
10 Int. J. Ad Hoc and Ubiquitous Computing, Vol. x, No. x 200x

Copyright © 2008 Inderscience Enterprises Ltd.

A distributed IP address assignment scheme
in ad hoc networks

Jang-Ping Sheu*
Department of Computer Science and Information Engineering,
National Central University, Jhongli, 32054, Taiwan, ROC

Department of Computer Science,
National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
E-mail: sheujp@cs.nthu.edu.tw
*Corresponding author

Shin-Chih Tu and Li-Hsiang Chan
Department of Computer Science and Information Engineering,
National Central University, Jhongli, 32054, Taiwan, ROC
E-mail: shinzi@axp1.csie.ncu.edu.tw
E-mail: lishung@axp1.csie.ncu.edu.tw

Abstract: In this paper, we present a scheme to assign IP address to each newly-joined node.
First, some nodes are selected as coordinators. Then a new node will use the exchanged hello
messages to find the closest coordinator and obtain a new IP address from that coordinator.
In order to efficiently maintain the IP-address pools, the distributed coordinators are organised in
a tree topology by exchanging hello messages. Simulation results show that our proposed scheme
has a low latency for obtaining a new IP address and that it can efficiently maintain consistent
IP-address pools.

Keywords: wireless networks; ad hoc networks; IP address assignment.

Reference to this paper should be made as follows: Sheu, J-P., Tu, S-C. and Chan, L-H. (200x)
‘A distributed IP address assignment scheme in ad hoc networks’, Int. J. Ad Hoc and Ubiquitous
Computing, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Jang-Ping Sheu received his BS Degree in Computer Science from
Tamkang University, Taiwan, Republic of China, in 1981, and his MS and PhD Degrees in
Computer Science from the National Tsinghua University, Taiwan, Republic of China, in 1983
and 1987, respectively. He is currently a Chair Professor in the Department of Computer Science,
National Tsing Hua University. He is an Associate Editor of IEEE Transactions on Parallel and
Distributed Systems. He received the Distinguished Research Awards of the National Science
Council of the Republic of China for 1993–1994, 1995–1996 and 1997–1998. He received the
Distinguished Engineering Professor Award of the Chinese Institute of Engineers in 2003. He
received the Distinguished Professor award of the National Central University. He is a senior
member of the IEEE, a member of the ACM, and Phi Tau Phi Society.

Shin-Chih Tu received his BS Degree in Information Management from Aletheia University,
in 1999, and his MS Degree in Mathematical Sciences from Aletheia University, Taiwan,
in 2001. Since September 2001, he has been working toward his PhD Degree in the Department
of Computer Science and Information Engineering, National Central University, Taiwan.
His current research interests include mobile computing, bluetooth radio system and ad hoc
wireless networks.

Li-Hsiang Chan received his BS Degree in Computer Science and Information Engineering from
Tamkang University, in 1998, and his MS Degree in Computer Science and Information
Engineering from the National Central University, Taiwan, in 2004.

1 Introduction
The mobility of the MANET nodes can change the network
topology frequently and unpredictably. The network is
independent and without a fixed infrastructure or centralised

server. There are a multitude of software applications on the
Internet with TCP/IP protocol, and they all need a unique IP
address to communicate with each other across the
networks. This represents an IP-related application in

 A distributed IP address assignment scheme in ad hoc networks 11

which the nodes are tightly coupled with their identities.
As a result, the IP address assignment scheme is an
important issue for IP-related networks. Because of the
characteristics of network behaviour, a new node cannot
participate in unicast-communication for transferring a
bundle of data until it has obtained a unique IP address.

Most MANET researches pre-assign the IP-related
information of a node statically. This IP-related information
includes an IP address, a net-mask, and a default gateway.
In traditional wired networks, nodes are assigned IP-related
information by a centralised server like the Dynamic Host
Configuration Protocol (DHCP) (Droms, 1997) server.
However, this mechanism is not suitable for the MANET
environment, because each node in the MANET can move
and leave dynamically, and none of the nodes can handle
all of the information and topology. Therefore, the nodes
should be capable of being dynamically configured
through self-configuration (Mcauley and Manousakis, 2000)
when they enter into the wireless networks. A scheme is
required which can operate in a stand-alone fashion, which
self-organises autonomous networks, with a low overhead
of control messages.

Several researchers have addressed the IP address
assignment in the MANET (Misra et al., 2001; Mohsin and
Prakash, 2002; Nesargi and Prakash, 2002; Park et al., 2002;
Perkins et al., 2001; Vaidya, 2002; Weniger and Zitterbart,
2002; Zhou et al., 2003). There are three ways of IP
auto-configuration for MANET. First, the trial and error
policy is used in conflict-detection allocation (Perkins et al.,
2001; Vaidya, 2002; Weniger and Zitterbart, 2002). In this
scheme, a new node randomly chooses an IP address and
issues a request for approval from all the configured nodes
in the MANET. Each configured node will check the
request. If any of them detects a conflicting IP address then
the newly-joined node will be informed, and will then
randomly choose another IP address. This procedure will be
repeated until there is no conflict of having a duplicate
address. The disadvantage of this method is that the time
required for obtaining a new IP address depends upon the
number of available IP addresses.

In the second method, the IP-address pools are
pre-allocated by the disjointing method in conflict-free
allocation (Misra et al., 2001; Mohsin and Prakash, 2002).
This scheme pre-assigns a segment of the unused IP-address
pool to a newly-joined node from its parent node. This way,
the IP address allocation has disjoint address pools, and the
nodes can be sure that the allocated addresses are unique.
It is evident that the advantage of this method is that the
IP-address pool will be allocated quickly. However, this
method cannot guarantee a uniform distribution of the IP
address pools in the Mobile Ad Hoc Networks (MANETs).
Therefore, the cost of sending a large number of control
messages with broadcasting messages within the network in
order to invoke an IP address is high.

