
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Pair-wise path key establishment in wireless sensor networks

Jang-Ping Sheu *, Jui-Che Cheng

Department of Computer Science and Information Engineering, National Central University, Jhongli 32054, Taiwan, ROC

Available online 5 May 2007

Abstract

When sensor networks deployed in unattended and hostile environments, for securing communication between sensors, secret keys
must be established between them. Many key establishment schemes have been proposed for large scale sensor networks. In these
schemes, each sensor shares a secret key with its neighbors via preinstalled keys. But it may occur that two end nodes which do not share
a key with each other could use a secure path to share a secret key between them. However during the transmission of the secret key, the
secret key will be revealed to each node along the secure path. Several researchers proposed a multi-path key establishment to prevent a
few compromised sensors from knowing the secret key, but it is vulnerable to stop forwarding or Byzantine attacks. To counter these
attacks, we propose a hop by hop authentication scheme for path key establishment to prevent Byzantine attacks. Compared to conven-
tional protocols, our proposed scheme can mitigate the impact of malicious nodes from doing a Byzantine attack and sensor nodes can
identify the malicious nodes. In addition, our scheme can save energy since it can detect and filter false data not beyond two hops.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Byzantine attacks; Path key establishment; Security; Wireless sensor networks

1. Introduction

Security is an important requirement in many sensor
network applications, especially in unattended and often
hostile environments such as battlefield surveillance,
friendly forces monitoring, and biological attack detection.
Since wireless sensor networks are much easier for an
adversary to eavesdrop any packet transmitted on the
channel, it is necessary for two neighboring nodes to share
a secret key to encrypt sensitive data and authenticate peer-
to-peer communication. Furthermore, sensor nodes are
typically small battery-equipped devices with very limited
communication, computation, and memory capacity. Tra-
ditional key establishment techniques like public key cryp-
tosystem (e.g. RSA) [20,23] are impractical.

One practical solution is key pre-distribution, in which
keys have to be installed onto sensors before deployment
so that nodes can use shared keys to conduct secure com-
munication. Using the key pre-distribution scheme to

establish a secret key has two extreme examples. One exam-
ple is where each sensor node is preloaded with N � 1 pair-
wise keys before deployment, such that it shares with any
node a secret key, where N is the number of nodes in the
networks. This scheme offers the most security since no
key information will be known between sensor pairs from
a compromised node. However, this scheme is not suitable
for large networks, since a sensor may need to store thou-
sands of keys, which increase linearly with network size.
The other extreme example is where all sensor nodes use
the same master key in the network. The advantage of this
scheme is that a sensor node needs only a master key
regardless of the network size. However, this scheme suffers
low security, since if one of the sensor nodes is compro-
mised, the communication of the entire network will be
known.

To overcome the disadvantage of the above schemes,
several key pre-distribution schemes have been recently
proposed [1–10]. The Random Key Pre-distribution
scheme (RKP) was first proposed in [1] for large-scale
sensor networks. In this scheme, each node randomly picks
m keys from a large key pool, such that any two sensor
nodes will share at least one common key with a certain

0140-3664/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2007.04.021

* Corresponding author. Tel.: +886 3 4227151.
E-mail address: sheujp@csie.ncu.edu.tw (J.-P. Sheu).

www.elsevier.com/locate/comcom

Computer Communications 30 (2007) 2365–2374

Author's personal copy

probability. The q-composite key pre-distribution scheme
[2] requires two sensors that share at least q (q > 1) pre-dis-
tributed keys in order to establish a common key. This
improves resilience against node capture attacks. However,
both schemes [1,2] are vulnerable to nodes compromise
attack because a small number of compromised nodes
may expose a large fraction of common keys between the
non-compromised nodes. The Threshold-Based Key Pre-
distribution (TBKP) techniques were developed in [3,4] to
improve [1,2] drawback. After the sensor nodes are
deployed, a unique pair-wise key can be established
between any pair of neighboring nodes. When the number
of compromised sensors becomes less than a threshold, any
other keys shared between non-compromised sensors will
not be affected. Key pre-distribution schemes based on
knowing sensor deployment knowledge were proposed in
[5–9]. This deployment knowledge can further reduce mem-
ory requirement of sensor nodes and enhance network
resilience against node compromises. The PIKE scheme
proposed in [10] addressed the problem of high density
deployment requirements in RKP and TBKP. Multi-path
pair-wise key establishment protocols [2,11–13,19] were
proposed to enhance path-key establishment security by
preventing compromised sensor nodes on the single com-
munication path from knowing the established pair-wise
key.

