node entering the 
MANET will first listen for a while to the hello messages  
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sent by its neighbours in order to obtain the information for 
the path to the closest coordinator. Then, the new node 
sends a request to the closest coordinator to obtain an IP 
address. 

In order to quickly obtain an IP address from the 
coordinator, the number of coordinators must increase as the 
network size increases. In our proposed scheme, a new node 
can become a coordinator if the distance of the closest 
coordinator to the new node is more than two hops.  
Each new node sends an IP-request message to its closest 
coordinator invoking an IP address. When the coordinator 
receives the IP-request message, it will reply with an IP 
address or a segment of IP addresses to the new node, 
depending on its hops to this node. If the number of hops to 
the new node is less than three, the coordinator will send an 
IP address to the new node. Otherwise, the coordinator will 
assign half of the unused IP addresses in pool to the new 
node. If the new node receives an IP address, it becomes a 
common node; otherwise, it becomes a new coordinator.  
To reduce the overhead of maintaining the IP-address pools, 
the coordinators will not split their IP-address pool if the 
number of available IP addresses is smaller than a threshold, 
which will be determined by the simulations in Section 4. 

Next, we will describe how to distribute the IP addresses 
to the coordinators. Initially, the entire pool of IP addresses 
is assigned to the first coordinator (C-root), which is the 
first node to initiate the IP address assignment scheme.  
If a new node is three hops away from the first coordinator, 
the first coordinator will distribute half of the available IP 
addresses in the pool to the new node. The new node will 
then become a coordinator and follow the same method for 
distributing its IP addresses in the pool to other new nodes. 
All of the IP-address pools are arranged in accordance with 
the binary splitting principle. This splitting procedure is 
illustrated in Figure 1. There are two parameters in each 
coordinator. The first parameter indicates the IP address of 
the coordinator and the second parameter indicates the IP 
addresses available for distribution. For example, the 
coordinator B gets a segment of IP addresses from 
coordinator A and uses IP address 129 for itself and the 
remaining IP addresses, ranging from 130–256 are for 
distribution. The coordinator C gets a segment of IP 
addresses from coordinator A and uses IP address 65 for 
itself and the remaining IP addresses, ranging from 66–128 
are for distribution. 

Figure 1 Binary splitting IP-address pools 

 

A summary of the IP-address assignment scheme is 
presented in Algorithm 1. 

Algorithm 1: IP-address assignment procedure 

Begin 

For a newly-joined node 

Step 1: Listen to the hello messages sent by its neighbouring 
nodes. 

Step 2: Get the closest coordinator information from the 
received hello messages. 

Step 3: Send an IP-request message to the closest 
coordinator for receiving an IP address or an IP-address 
pool. {If the node receives an IP address, it becomes a 
common node; otherwise it receives a segment of IP-address 
and becomes a new coordinator.} 

For a coordinator node 

Step 1: Set the fields of coordinator ID and hop count of the 
hello message to its ID and zero, respectively, and then 
broadcast the hello message periodically. 

Step 2: When receiving an IP-request message from a 
newly-joined node, the coordinator will send an IP address 
to the new node if the hops to the new node <3, or if the 
number of available IP addresses in pool < threshold; 
otherwise the coordinator splits its unused IP addresses into 
two, and sends one half to the newly-joined node. 

For a common node 

Step 1: When receiving a hello message, if the number of 
hops to the closest coordinator is smaller than the previously 
received ones, add one hop to the hop count of the hello 
message and then broadcast the hello message periodically. 
The common node needs to record the ID of the up-stream 
node to the closest coordinator. 

End 

3.2 Maintenance of the IP-address pools 

Due to the fact that the nodes in the MANET will 
dynamically move in and out of the network, a mechanism 
is required to efficiently maintain the IP-address pool. As a 
node finishes its job, it will turn the system off and leave the 
MANET. Before a node leaves the network, it will release 
its IP address to its closest coordinator. Since each node in 
the MANET has knowledge of its closest coordinator, the 
coordinator can collect the released IP addresses from the 
leaving nodes. To reduce the control-message overhead as a 
result of collecting the IP addresses, we constructed a virtual 
coordinator tree, named C-tree, which is used to efficiently 
exchange control messages among the coordinators, and to 
consistently maintain the IP-address pools. The root of  
the C-tree is the first coordinator in the MANET, called the 
C-root. Each node of the virtual C-tree is a coordinator. 
Two coordinators will communicate through the common 
nodes if they cannot communicate directly with each other. 
Figure 2 illustrates an example of a virtual C-tree. 