Third, the ‘all IP addresses status’ is consistent in a
best-effort allocation at each node (Nesargi and Prakash,
2002). Each node in the MANET knows the current
IP-address pool state. This method tries to assign an unused

IP address from a consistent IP-address pool at each node to
a newly-joined node and uses the conflict detection
mechanism to confirm the assignment. The disadvantages of
this method are that the mutual exclusion algorithm causes a
massive overhead of control messages in the network for the
consistent IP-address pool, and a long latency for invoking
an IP address.

In this paper, we propose a conflict-free IP address
assignment scheme for the MANET. In this proposed
scheme, some nodes in the MANET are assigned as
coordinators, and the first one is named C-root. Each
coordinator is responsible for assigning IP addresses to the
newly-joined nodes in the MANET. Each coordinator must
report its IP-address pool status to the C-root periodically.
When a new node enters the wireless networks, it must
listen for a while to its neighbour nodes in order to find the
closest coordinator through exchanging the hello messages.
There are many protocols using hello messages (Chakeres
and Belding-Royer, 2002; Clausen et al., 2001; Ogier et al.,
2002; Perkins et al., 2002; Weniger and Zitterbart, 2002) for
exchanging information between neighbours. This allows
the new node to obtain an IP address without flooding the
network with messages. In order to maintain the IP-address
pools efficiently, the distributed coordinators will be
organised into a dynamic tree topology called C-tree by
exchanging hello messages. The virtual C-tree is used to
back-up the coordinators’ IP-address pools, collect IP
addresses from the leaving nodes, and record the status of
the IP-address pools. The simulation results show that our
proposed scheme has a lower control-message overhead for
invoking an IP address than previous schemes (Mohsin
and Prakash, 2002), and that it can consistently maintain the
IP-address pools.

The rest of this paper is organised as follows. Section 2
presents the previous works of the IP-address assignment in
the MANETs. Section 3 presents our proposed scheme.
Simulation and experimental results are shown in Section 4.
Finally, we draw our conclusion in Section 5.

2 Previous works
The wireless network is constructed by a group of nodes
with network configuration parameters. Some parameters
are required to be unique for each node in the wireless
networks, such as the IP address. A node can join and leave
the wireless network at any time and free to move arbitrarily
during its session in the MANET. The nodes in the MANET
could be formed spontaneously by people with no network
infrastructure. The network size and topology are dynamic
and unpredictable in the MANET.

As mentioned previously, DHCP (Droms, 1997)
server is commonly used for the purpose of dynamically
assigning unique IP addresses in traditional wired networks.
Since the DHCP server cannot guarantee to be accessed by
each node in the MANET, therefore the DHCP server
cannot be suitable for MANETs. An alternative is to use a
manual manipulation. However, manual assignment is very

12 J-P. Sheu, S-C. Tu and L-H. Chan

cumbersome, in general. Several researches to solve this
problem can be divided into the following three categories
(Zhou et al., 2003):

Conflict-detection allocation. This is a ‘trial and error’
policy (Perkins et al., 2001; Vaidya, 2002; Weniger and
Zitterbart, 2002). A newly-joined node randomly chooses an
IP address and issues a request for approval from all the
configured nodes in the MANET. Each configured nodes
will check the request. If any of them detect an IP address
conflict then the new node will be informed, and will then
randomly choose another IP address. This procedure will be
repeated until there is no conflict of having a duplicate
address. The previous work (Perkins et al., 2001) presents a
simple duplicated address detection mechanism that can
discover the duplicated IP address within a bounded time.
The following describes the mechanism in Perkins et al.
(2001) briefly. Let node A generate a random IP address.
To determine if the address is already being used by another
node, node A floods a ‘route request’ for that randomly
selected IP address. The purpose of the route request is to
find a route to a node with the selected address. If the
chosen address is indeed already used by another node, the
‘route reply’ will be sent back to node A. Thus, absence of a
route reply can be considered as an indication that no other
node has been assigned the same address chosen by node A.
The disadvantage of this method is that the time required for
obtaining a new IP address depends upon the number of
available IP addresses.

Conflict-free allocation. In this method, the IP-address
pools are pre-allocated by the disjointing method in
conflict-free allocation (Misra et al., 2001; Mohsin and
Prakash, 2002). This scheme pre-assigns a segment of the
unused IP-address pool to a newly-joined node from its
parent node. This way, the IP address allocation has disjoint
address pools, and the nodes can be sure that the allocated
addresses are unique. The following gives an example to
detail the mechanism in Mohsin and Prakash (2002).
Let node A be an initial node and obtain an IP-address pool
ranging from 192.168.1.0 to 192.168.1.255. When a new
mobile node B enters the network, the node B broadcasts a
message to invoke an IP address and waits for a response.
The response message may come from more than two
nodes, and node B will choose the first response node to
invoke an IP address. If the node A receives a request for an
IP address, node A divides its IP-address pool into two
halves. The bottom half will belong to node B and its
remaining IP-address ranges from 192.168.1.128 to
192.168.1.255. The first IP address of the bottom half is
assigned to node B. The procedure will proceed until the run
out of the IP-address pool. It is evident that the advantage of
this method is that the IP-address pool will be allocated
quickly. However, the cost for sending a large amount of
control messages with broadcasting messages within the
network in order to invoke an IP address is high.
In addition, it cannot guarantee a uniform distribution of the
IP-address pools in the MANET.