The path key exposure problem was introduced in [8].
The problem described a scenario when nodes without a
common key to other nodes in the network are required
to establish a key through a secure path. So a path key will
be used to establish a secret key between two nodes, path
key means that key is transmitted using secure communica-
tion channel through one or more sensor nodes. However,
a secret key may be exposed if one of the nodes along the
path is compromised. Some multi-path key establishment
protocols were proposed in [2,11–13,19] to solve the path
key exposure problem. Establishing a path key by multiple
secure paths can significantly decrease the risk of the path
key being revealed between a source node and a destination
node. But these schemes still have some drawbacks. Since
adversaries can launch various inside attacks, they can
compromise sensor nodes in any one of multi-paths. For
examples, they might alter, spoof, or drop information to
disrupt the normal operation of the sensor network. More-
over, adversaries may inject bogus data into the network to
consume scarce network resources. So far, these proposed
schemes cannot detect and identify the malicious behavior
nodes.

In this paper, we propose a pair-wise path key establish-
ment scheme through a multi-path approach to improve
the security of path key establishment. In our scheme, a
secret key K is partitioned into m key segments by a source
node and then is sent to a destination through n node-
disjoint paths. A destination node can receive enough key
segments to reconstruct the secret key K. So even if a small
number of nodes are compromised, the secret key as a
whole is not compromised. Besides, a hop by hop authen-

tication method is used to detect false key segments and
malicious nodes in each node disjoint path. We designed
this scheme to filter bogus traffic injected by adversaries
during early transmission stages and to save precious
energy. We show through analysis that our scheme is
highly secure against node capture, and outperforms other
schemes when preventing various attacks in wireless sensor
networks.

The rest of this paper is organized as follows. Section 2
introduces related work and background knowledge used
in the paper. Section 3 presents our protocols. Section 4
compares the performance of our protocol with previous
work. Section 5 concludes this paper.

2. Related work

Recently, path key establishment schemes, which send
key segments with multiple paths have been proposed in
[12,13,19]. These schemes use multiple physical paths or
logical paths forwarding. This way, they aim to reduce
the secret key from being known when a compromised
node is on the paths. However, when a malicious node
modifies or stops forwarding the key value, these schemes
fail to obtain the original value. The authors in [12] pro-
posed end-to-end pair-wise key establishment using multi-
ple node-disjoint paths. Assuming that node u needs to
set up a pair-wise key with another node v. Firstly, node
u finds n node-disjoint paths to v. Secondly, node u selects
a key K and divides it into n segments, such that
K = K1 [K2 [K3 [� � � [Kn. Then node u sends Ki

through the ith secure path to node v. When node v receives
all n segments of the key K, it can reproduce the key K and
use it to secure communication with node u.

Another end-to-end key establishment scheme was pro-
posed in [13]. Assuming that node u wants to set up a path
key to node v. Firstly, u sends out its key ID list to v.
Secondly, v constructs a key K and cuts it apart into n

segments K1,K2, . . . , and Kn. Then v broadcasts
requested-to-proxy packets containing the key ID lists of
node u and node v to the network. Each proxy node exam-
ines the key ID lists to see if it shares keys with both u and
v. If the proxy node shares secret keys with nodes u and v, it
responds to v with a share key ID used to communicate
with v. If the proxy node does not share any keys with
nodes u and v or if it has received the same packet request
from v, it forwards this request to a random neighbor other
than the sender. When node v receives n replies from prox-
ies, it transmits the n key segments to u via the n proxies
with secure communications. When node u receives all n

segments, node u can reconstruct the original key K. This
scheme uses multiple proxies to help against node capture
as the secret key is transmitted between the source node
and destination node. However, it may transmit secret
shares on the same physical path and there still exists the
risk if the captured node sits on the intersect point of sev-
eral paths between these proxies and drops all the key
shares passing through it. Moreover, it cannot prevent stop

2366 J.-P. Sheu, J.-C. Cheng / Computer Communications 30 (2007) 2365–2374

Author's personal copy

forwarding attacks and it cannot detect malicious behavior
nodes.

In [19] the authors proposed a scheme that does not
require a source node to discover n node-disjoint paths to
the target node. It is used to add edges in the key graph
such that there are n logical paths between source and tar-
get nodes. After that, key establishment is straightforward.
The drawback of this scheme is that if the two nodes which
want to establish a key are too far from each other, the
intermediate nodes need to recursively establish more tem-
porary keys. This method adds a lot of extra communica-
tion overhead and energy consumption. Furthermore,
when the source node sends key segments, routing will
use the same physical path to send the key shares. So a
malicious node on the path can drop the packets, and this
protocol cannot prevent the stop forwarding and Byzantine
attacks [22].