When a common node determines to leave the network, 
it will deliver a control message leave_msg to notify its 
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closest coordinator in the C-tree. The coordinator getting 
the control message leave_msg will collect the IP address 
from the leaving node. When a coordinator leaves the 
network, it will send two control messages c_leave_msg and 
release_IPs. The c_leave_msg message along the path of 
the C-tree to notify the C-root includes the ID of the 
coordinator. When the C-root receives this message, it  
will delete the coordinator ID from its data cache.  
The release_IPs message includes the unused IP address 
segments of the coordinator which is sending to notify the 
closest coordinator. The closest coordinator then collects  
the available IP addresses from the leaving coordinator. 
Since any node in the MANET may leave the network 
abruptly, they cannot notify their closest coordinator or  
C-root in time. Thus, the IP addresses in the MANET  
will reduce gradually. Moreover, a portion of the  
IP addresses may be lost if a coordinator crashes  
suddenly. 

Figure 2 An example of a virtual C-tree 

 

To avoid the loss of IP addresses, each coordinator  
will periodically send a control message I_am_alive to the 
C-root. If the C-root does not periodically receive the 
control message I_am_alive of a coordinator, it will know 
that the unused IP addresses recorded in the coordinator 
were lost. The C-root will then flood all nodes in the 
MANET with the control message find_IP to find  
the unused IP addresses. If a command node receives the 
find_IP message, the node will reply an acknowledgement 
control message find_IP_ack to its closest coordinator.  
If a coordinator receives the find_IP message, it waits a 
short-time-slot (3 s in our simulation) to collect the used IP 
addresses from the common node and sends a find_IP_ack 
message to the C-root. This message includes all the used 
and unused IP addresses recorded in the coordinator. After a 
long-time-slot (20 s in our simulation), the C-root will have 
the knowledge of the unused IP addresses of the crashed 
coordinator. 

In Figure 3 it is assumed that the coordinator D crashes 
suddenly. Therefore, the node A (C-root) cannot receive the 
periodic control message I_am_alive from coordinator D. 
Consequently, node A will flood a control message find_IP 
to the network to collect all unused and used IP addresses in 
the network. If a common node receives a control message 
find_IP, the common node will then notify its closest 

coordinator, and the coordinator will keep the IP address in 
its data cache. After a short_time_slot, each coordinator will 
collect the used IP addresses of its neighbouring common 
nodes. Each coordinator will send the used and unused IP 
addresses to node A. This allows node A to find the 
unassigned IP addresses of coordinator node D by union  
of the used and unused IP addresses sent from the 
coordinators. Finally, node A will take over these 
unassigned IP addresses. 

Since the number of nodes in a MANET will grow 
gradually, the coordinator will dispatch one IP address  
from its available IP-address pool to the newly-joined  
node until the IP-address pool is empty. Once the available 
IP-address pool of a coordinator is empty, the coordinator 
will change its role to that of a common node. When the 
coordinator becomes a common node, it will send the  
control message erase_coordinator to the C-root and wait 
for the control message erase_coordinator_ack which  
is the acknowledgement from the C-root. In addition, the 
coordinator will broadcast the control message erase_msg  
to its neighbouring nodes to notify that it has become  
a common node. A summary of the IP-address pools 
maintenance is presented in Algorithm 2. 

Figure 3 An example of a coordinator D crash in a MANET 

 

Algorithm 2: Maintenance of the IP-address pools 

Begin 

For the C-root node 

Case 1: If the C-root does not receive I_am_alive control 
message from a coordinator for a pre-determined period of 
time (10 seconds in our simulation), it will assume that the 
coordinator has crashed. Then the C-root floods a control 
message find_IP to each node in the MANET to collect the 
used and unused IP addresses. After a long_time_slot, the 
C-root can collect all the used and unused IP addresses from 
the coordinators. The C-root will take over the unused IP 
addresses of the crashed coordinator. 