Best-effort allocation. This method tries to assign an unused
IP address from a consistent IP-address pool at each node to
a newly-joined node and uses conflict detection mechanism
to make confirmation. The previous work (Nesargi and
Prakash, 2002) presents an IP address assignment
scheme based on a distributed mutual exclusion algorithm.
Each node in the MANET knows the current IP-address
pool state. Assignment of a new address requires approval
from all other nodes in the network. Assume that nodes A, B
and C have been in the MANET and a new mobile node D
wants to join into the MANET. Node D approaches node C,
then node C selects an available IP address and floods
messages to inform nodes A and B in the MANET. Node C
waits for approval from nodes A and B in the MANET.
When the message is approved by nodes A and B,
node C will assign this available IP address to node D.
The disadvantages of this method are that the mutual
exclusion algorithm causes a massive overhead of control
messages in the network for the consistent IP-address pool,
and a long latency for invoking an IP address.

Our proposed scheme belongs to the conflict-free allocation
class. To avoid spending large control overhead for
invoking an IP address with broadcasting messages, we use
the exchanging hello messages scheme to let each node
know the routing path to its closest coordinator. Then a new
node enters the MANETs; it should listen for a while to its
neighbour nodes to find a path to the closest coordinator
through exchanging the hello messages.

3 Distributed IP address assignment scheme
This section presents a distributed IP address assignment
scheme. Note that we do not consider the cases of network
partition and mergence (Ojeda-Guerra et al., 2005; Zhou
et al., 2003). In the proposed scheme, nodes are classified
into coordinators and common nodes. The first assigned
coordinator to initiate the IP addresses assignment is
named the C-root. The coordinators handle the IP-address
pool and are responsible for assigning an IP address to a
newly-joined node. The nodes in the MANET will
periodically exchange their IP-related information via hello
messages. The hello messages information will help a new
node to know where the closest coordinator is, and invoke
an IP address from the coordinator. A coordinator tree
C-tree is constructed to maintain the IP-address pools status.

3.1 IP-address assignment

The proposed scheme uses the hello messages to
periodically exchange the coordinators’ information.
The exchanged information includes the coordinator’s ID
and the hop count distance to the coordinator. Each common
node in the MANET will record the closest coordinator’s
ID, the number of hops, and the up-stream node to the
closest coordinator. A newly-joined node entering the
MANET will first listen for a while to the hello messages

 A distributed IP address assignment scheme in ad hoc networks 13

sent by its neighbours in order to obtain the information for
the path to the closest coordinator. Then, the new node
sends a request to the closest coordinator to obtain an IP
address.

In order to quickly obtain an IP address from the
coordinator, the number of coordinators must increase as the
network size increases. In our proposed scheme, a new node
can become a coordinator if the distance of the closest
coordinator to the new node is more than two hops.
Each new node sends an IP-request message to its closest
coordinator invoking an IP address. When the coordinator
receives the IP-request message, it will reply with an IP
address or a segment of IP addresses to the new node,
depending on its hops to this node. If the number of hops to
the new node is less than three, the coordinator will send an
IP address to the new node. Otherwise, the coordinator will
assign half of the unused IP addresses in pool to the new
node. If the new node receives an IP address, it becomes a
common node; otherwise, it becomes a new coordinator.
To reduce the overhead of maintaining the IP-address pools,
the coordinators will not split their IP-address pool if the
number of available IP addresses is smaller than a threshold,
which will be determined by the simulations in Section 4.

Next, we will describe how to distribute the IP addresses
to the coordinators. Initially, the entire pool of IP addresses
is assigned to the first coordinator (C-root), which is the
first node to initiate the IP address assignment scheme.
If a new node is three hops away from the first coordinator,
the first coordinator will distribute half of the available IP
addresses in the pool to the new node. The new node will
then become a coordinator and follow the same method for
distributing its IP addresses in the pool to other new nodes.
All of the IP-address pools are arranged in accordance with
the binary splitting principle. This splitting procedure is
illustrated in Figure 1. There are two parameters in each
coordinator. The first parameter indicates the IP address of
the coordinator and the second parameter indicates the IP
addresses available for distribution. For example, the
coordinator B gets a segment of IP addresses from
coordinator A and uses IP address 129 for itself and the
remaining IP addresses, ranging from 130–256 are for
distribution. The coordinator C gets a segment of IP
addresses from coordinator A and uses IP address 65 for
itself and the remaining IP addresses, ranging from 66–128
are for distribution.

Figure 1 Binary splitting IP-address pools

A summary of the IP-address assignment scheme is
presented in Algorithm 1.

Algorithm 1: IP-address assignment procedure

Begin

For a newly-joined node

Step 1: Listen to the hello messages sent by its neighbouring
nodes.

Step 2: Get the closest coordinator information from the
received hello messages.

Step 3: Send an IP-request message to the closest
coordinator for receiving an IP address or an IP-address
pool. {If the node receives an IP address, it becomes a
common node; otherwise it receives a segment of IP-address
and becomes a new coordinator.}

For a coordinator node

Step 1: Set the fields of coordinator ID and hop count of the
hello message to its ID and zero, respectively, and then
broadcast the hello message periodically.

Step 2: When receiving an IP-request message from a
newly-joined node, the coordinator will send an IP address
to the new node if the hops to the new node <3, or if the
number of available IP addresses in pool < threshold;
otherwise the coordinator splits its unused IP addresses into
two, and sends one half to the newly-joined node.

For a common node

Step 1: When receiving a hello message, if the number of
hops to the closest coordinator is smaller than the previously
received ones, add one hop to the hop count of the hello
message and then broadcast the hello message periodically.
The common node needs to record the ID of the up-stream
node to the closest coordinator.