The authors in [10] used a key pre-distribution scheme
called PIKE to achieve the path key establishment. PIKE
can guarantee that any two nodes in a network always
share a key with an intermediary node. This intermediary
node is then used to establish a path key between the two
nodes. But this approach makes a large fraction of neigh-
boring sensor pairs that do not share preloaded keys, and
thus they need to establish path keys. Consequently, the
PIKE scheme involves a relatively high communication
overhead, making it unsuitable for large sensor networks.
In [14] the authors proposed a group-based key establish-
ment scheme to reduce the communication overhead of
the scheme proposed in [10]. However, in both schemes
the secret key does not split up, so the intermediary nodes
may be able to know the secret key.

All the above schemes are vulnerable for stop forward-
ing and Byzantine attacks. When a compromised node
alters the key shares on the path, the false secret share will
not filter and will continue forwarding to the destination.
This may cause energy consumption on the path, and the
receiver might get false shares. Moreover, they can not
detect malicious nodes, so a malicious behavior node can
do anything on the network.

In this paper, we adopt the secret sharing scheme [15]
and one-way hash chains [24] to help our scheme against
the above attacks. A (t, n) threshold secret sharing scheme
is a method of dividing a secret s into n shares s1, s2, . . . , sn,
such that the knowledge of any t or more shares makes the
secret s easily computable, but knowledge of t � 1 or less
shares does not reveal any information about the secret s,
where t is the threshold of the scheme. It is possible that,
after compromising a node, the adversary may attempt to
cheat our system by sending us faked or altered message
shares. The secret sharing scheme has the ability of cheater
detection and identification in secret share. By embedding
the cheater detection and identification scheme [17], we
can avoid reconstructing false message. One-way hash
chains are used to generate a key chain of length n + 1,
where the first element of the chain h0 is randomly picked,
and the chain is generated by repeatedly applying a one-

way hash function H. The function H should be simple
to compute but must be computationally infeasible to
invert in general. Any key hj can be verified from hi

(1 5 i < j 5 m) to be indeed an element in the chain by
repeatedly applying H for j � i times, so that hj = Hj�i(hi).

3. Pair-wise path key establishment protocol

This section presents our path key establishment
scheme. Our protocol is aimed to prevent active attacks
such as the stop forwarding and Byzantine attacks that
adversaries may use the compromised nodes to alter mes-
sages and prevent the key establishment. We need an
authentication mechanism to prevent the active attacks.
Our protocol consists of two phases. The first phase runs
a group-based key pre-distribution scheme. The nodes are
partitioned into a number of groups. The nodes within a
same group have shared unique pair-wise keys and a frac-
tion of pair-wise keys with their neighboring groups. Thus,
pair-wise key establishment between two neighboring sen-
sor nodes require only checking if they are from the same
group, and locally establish a key when they are in neigh-
boring groups. After the end of this phase, an arbitrarily
pair of neighboring nodes in the network will have a high
probability for sharing a secret pair-wise key. The second
phase does the end to end pair-wise key establishment if
a pair of nodes is a multi-hop away and wants to establish
a share key. Firstly, the two communicating end nodes
establish a number of node-disjoint paths. Secondly, each
node establishes a separate secret shared key with its
2-hop neighbors in the path. Thirdly, the source node dis-
perses a pair-wise key into a number of pieces and sends
them to different paths to the destination node. After, we
use the hop by hop authentication method to prevent Byz-
antine attacks and use the scheme like TWOACK [17] to
prevent stop forwarding attacks.

The presented protocol can detect a malicious node
when it alters the data and discard the false data, which
can avoid exhaust the precious energy of relaying nodes
on any forwarding path. Our key establishment method
has perfect resilience against node compromises since the
pair-wise keys are built between two individual nodes.
No matter how many nodes are compromised, adversaries
will know nothing about the keys shared between non-
compromised nodes. Thus, the non-compromised node
links always remain secure. If we use a unique pair-wise
key between two neighboring nodes, we can also use the
pair-wise key as a node to node authentication [2] method.
This ensures that the compromised node cannot imperson-
ate its neighbors to other nodes.