Case 2: When the C-root receives the c_leave_msg 
message, it will delete the coordinator ID from its data 
cache. 

Case 3: When the C-root receives a control message 
erase_coordinator sent by a coordinator, it will delete the 
coordinator ID from its data cache and reply a control 
message erase_coordinator_ack to the coordinator. 
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For coordinators 

{Each coordinator sends periodically I_am_alive control 
message to the C-root.} 

Case 1: If a coordinator attempts to leave the MANET, the 
coordinator will send control messages c_leave_msg and 
release_IP to the C-root and the closest coordinator, 
respectively. The coordinator will turn its power off when it 
receives acknowledgements from the C-root and the closest 
coordinator.  

Case 2: When a coordinator receives a control message 
leave_msg from a common node, it will denote the IP 
address as free and reply a control message leave_msg_ack 
to the common node.  

Case 3: When a coordinator receives a control message 
find_IP from the C-root, it waits a short_time_slot to collect 
the used IP addresses from the neighbouring common 
nodes. Then the coordinator sends the collected IP addresses 
and its used and unused IP addresses to the C-root. 

Case 4: When the available IP address of a coordinator  
is empty, the coordinator sends a control message 
erase_coordinator to the C-root. When the coordinator 
receives the control message erase_coordinator_ack from 
the C-root, it will broadcast the control message erase_msg 
to notify its neighbours that it is a common node. 

Case 5: When a coordinator i receives a control message 
release_IP sent from coordinator j, the coordinator i will 
take over the unused IP addresses of the coordinator j.  

For common nodes 

Case 1: If a common node is leaving the MANET, the node 
sends a control message leave_msg to its closest 
coordinator. The common node will turn its power off when 
it receives an acknowledgement from the closest 
coordinator. 

Case 2: If a common node receives a control message 
find_IP from the C-root, it will send its IP address to the 
closest coordinator. 

Case 3: If a common node receives a control message 
erase_msg, the common node will delete this coordinator 
from its data cache. 

End 

In the following, we present how to construct a  
virtual C-tree. Each node keeps four parameters,  
namely cache_coor_id, up-stream_id, cache_hop and 
cache_seq_num in its cache in order to record the shortest 
path information from the node to the C-root. The first 
parameter, cache_coor_id represents the closest coordinator 
which is used to pass to the C-root. The second parameter, 
up-stream_id represents the up-stream node to the C-root. 
The third parameter, cache_hop represents the number of 
hops from the node to the C-root. The last parameter, 
cache_seq_num represents the freshness of the received 
packet. Initially, the cache of each node = (∞, ∞, ∞, 0). 

In the MANET, constructing a virtual C-tree and 
maintaining it, requires sending a large amount of control 
messages. To reduce the control-message overhead, the 
proposed scheme utilises the hello messages for maintaining 
the virtual C-tree. In order to construct a virtual C-tree  
we put four extra fields in the hello message, including 
hop1, coordinator_id, hop2 and sequence_num. The first 
parameter hop1 represents the number of hops from the 
current node to the coordinator, which is specified in the 
second parameter coordinator_id and which is used for 
passing information to the C-root. The third parameter  
hop2 represents the number of hops from the specified 
coordinator to the C-root. Therefore, hop1 + hop2 
represents the total number of hops from the node to the  
C-root. The parameter, sequence_num represents sequence 
number of the sent packet. In the propose scheme, only  
C-root can increase the value of sequence_num in each 
hello message. The sequence number can be used to detect 
whether the C-root has crashed or not. Each node broadcasts 
a Cons-tree message that has the extra information of hop1, 
coordinator_id, hop2 and sequence_num embedded in the 
hello message. Consequently, a virtual C-tree can be 
constructed by exchanging hello messages between nodes. 