End

3.2 Maintenance of the IP-address pools

Due to the fact that the nodes in the MANET will
dynamically move in and out of the network, a mechanism
is required to efficiently maintain the IP-address pool. As a
node finishes its job, it will turn the system off and leave the
MANET. Before a node leaves the network, it will release
its IP address to its closest coordinator. Since each node in
the MANET has knowledge of its closest coordinator, the
coordinator can collect the released IP addresses from the
leaving nodes. To reduce the control-message overhead as a
result of collecting the IP addresses, we constructed a virtual
coordinator tree, named C-tree, which is used to efficiently
exchange control messages among the coordinators, and to
consistently maintain the IP-address pools. The root of
the C-tree is the first coordinator in the MANET, called the
C-root. Each node of the virtual C-tree is a coordinator.
Two coordinators will communicate through the common
nodes if they cannot communicate directly with each other.
Figure 2 illustrates an example of a virtual C-tree.

When a common node determines to leave the network,
it will deliver a control message leave_msg to notify its

14 J-P. Sheu, S-C. Tu and L-H. Chan

closest coordinator in the C-tree. The coordinator getting
the control message leave_msg will collect the IP address
from the leaving node. When a coordinator leaves the
network, it will send two control messages c_leave_msg and
release_IPs. The c_leave_msg message along the path of
the C-tree to notify the C-root includes the ID of the
coordinator. When the C-root receives this message, it
will delete the coordinator ID from its data cache.
The release_IPs message includes the unused IP address
segments of the coordinator which is sending to notify the
closest coordinator. The closest coordinator then collects
the available IP addresses from the leaving coordinator.
Since any node in the MANET may leave the network
abruptly, they cannot notify their closest coordinator or
C-root in time. Thus, the IP addresses in the MANET
will reduce gradually. Moreover, a portion of the
IP addresses may be lost if a coordinator crashes
suddenly.

Figure 2 An example of a virtual C-tree

To avoid the loss of IP addresses, each coordinator
will periodically send a control message I_am_alive to the
C-root. If the C-root does not periodically receive the
control message I_am_alive of a coordinator, it will know
that the unused IP addresses recorded in the coordinator
were lost. The C-root will then flood all nodes in the
MANET with the control message find_IP to find
the unused IP addresses. If a command node receives the
find_IP message, the node will reply an acknowledgement
control message find_IP_ack to its closest coordinator.
If a coordinator receives the find_IP message, it waits a
short-time-slot (3 s in our simulation) to collect the used IP
addresses from the common node and sends a find_IP_ack
message to the C-root. This message includes all the used
and unused IP addresses recorded in the coordinator. After a
long-time-slot (20 s in our simulation), the C-root will have
the knowledge of the unused IP addresses of the crashed
coordinator.

In Figure 3 it is assumed that the coordinator D crashes
suddenly. Therefore, the node A (C-root) cannot receive the
periodic control message I_am_alive from coordinator D.
Consequently, node A will flood a control message find_IP
to the network to collect all unused and used IP addresses in
the network. If a common node receives a control message
find_IP, the common node will then notify its closest

coordinator, and the coordinator will keep the IP address in
its data cache. After a short_time_slot, each coordinator will
collect the used IP addresses of its neighbouring common
nodes. Each coordinator will send the used and unused IP
addresses to node A. This allows node A to find the
unassigned IP addresses of coordinator node D by union
of the used and unused IP addresses sent from the
coordinators. Finally, node A will take over these
unassigned IP addresses.

Since the number of nodes in a MANET will grow
gradually, the coordinator will dispatch one IP address
from its available IP-address pool to the newly-joined
node until the IP-address pool is empty. Once the available
IP-address pool of a coordinator is empty, the coordinator
will change its role to that of a common node. When the
coordinator becomes a common node, it will send the
control message erase_coordinator to the C-root and wait
for the control message erase_coordinator_ack which
is the acknowledgement from the C-root. In addition, the
coordinator will broadcast the control message erase_msg
to its neighbouring nodes to notify that it has become
a common node. A summary of the IP-address pools
maintenance is presented in Algorithm 2.

Figure 3 An example of a coordinator D crash in a MANET

Algorithm 2: Maintenance of the IP-address pools

Begin

For the C-root node

Case 1: If the C-root does not receive I_am_alive control
message from a coordinator for a pre-determined period of
time (10 seconds in our simulation), it will assume that the
coordinator has crashed. Then the C-root floods a control
message find_IP to each node in the MANET to collect the
used and unused IP addresses. After a long_time_slot, the
C-root can collect all the used and unused IP addresses from
the coordinators. The C-root will take over the unused IP
addresses of the crashed coordinator.

Case 2: When the C-root receives the c_leave_msg
message, it will delete the coordinator ID from its data
cache.

Case 3: When the C-root receives a control message
erase_coordinator sent by a coordinator, it will delete the
coordinator ID from its data cache and reply a control
message erase_coordinator_ack to the coordinator.

 A distributed IP address assignment scheme in ad hoc networks 15

For coordinators

{Each coordinator sends periodically I_am_alive control
message to the C-root.}

Case 1: If a coordinator attempts to leave the MANET, the
coordinator will send control messages c_leave_msg and
release_IP to the C-root and the closest coordinator,
respectively. The coordinator will turn its power off when it
receives acknowledgements from the C-root and the closest
coordinator.

Case 2: When a coordinator receives a control message
leave_msg from a common node, it will denote the IP
address as free and reply a control message leave_msg_ack
to the common node.

Case 3: When a coordinator receives a control message
find_IP from the C-root, it waits a short_time_slot to collect
the used IP addresses from the neighbouring common
nodes. Then the coordinator sends the collected IP addresses
and its used and unused IP addresses to the C-root.

Case 4: When the available IP address of a coordinator
is empty, the coordinator sends a control message
erase_coordinator to the C-root. When the coordinator
receives the control message erase_coordinator_ack from
the C-root, it will broadcast the control message erase_msg
to notify its neighbours that it is a common node.

Case 5: When a coordinator i receives a control message
release_IP sent from coordinator j, the coordinator i will
take over the unused IP addresses of the coordinator j.

For common nodes

Case 1: If a common node is leaving the MANET, the node
sends a control message leave_msg to its closest
coordinator. The common node will turn its power off when
it receives an acknowledgement from the closest
coordinator.

Case 2: If a common node receives a control message
find_IP from the C-root, it will send its IP address to the
closest coordinator.

Case 3: If a common node receives a control message
erase_msg, the common node will delete this coordinator
from its data cache.

End

In the following, we present how to construct a
virtual C-tree. Each node keeps four parameters,
namely cache_coor_id, up-stream_id, cache_hop and
cache_seq_num in its cache in order to record the shortest
path information from the node to the C-root. The first
parameter, cache_coor_id represents the closest coordinator
which is used to pass to the C-root. The second parameter,
up-stream_id represents the up-stream node to the C-root.
The third parameter, cache_hop represents the number of
hops from the node to the C-root. The last parameter,
cache_seq_num represents the freshness of the received
packet. Initially, the cache of each node = (∞, ∞, ∞, 0).

In the MANET, constructing a virtual C-tree and
maintaining it, requires sending a large amount of control
messages. To reduce the control-message overhead, the
proposed scheme utilises the hello messages for maintaining
the virtual C-tree. In order to construct a virtual C-tree
we put four extra fields in the hello message, including
hop1, coordinator_id, hop2 and sequence_num. The first
parameter hop1 represents the number of hops from the
current node to the coordinator, which is specified in the
second parameter coordinator_id and which is used for
passing information to the C-root. The third parameter
hop2 represents the number of hops from the specified
coordinator to the C-root. Therefore, hop1 + hop2
represents the total number of hops from the node to the
C-root. The parameter, sequence_num represents sequence
number of the sent packet. In the propose scheme, only
C-root can increase the value of sequence_num in each
hello message. The sequence number can be used to detect
whether the C-root has crashed or not. Each node broadcasts
a Cons-tree message that has the extra information of hop1,
coordinator_id, hop2 and sequence_num embedded in the
hello message. Consequently, a virtual C-tree can be
constructed by exchanging hello messages between nodes.

Initially, the C-root broadcasts a Cons-tree message
(0, C-root, 0, 1). Assume that a node i receives a Cons-tree
message (hop1, coordinator_id, hop2, sequence_num) from
node j. If the received value sequence_num > cache_
seq_num node i will let cache_coor_id = coordinator_id,
up-stream_id = j, cache_hop = hop1 + hop2 + 1 and cache_
seq_num = sequence_num. This is means that the received
data is fresher than the data stored in cache. If the received
value sequence_num = cache_seq_num and hop1 +
hop2 + 1 < cache_hop, node i will let cache_coor_id
= coordinator_id, up-stream_id = j, and cache_hop =
hop1 + hop2 + 1. This means that node i has a shorter path
to the C-root via node j than the previous path recording in
its current cache.

In the case of sequence_num = cache_seq_num and
hop1 + hop2 + 1 = cache_hop, node i will let cache_
coor_id = coordinator_id and up-stream_id = j if its
cache_coor_id is the C-root and the received
coordinator_id is not the C-root. This means that when two
paths exist with the same hop count, we will select the
path that has the coordinator as the intermediate node.
This is done in order to relieve the load of the C-root.
In all the above cases, if node i is a common node, it adds
one hop to hop1 and rebroadcasts the Cons-tree message
in the next exchange of a hello message. If node i is a
coordinator, it will set the coordinator_id = i, hop1 = 0, and
hop2 = hop1 + hop2 + 1 and then rebroadcast the Cons-tree
message in the next exchange of a hello message. Node i
will drop the received message if the received value agrees
with sequence_num < cache_seq_num or sequence_num
= cache_seq_num and hop1 + hop2 + 1 > cache_hop.
This way, the virtual C-tree topology will be constructed
gradually by the nodes in the MANET.

Figure 4 is an example of the construction of a C-tree.
When common nodes B and E receive the Cons-tree

16 J-P. Sheu, S-C. Tu and L-H. Chan

message (0, A, 0, 1), both nodes will keep the values
[A, A, 1, 1] in their respective caches and rebroadcast
Cons-tree message (1, A, 0, 1) in the next hello message to
their neighbours. When coordinator C receives the message
(1, A, 0, 1) sent from common node B, it will keep the
values [A, B, 2, 1] in its cache and rebroadcast the Cons-tree
message (0, C, 2, 1) in the next hello message to its
neighbours. As node F receives the message (1, A, 0, 1) sent
from common node E, it will keep the value [A, E, 2, 1] in
its cache and rebroadcast the Cons-tree message (2, A, 0, 1)
in the next hello message to its neighbours. Note that node
D will receive the Cons-tree messages (0, C, 2, 1) and
(2, A, 0, 1) from coordinator C and common node F,
respectively. According to our C-tree construction rules,
node D will adopt the Cons-tree message (0, C, 2, 1),
keep the values [C, C, 3, 1] in its cache and rebroadcast the
Cons-tree messages (1, C, 2, 1) in the next hello message to
its neighbours. As node G receives the message (2, A, 0, 1)
sent from node F, it will keep the values [A, F, 3, 1] in its
cache and rebroadcast the Cons-tree message (3, A, 0, 1)
in the next hello message to its neighbours. Finally,
coordinator H will receive the Cons-tree messages
(1, C, 2, 1) and (3, A, 0, 1) from common nodes D and G,
respectively. Coordinator H will adopt the Cons-tree
message (1, C, 2, 1) and keep [C, D, 4, 1] in its cache and
rebroadcast the Cons-tree messages (0, H, 4, 1) in the next
hello message to its neighbours. A virtual C-tree can be
constructed from the values recorded in the cache of each
node.