Initially, the C-root broadcasts a Cons-tree message  
(0, C-root, 0, 1). Assume that a node i receives a Cons-tree 
message (hop1, coordinator_id, hop2, sequence_num) from 
node j. If the received value sequence_num > cache_ 
seq_num node i will let cache_coor_id = coordinator_id, 
up-stream_id = j, cache_hop = hop1 + hop2 + 1 and cache_ 
seq_num = sequence_num. This is means that the received 
data is fresher than the data stored in cache. If the received 
value sequence_num = cache_seq_num and hop1 +  
hop2 + 1 < cache_hop, node i will let cache_coor_id  
= coordinator_id, up-stream_id = j, and cache_hop =  
hop1 + hop2 + 1. This means that node i has a shorter path 
to the C-root via node j than the previous path recording in 
its current cache. 

In the case of sequence_num = cache_seq_num and 
hop1 + hop2 + 1 = cache_hop, node i will let cache_ 
coor_id = coordinator_id and up-stream_id = j if its 
cache_coor_id is the C-root and the received 
coordinator_id is not the C-root. This means that when two 
paths exist with the same hop count, we will select the  
path that has the coordinator as the intermediate node.  
This is done in order to relieve the load of the C-root.  
In all the above cases, if node i is a common node, it adds 
one hop to hop1 and rebroadcasts the Cons-tree message  
in the next exchange of a hello message. If node i is a 
coordinator, it will set the coordinator_id = i, hop1 = 0, and 
hop2 = hop1 + hop2 + 1 and then rebroadcast the Cons-tree 
message in the next exchange of a hello message. Node i 
will drop the received message if the received value agrees 
with sequence_num < cache_seq_num or sequence_num  
= cache_seq_num and hop1 + hop2 + 1 > cache_hop.  
This way, the virtual C-tree topology will be constructed 
gradually by the nodes in the MANET. 

Figure 4 is an example of the construction of a C-tree. 
When common nodes B and E receive the Cons-tree 
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message (0, A, 0, 1), both nodes will keep the values  
[A, A, 1, 1] in their respective caches and rebroadcast  
Cons-tree message (1, A, 0, 1) in the next hello message to 
their neighbours. When coordinator C receives the message  
(1, A, 0, 1) sent from common node B, it will keep the 
values [A, B, 2, 1] in its cache and rebroadcast the Cons-tree 
message (0, C, 2, 1) in the next hello message to its 
neighbours. As node F receives the message (1, A, 0, 1) sent 
from common node E, it will keep the value [A, E, 2, 1] in 
its cache and rebroadcast the Cons-tree message (2, A, 0, 1) 
in the next hello message to its neighbours. Note that node 
D will receive the Cons-tree messages (0, C, 2, 1) and  
(2, A, 0, 1) from coordinator C and common node F, 
respectively. According to our C-tree construction rules, 
node D will adopt the Cons-tree message (0, C, 2, 1),  
keep the values [C, C, 3, 1] in its cache and rebroadcast the 
Cons-tree messages (1, C, 2, 1) in the next hello message to 
its neighbours. As node G receives the message (2, A, 0, 1) 
sent from node F, it will keep the values [A, F, 3, 1] in its 
cache and rebroadcast the Cons-tree message (3, A, 0, 1)  
in the next hello message to its neighbours. Finally, 
coordinator H will receive the Cons-tree messages  
(1, C, 2, 1) and (3, A, 0, 1) from common nodes D and G, 
respectively. Coordinator H will adopt the Cons-tree 
message (1, C, 2, 1) and keep [C, D, 4, 1] in its cache and 
rebroadcast the Cons-tree messages (0, H, 4, 1) in the next 
hello message to its neighbours. A virtual C-tree can be 
constructed from the values recorded in the cache of each 
node. 

Figure 4 An example of a C-tree 

 

Following the construction of the C-tree procedures, 
through the hello messages in the MANET the nodes  
will gradually construct the virtual C-tree architecture.  
Due to the fact that each node in the MANET maintains  
the neighbours’ information by means of the hello 
messages, each node can cache the shortest path  
to the C-root and so form, dynamically, a virtual  
C-tree architecture for maintaining IP-address pools.  
The virtual C-tree architecture will be dynamically  
modified depending on the change in network topology.  
The detailed C-tree construction algorithm is presented as 
follows. 
 