Figure 4 An example of a C-tree

Following the construction of the C-tree procedures,
through the hello messages in the MANET the nodes
will gradually construct the virtual C-tree architecture.
Due to the fact that each node in the MANET maintains
the neighbours’ information by means of the hello
messages, each node can cache the shortest path
to the C-root and so form, dynamically, a virtual
C-tree architecture for maintaining IP-address pools.
The virtual C-tree architecture will be dynamically
modified depending on the change in network topology.
The detailed C-tree construction algorithm is presented as
follows.

Algorithm 3: Construct a virtual C-tree

Begin

Initially, the cache (cache_coor_id, up-stream_id, cache_
hop, cache_seq_num) of each node = (nil, nil, nil, 0).

For the C-root node

Step 1: The C-root broadcasts a Cons-tree message
periodically to its neighbours by exchanging
hello messages. The initial value of the message is
(0, C-root, 0, 0). In each of the following broadcasting
messages, the value of sequence_num is increased by one.

For a coordinator

When the coordinator receives a Cons-tree message (hop1,
coordinator_id, hop2, sequence_num) from its neighbour
node j:

Case 1: {cache_seq_num < sequence_num or (cache_seq
_num = sequence_num and hop1 + hop2 + 1 < cache_hop)}
Let cache_coor_id = coordinator_id, up-stream_id = j,
cache_hop = hop1 + hop2 + 1, and cache_seq_num
= sequence_num. Reset the Coordinator_id = i, hop1 = 0,
hop2 = hop1 + hop2 + 1 and sequence_num = cache_
seq_num.

Case 2: {cache_seq_num = sequence_num and hop1 + hop2
+ 1 = cache_hop} Let cache_coor_id = coordinator_id and
up-stream_id = j and reset the coordinator_id = i, hop1 = 0,
and hop2 = hop1 + hop2 + 1 if its cache_coor_id = C-root
but the received coordinator_id ≠ C-root; otherwise, drop
the received Cons-tree message.

Case 3: {cache_seq_num > sequence_num or (cache_seq
_num = sequence_num and hop1 + hop2 + 1 > cache_hop)}
Drop the received Cons-tree message.

After executing one of the above cases, broadcast the
Cons-tree message (hop1, coordinator_id, hop2,
sequence_num) periodically in the next hello message.

For a common node

When the common node receives a Cons-tree message
(hop1, coordinator_id, hop2, sequence_num) from its
neighbour node j:

Case 1: {cache_seq_num < sequence_num or (cache_seq_
num = sequence_num and hop1 + hop2 + 1 < cache_hop)}
Let cache_coor_id = coordinator_id, up-stream_id = j,
cache_hop = hop1 + hop2 + 1, sequence_num = cache_seq_
num, and hop1 = hop1 + 1.

Case 2: {cache_seq_num = sequence_num and hop1 + hop2
 + 1 = cache_hop} If the cache_coor_id = C-root, let
cache_coor_id = coordinator_id, up-stream_id = j, and
hop1 = hop1 + 1; otherwise drop the receiving Cons-tree
message.

Case 3: {cache_seq_num > sequence_num or (cache_
seq_num = sequence_num and hop1 + hop2 + 1 > cache
_hop)} Drop the receiving Cons-tree message.

 A distributed IP address assignment scheme in ad hoc networks 17

After executing one of the above cases, periodically
broadcast the Cons-tree message (hop1, coordinator_id,
hop2, sequence_num) when exchanging the next hello
message.

End

Since the topology of the ad hoc network may change with
time, the C-root must broadcast a Cons-tree message to
maintain the C-tree periodically. The C-root increases
sequence_num by one when a new Cons-tree message is
broadcast to the network. Since the C-root may leave the
MANET or crash suddenly, it will make the network
malfunction. If the C-root attempts to leave the MANET, it
will select the closest coordinator as the new C-root and
send the unused IP address segments to the new C-root.
The new C-root then collects the available IP addresses
from the leaving C-root and floods a message to notify the
other nodes. In addition, the new C-root floods a Cons-tree
message to construct a new virtual C-tree. If the C-root
crash suddenly, the coordinators can detect the event when
they cannot receive a new Cons-tree message after a period
of time t which is the multiple periods of broadcasting a
new Cons-tree message. When a coordinator is aware of the
C-root failed, it will flood a contention_new_root message
including its ID to contend for becoming the new C-root.
Any node receiving one more contention_new_root message
will recognise the coordinator which has a larger ID as the
new C-root. A node will drop the received contention
_new_root message if the received ID is smaller than the
recognised new C-root ID. Finally, only the coordinator
with the largest ID can flood the contention_new_root
message to entire network and all nodes will recognise the
same coordinator as the new C-root. The new C-root
will flood a control message find_IP, which is used in
algorithm 2, to find the unused IP addresses of the crashed
C-root.