Algorithm 3: Construct a virtual C-tree  

Begin 

Initially, the cache (cache_coor_id, up-stream_id, cache_ 
hop, cache_seq_num) of each node = (nil, nil, nil, 0). 

For the C-root node 

Step 1: The C-root broadcasts a Cons-tree message 
periodically to its neighbours by exchanging  
hello messages. The initial value of the message is  
(0, C-root, 0, 0). In each of the following broadcasting 
messages, the value of sequence_num is increased by one. 

For a coordinator 

When the coordinator receives a Cons-tree message (hop1, 
coordinator_id, hop2, sequence_num) from its neighbour 
node j: 

Case 1: {cache_seq_num < sequence_num or (cache_seq 
_num = sequence_num and hop1 + hop2 + 1 < cache_hop)} 
Let cache_coor_id = coordinator_id, up-stream_id = j, 
cache_hop = hop1 + hop2 + 1, and cache_seq_num  
= sequence_num. Reset the Coordinator_id = i, hop1 = 0, 
hop2 = hop1 + hop2 + 1 and sequence_num = cache_ 
seq_num. 

Case 2: {cache_seq_num = sequence_num and hop1 + hop2 
+ 1 = cache_hop} Let cache_coor_id = coordinator_id and 
up-stream_id = j and reset the coordinator_id = i, hop1 = 0, 
and hop2 = hop1 + hop2 + 1 if its cache_coor_id = C-root 
but the received coordinator_id ≠ C-root; otherwise, drop 
the received Cons-tree message. 

Case 3: {cache_seq_num > sequence_num or (cache_seq 
_num = sequence_num and hop1 + hop2 + 1 > cache_hop)} 
Drop the received Cons-tree message. 

After executing one of the above cases, broadcast the  
Cons-tree message (hop1, coordinator_id, hop2, 
sequence_num) periodically in the next hello message. 

For a common node 

When the common node receives a Cons-tree message 
(hop1, coordinator_id, hop2, sequence_num) from its 
neighbour node j: 

Case 1: {cache_seq_num < sequence_num or (cache_seq_ 
num = sequence_num and hop1 + hop2 + 1 < cache_hop)} 
Let cache_coor_id = coordinator_id, up-stream_id = j, 
cache_hop = hop1 + hop2 + 1, sequence_num = cache_seq_ 
num, and hop1 = hop1 + 1. 

Case 2: {cache_seq_num = sequence_num and hop1 + hop2 
 + 1 = cache_hop} If the cache_coor_id = C-root, let 
cache_coor_id = coordinator_id, up-stream_id = j, and 
hop1 = hop1 + 1; otherwise drop the receiving Cons-tree 
message. 

Case 3: {cache_seq_num > sequence_num or (cache_ 
seq_num = sequence_num and hop1 + hop2 + 1 > cache 
_hop)} Drop the receiving Cons-tree message. 
 



 A distributed IP address assignment scheme in ad hoc networks 17 

After executing one of the above cases, periodically 
broadcast the Cons-tree message (hop1, coordinator_id, 
hop2, sequence_num) when exchanging the next hello 
message. 

End 

Since the topology of the ad hoc network may change with 
time, the C-root must broadcast a Cons-tree message to 
maintain the C-tree periodically. The C-root increases  
sequence_num by one when a new Cons-tree message is 
broadcast to the network. Since the C-root may leave the 
MANET or crash suddenly, it will make the network 
malfunction. If the C-root attempts to leave the MANET, it 
will select the closest coordinator as the new C-root and 
send the unused IP address segments to the new C-root.  
The new C-root then collects the available IP addresses 
from the leaving C-root and floods a message to notify the 
other nodes. In addition, the new C-root floods a Cons-tree 
message to construct a new virtual C-tree. If the C-root 
crash suddenly, the coordinators can detect the event when 
they cannot receive a new Cons-tree message after a period 
of time t which is the multiple periods of broadcasting a 
new Cons-tree message. When a coordinator is aware of the 
C-root failed, it will flood a contention_new_root message 
including its ID to contend for becoming the new C-root. 
Any node receiving one more contention_new_root message 
will recognise the coordinator which has a larger ID as the 
new C-root. A node will drop the received contention 
_new_root message if the received ID is smaller than the 
recognised new C-root ID. Finally, only the coordinator 
with the largest ID can flood the contention_new_root 
message to entire network and all nodes will recognise the 
same coordinator as the new C-root. The new C-root  
will flood a control message find_IP, which is used in 
algorithm 2, to find the unused IP addresses of the crashed 
C-root. 

4 Simulation results 
To evaluate the performance of the proposed IP assignment 
scheme, we have developed a simulator, using ANSI C.  
The simulation experiments focus on the IP address 
allocation latency time, the overhead of control messages 
for invoking an IP address by a newly-joined node, and the 
IP-address pools maintenance. Simulations are performed 
on a MANET, and nodes are moving in random way-point 
mobility with the pause-time varying from 2 s to 10 s, and a 
moving speed of 1 m/s. In random way-point mobility, a 
node travels from a starting point to a randomly chosen 
destination. When it reaches its destination it pauses  
for a time, then another destination is chosen randomly, and 
the same sequence is repeated until the end of the 
simulation. The nodes move in a 1000 × 1000 m free space.  
The transmission radius of each node is 150 m. The node 
which initiates the MANET is named C-root. Each node 
broadcasts a hello message to its neighbours in a one second 
period as recommended in Mohsin and Prakash (2002).  
 

A node can enter and leave the MANET in a random time. 
When a node leaves the MANET, it will release its IP 
address to its closest coordinator. A coordinator will send 
I_am_alive message to C-root every 10 s periodically.  
The long-time-slot and short-time-slot are set in 20 s and 
3 s, respectively. The total simulation time is 1500 s. 

The control-message overhead and the latency time are 
used to evaluate the performance of the proposed scheme. 
There are two kinds of control-messages overhead. One is 
for invoking the IP addresses and the other one is the  
IP-address pools maintenance overhead. Latency is the 
waiting time for a new node to get an IP address. We will 
compare the performance of our scheme with the scheme 
proposed by Mohsin and Prakash (2002). The total available 
IP addresses are a class C in IPv4. 

The number of coordinators generated in a MANET will 
affect the IP-address pools maintenance overhead and the 
latency for invoking an IP address. The threshold  
value for splitting an IP-address pool will affect the  
number of coordinators and the duration of the latency. 
Figure 5 shows the IP-address pools maintenance  
overhead and the latency time for different thresholds  
and network densities under the pause-time = 10 s.  
The simulation result shows that a small threshold value 
will increase the maintenance overhead, but reduces the 
latency time. On the other hand, a large threshold value will 
reduce the maintenance overhead but increase the  
latency time. In Figure 5 we can see that there is an 
intersection between the lines of control overhead and 
latency time for each network density. These cross points 
are 24, 23, 17 and 16 for the number of nodes 50, 100, 150, 
and 200 in a MANET, respectively. We use the middle 
value 20 as our threshold for splitting an IP-address pool in 
the following simulations. 

Figure 5 The pools maintenance overheads and latency time 
under various threshold values and number of nodes: 
(a) 50; (b) 100; (c) 150 and (d) 200 

 
 (a) 

 
 (b) 
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Figure 5 The pools maintenance overheads and latency time 
under various threshold values and number of nodes: 
(a) 50; (b) 100; (c) 150 and (d) 200 (continued) 

 
 (c) 

 
 (d) 

Figure 6 compares the control-message overhead of our 
scheme to that of the Mohsin and Prakash’s scheme  
with pause-time = 10 s under various numbers of nodes.  
The control overhead of our proposed scheme includes the 
new nodes invoking an IP address and maintaining the  
IP-address pools. Due to the IP addresses being a finite 
resource, it is necessary to efficiently maintain usable  
IP addresses. Our proposed scheme spends the pool 
maintenance overhead to avoid missing any IP address.  
In the Mohsin and Prakash’s scheme, a new node invokes 
an IP address from its neighbours through broadcasting an 
IP-request message. The neighbours which have IP 
addresses available will send half of their available  
IP addresses to the new node. The neighbours which have 
no IP address available will flood a message to request  
an IP address for the new node. When the new node gets an 
IP address from the first replying node, it sends an 
acknowledgement to the first replying node. Our scheme 
has less control overhead than the Mohsin and Prakash’s 
scheme when the number of nodes is larger than 115. 