4 Simulation results
To evaluate the performance of the proposed IP assignment
scheme, we have developed a simulator, using ANSI C.
The simulation experiments focus on the IP address
allocation latency time, the overhead of control messages
for invoking an IP address by a newly-joined node, and the
IP-address pools maintenance. Simulations are performed
on a MANET, and nodes are moving in random way-point
mobility with the pause-time varying from 2 s to 10 s, and a
moving speed of 1 m/s. In random way-point mobility, a
node travels from a starting point to a randomly chosen
destination. When it reaches its destination it pauses
for a time, then another destination is chosen randomly, and
the same sequence is repeated until the end of the
simulation. The nodes move in a 1000 × 1000 m free space.
The transmission radius of each node is 150 m. The node
which initiates the MANET is named C-root. Each node
broadcasts a hello message to its neighbours in a one second
period as recommended in Mohsin and Prakash (2002).

A node can enter and leave the MANET in a random time.
When a node leaves the MANET, it will release its IP
address to its closest coordinator. A coordinator will send
I_am_alive message to C-root every 10 s periodically.
The long-time-slot and short-time-slot are set in 20 s and
3 s, respectively. The total simulation time is 1500 s.

The control-message overhead and the latency time are
used to evaluate the performance of the proposed scheme.
There are two kinds of control-messages overhead. One is
for invoking the IP addresses and the other one is the
IP-address pools maintenance overhead. Latency is the
waiting time for a new node to get an IP address. We will
compare the performance of our scheme with the scheme
proposed by Mohsin and Prakash (2002). The total available
IP addresses are a class C in IPv4.

The number of coordinators generated in a MANET will
affect the IP-address pools maintenance overhead and the
latency for invoking an IP address. The threshold
value for splitting an IP-address pool will affect the
number of coordinators and the duration of the latency.
Figure 5 shows the IP-address pools maintenance
overhead and the latency time for different thresholds
and network densities under the pause-time = 10 s.
The simulation result shows that a small threshold value
will increase the maintenance overhead, but reduces the
latency time. On the other hand, a large threshold value will
reduce the maintenance overhead but increase the
latency time. In Figure 5 we can see that there is an
intersection between the lines of control overhead and
latency time for each network density. These cross points
are 24, 23, 17 and 16 for the number of nodes 50, 100, 150,
and 200 in a MANET, respectively. We use the middle
value 20 as our threshold for splitting an IP-address pool in
the following simulations.

Figure 5 The pools maintenance overheads and latency time
under various threshold values and number of nodes:
(a) 50; (b) 100; (c) 150 and (d) 200

 (a)

 (b)

18 J-P. Sheu, S-C. Tu and L-H. Chan

Figure 5 The pools maintenance overheads and latency time
under various threshold values and number of nodes:
(a) 50; (b) 100; (c) 150 and (d) 200 (continued)

 (c)

 (d)

Figure 6 compares the control-message overhead of our
scheme to that of the Mohsin and Prakash’s scheme
with pause-time = 10 s under various numbers of nodes.
The control overhead of our proposed scheme includes the
new nodes invoking an IP address and maintaining the
IP-address pools. Due to the IP addresses being a finite
resource, it is necessary to efficiently maintain usable
IP addresses. Our proposed scheme spends the pool
maintenance overhead to avoid missing any IP address.
In the Mohsin and Prakash’s scheme, a new node invokes
an IP address from its neighbours through broadcasting an
IP-request message. The neighbours which have IP
addresses available will send half of their available
IP addresses to the new node. The neighbours which have
no IP address available will flood a message to request
an IP address for the new node. When the new node gets an
IP address from the first replying node, it sends an
acknowledgement to the first replying node. Our scheme
has less control overhead than the Mohsin and Prakash’s
scheme when the number of nodes is larger than 115.

Figure 6 Communication overheads vs. number of nodes

Figure 7 compares the control-message overhead of our
proposed scheme to that of the Mohsin and Prakash’s

scheme with 200 nodes under various mobilities. In our
scheme, the control-message overhead is not affected by the
node mobility. Due to the fact that a new node can get
the information of its closest coordinator through the
hello messages, each node can quickly obtain an IP address
from the coordinator without flooding an IP-request
message. The control-message overhead of the Mohsin and
Prakash’s scheme increases when the node mobility
increases.

Figure 7 Mobility vs. control-message overhead

Figure 8 compares the latency of our scheme to Mohsin and
Prakash’s scheme under pause-time = 10 s. Due to the fact
that our proposed scheme uses the hello messages to get the
information of the coordinators, the latency depends on the
time it takes to exchange hello messages and the number of
neighbours of a new node. As the network density of a
MANET increases, it decreases the latency for a new node
to obtain the coordinator information from its neighbouring
nodes. The simulation result shows that increasing the
number of nodes reduces the latency in our proposed
scheme. Mohsin and Prakash’s scheme will increase the
latency as the number of nodes increase. This is because a
new node has a higher probability of getting an IP
address from its farther neighbours as the network density
increases.

Figure 8 Latency time vs. number of nodes

Figure 9 presents the latency under various node
mobilities and network densities. It is evident that higher
node mobility has longer latency in all network densities.
There are two factors which affect latency. The first is the
time it takes for exchanging hello messages. Because each
node gets the information about its coordinator by
exchanging hello messages, the shorter the period of
exchanging hello messages the shorter the latency. When

 A distributed IP address assignment scheme in ad hoc networks 19

the time period for exchanging hello messages is fixed, high
node mobility will cause a high probability of incorrect
cache information stored in the nodes, which leads to
additional overhead of invoking an IP address. The second
factor is the node density in a network. As the number of
nodes in a network increase, it decreases the latency.
In addition, the simulations show that the latency increases
slightly as the node mobility increases in various network
densities.