Figure 6 Communication overheads vs. number of nodes 

 

Figure 7 compares the control-message overhead of our 
proposed scheme to that of the Mohsin and Prakash’s 

scheme with 200 nodes under various mobilities. In our 
scheme, the control-message overhead is not affected by the 
node mobility. Due to the fact that a new node can get  
the information of its closest coordinator through the  
hello messages, each node can quickly obtain an IP address 
from the coordinator without flooding an IP-request 
message. The control-message overhead of the Mohsin and 
Prakash’s scheme increases when the node mobility 
increases. 

Figure 7 Mobility vs. control-message overhead 

 

Figure 8 compares the latency of our scheme to Mohsin and 
Prakash’s scheme under pause-time = 10 s. Due to the fact 
that our proposed scheme uses the hello messages to get the 
information of the coordinators, the latency depends on the 
time it takes to exchange hello messages and the number of 
neighbours of a new node. As the network density of a 
MANET increases, it decreases the latency for a new node 
to obtain the coordinator information from its neighbouring 
nodes. The simulation result shows that increasing the 
number of nodes reduces the latency in our proposed 
scheme. Mohsin and Prakash’s scheme will increase the 
latency as the number of nodes increase. This is because a 
new node has a higher probability of getting an IP  
address from its farther neighbours as the network density 
increases. 

Figure 8 Latency time vs. number of nodes 

 

Figure 9 presents the latency under various node  
mobilities and network densities. It is evident that higher 
node mobility has longer latency in all network densities. 
There are two factors which affect latency. The first is the 
time it takes for exchanging hello messages. Because each 
node gets the information about its coordinator by 
exchanging hello messages, the shorter the period of 
exchanging hello messages the shorter the latency. When 
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the time period for exchanging hello messages is fixed, high 
node mobility will cause a high probability of incorrect 
cache information stored in the nodes, which leads to 
additional overhead of invoking an IP address. The second 
factor is the node density in a network. As the number of 
nodes in a network increase, it decreases the latency.  
In addition, the simulations show that the latency increases 
slightly as the node mobility increases in various network 
densities. 

Figure 9 Node mobility vs. latency time 

 

Figure 10 presents the average hop counts under various 
node mobilities and network densities. The average hop 
counts are the average hops from each node to its closest 
coordinator. The simulation result shows that higher 
network densities have lower average hop counts in all 
kinds of node mobilities. Because our proposed scheme can 
create a new coordinator from its closest coordinator in 
three hops, the average hop count is smaller than two hops. 

Figure 10 Hop counts vs. pause-time 

 

5 Conclusions 
In this paper, we presented a distributed IP address 
assignment scheme. The proposed scheme uses the 
distributed coordinators to assign IP addresses for the 
newly-joined nodes, and constructs a virtual C-tree to 
maintain the IP-address pools. A newly-joined node can 
know the closest coordinator by exchanging hello messages 
and invoking an IP address from the coordinator by  
unicast-communication, without flooding the network.  
A new coordinator evolves from its closest coordinator if 
the distance between them is larger than two hops.  
Each coordinator will report its alive status periodically to 
the C-root in order to maintain the IP-address pool.  
If a node attempts to leave the MANET, it will release its IP 

address to its closest coordinator, and the coordinator will 
keep the available IP addresses in its pool. 

We used simulations to demonstrate the performance of 
our scheme. The simulation results demonstrated the 
control-message overhead, latency time, average hop counts 
to a coordinator, and the threshold value of splitting an  
IP-address pool. The result shows that a small threshold 
value increases the maintenance overhead but reduces the 
latency. A middle value, 20, was adopted in our simulations.  
The total control-messages overhead of our scheme are less 
than Mohsin and Prakash’s scheme when the number of 
nodes is larger than 115. The simulation also shows that  
the latency of our scheme decreases as the number of  
nodes increase in a network. On the contrary, the latency  
of Mohsin and Prakash’s scheme increases as the number of 
nodes increases. 
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