Figure 9 Node mobility vs. latency time

Figure 10 presents the average hop counts under various
node mobilities and network densities. The average hop
counts are the average hops from each node to its closest
coordinator. The simulation result shows that higher
network densities have lower average hop counts in all
kinds of node mobilities. Because our proposed scheme can
create a new coordinator from its closest coordinator in
three hops, the average hop count is smaller than two hops.

Figure 10 Hop counts vs. pause-time

5 Conclusions
In this paper, we presented a distributed IP address
assignment scheme. The proposed scheme uses the
distributed coordinators to assign IP addresses for the
newly-joined nodes, and constructs a virtual C-tree to
maintain the IP-address pools. A newly-joined node can
know the closest coordinator by exchanging hello messages
and invoking an IP address from the coordinator by
unicast-communication, without flooding the network.
A new coordinator evolves from its closest coordinator if
the distance between them is larger than two hops.
Each coordinator will report its alive status periodically to
the C-root in order to maintain the IP-address pool.
If a node attempts to leave the MANET, it will release its IP

address to its closest coordinator, and the coordinator will
keep the available IP addresses in its pool.

We used simulations to demonstrate the performance of
our scheme. The simulation results demonstrated the
control-message overhead, latency time, average hop counts
to a coordinator, and the threshold value of splitting an
IP-address pool. The result shows that a small threshold
value increases the maintenance overhead but reduces the
latency. A middle value, 20, was adopted in our simulations.
The total control-messages overhead of our scheme are less
than Mohsin and Prakash’s scheme when the number of
nodes is larger than 115. The simulation also shows that
the latency of our scheme decreases as the number of
nodes increase in a network. On the contrary, the latency
of Mohsin and Prakash’s scheme increases as the number of
nodes increases.

Acknowledgements
This work was supported by the National Science
Council of the Republic of China under Grants NSC
93-2213-E-008-001 and NSC 93-2752-E-007-003-PAE.

References
Chakeres, I.D. and Belding-Royer, E.M. (2002) ‘The utility of

hello messages for determining link connectivity’,
Proceedings of the International Symposium on Wireless
Personal Multimedia Communications, Hawaii, USA,
October, pp.504–508.

Clausen, T., Jacquet, P., Laouiti, A., Mulethaler, P., Qayyum, A.
and Viennot, L. (2001) ‘Optimized link state routing
protocol’, Proceedings of IEEE International Multitopic
Conference, Lahore, Pakistan, December, pp.62–68.

Droms, R. (1997) ‘Dynamic host configuration protocol’, Network
Working Group – RFC 2131, March.

Mcauley, A. and Manousakis, K. (2000) ‘Self-configuring
networks’, Proceedings of Military Communications
Conference, Los Angeles, CA, USA, October, pp.315–319.

Misra, A., Das, S., Mcauley, A. and Das, S.K. (2001)
‘Autoconfiguration, registration, and mobility management
for pervasive computing’, IEEE Personal Communications
Systems Magazine, Vol. 8, August, pp.24–31.

Mohsin, M. and Prakash, R. (2002) ‘IP address assignment in a
mobile ad hoc network’, Proceedings of Military
Communications Conference, California, Vol. 2, October,
pp.856–861.

Nesargi, S. and Prakash, R. (2002) ‘MANETconf: configuration of
hosts in a mobile ad hoc network’, Proceedings of the IEEE
Conference on Computer Communications, New York, USA,
Vol. 2, June, pp.23–27.

Ogier, R.G., Templin, F.L., Bellur, B. and Lewis, M.G. (2002)
‘Topology broadcast base on reverse-path forwarding’,
Mobile Ad Hoc Networking Working Group, March, Internet
Draft.

Ojeda-Guerra, C.N., Armas-Hidalgo, V. and Alonso-González, I.
(2005) ‘A new approach to merge partitions in an ad hoc
wireless network based on an updating of DHCP’,
Proceedings of the 13th Euromicro Conference on Parallel,
Distributed and Network-Based Processing, Lugano,
Switzerland, February, pp.144–151.

20 J-P. Sheu, S-C. Tu and L-H. Chan

Park, J-S., Kim, Y-J. and Park, S-W. (2002) ‘Stateless
address autoconfiguration in mobile ad hoc networks using
site-local address’, Mobile Ad Hoc Networking Working
Group, January, Internet Draft.

Perkins, C.E., Malinen, J.T., Wakikawa, R., Belding-Royer, E.M.
and Sun, Y. (2001) ‘IP address autoconfiguration for
ad hoc networks’, Mobile Ad Hoc Networking Working
Group, November, Internet Draft.

Perkins, C.E., Belding-Royer, E.M. and Das, S. (2002) ‘Ad hoc
OnDemand Distance Vector (AODV) routing protocol’,
Mobile Ad Hoc Networking Working Group, January, Internet
Draft.

Vaidya, N.H. (2002) ‘Weak duplicate address detection in mobile
ad hoc networks’, Proceedings of ACM International
Symposium on Mobile Ad Hoc Networking and Computing,
Lausanne, Switzerland, June, pp.206–216.

Weniger, K. and Zitterbart, M. (2002) ‘IPv6 autoconfiguration
in large scale mobile ad-hoc networks’, Proceedings of
European Wireless, Florence, Italy, Vol. 1, February,
pp.142–148.

Zhou, H., Ni, L.M. and Mutka, M.W. (2003) ‘Prophet address
allocation for large scale MANETs’, Ad Hoc Networks
Journal, Vol. 1, No. 4, November, pp 423–434.