3.1. Key pre-distribution scheme with deployment knowledge

In the following, we describe our key pre-distribution
scheme with deployment knowledge. The deployment
knowledge can tell us what local area a sensor node is more
likely to appear in and what sensor nodes are more likely to

J.-P. Sheu, J.-C. Cheng / Computer Communications 30 (2007) 2365–2374 2367

Author's personal copy

be its neighbors. With the help of deployment knowledge,
we can achieve a higher degree of connectivity with a lower
memory requirement. In this paper, we assume that N

nodes are uniformly deployed to an arbitrary two-dimen-
sional sensing field Sf. This sensing field can be divided into
g = a · b small hexagonal grids. Let each small grid denote
as z(x,y), for 1 5 x 5 a and 1 5 y 5 b. Let G(x y) denote as
a group of sensors randomly deployed in grid z(x,y). Each
group has c = N/g sensors. The group G(x,y) includes sen-
sors with IDs from c((x � 1)b + y � 1) + 1 to

c((x � 1)b + y). N ¼ [
ða;bÞ

ðx;yÞ¼ð1;1Þ
Gðx;yÞ. For example, if each

group has 100 sensor nodes, a = 10, and b = 5, the group
G(2,3) has the sensor nodes with IDs from 701 to 800.
Fig. 1 shows a number of sensor nodes uniformly distrib-
uted in 12 hexagonal grids with deployment knowledge.
In our scheme, we partition a sensor field into hexagonal
grids and design our key pre-distribution with hexagonal
deployment knowledge. To maintain the same key connec-
tivity, the key pre-distribution with deployment knowledge
should have less pair-wise keys in each node than that of
the scheme without deployment knowledge. Using the hex-
agonal deployment knowledge to design the key pre-distri-
bution scheme idea first is used in [7,8].

Before the sensor nodes are deployed, we preload each
pair of sensors in the same group with a unique pair-wise
key. Thus, each sensor is required to be preloaded with
c � 1 pair-wise keys shared with the same group. Besides,
each sensor node in a group has probability ps which has
a pair-wise key with the sensor nodes in its adjacent groups.
Therefore, each sensor node needs to preload 6 Æ c Æ ps pair-
wise keys shared with the sensors in its adjacent groups.
Furthermore, we use the method in [10] to reduce the mem-
ory requirement by a factor of two, i.e., the total memory
overhead per sensor is M ¼ d1

2
ðc� 1Þe þ d1

2
ð6 � c � psÞe.

For example, assume there are 104 nodes uniformly

deployed to 100 hexagonal grids over a 103 · 103 m2 area
and ps = 0.5. Then each node needs to store
d1

2
ð100� 1Þe þ d1

2
600 � 0:5e ¼ 200 pair-wise keys. Based

on the above key pre-distribution scheme, a group of nodes
are deployed in a small local area such that most neighbors
of a node come from its own group or neighboring groups
and has a high probability of shared keys.

After preloading keys in each node and distributing the
nodes in the sensing field, each node broadcasts its ID and
Group ID to its one-hop neighbors by searching for shared
keys. If two neighboring nodes find that they have no pair-
wise keys, they can establish a pair-wise key as follows.
Suppose node A has no pair-wise key with its neighbor B,
node A can try to establish a pair-wise key with node B as
follows. Firstly, nodes A and B exchange the IDs of neigh-
boring nodes which have pair-wise keys with them. Once
they identify the common neighbors which share a key with
both nodes A and B, a pair-wise key is established through
these common neighbors. We name these common neigh-
bors as assistance neighbors. If the number of assistance
neighbors n = 3, node A generates a path key KA,B with a
(t,n) secret sharing mechanism which partitions KA,B into
n key segments such that KA,B can be computed from any
t of n key segments. A then routes the n key segments
through n assistance neighbors to B. When B receives more
than t key segments, the path key KA,B can then be con-
structed by B. After each node has tired to establish a
pair-wise key with its neighbors if possible, we can then
establish an end-to-end path key in the next subsection.

3.2. Multiple paths end-to-end pair-wise path key

establishment

To solve the end-to-end path key establishment prob-
lem, we have the following assumptions. Assuming source
node S and destination node D are not captured and the

G(1,1)

G(3,4)G(3,3)G(3,2)G(3,1)

G(2,4)G(2,3)G(2,2)G(2,1)

G(1,4)G(1,3)G(1,2)

Z (1,1)

Z (3,3)Z (3,2)Z (3,1)

Z(2,4)Z (2,3)Z(2,2)Z (2,1)

Z (1,4)Z (1,3)Z (1,2)

Z (3,4)

Fig. 1. Group-based key pre-distribution.

2368 J.-P. Sheu, J.-C. Cheng / Computer Communications 30 (2007) 2365–2374

Author's personal copy

communication channels are bidirectional, i.e. if a node u

can receive a message from v, it can also send a message
to v. We further assume that the sensor nodes are deployed
in high density. Here, we consider the following cases for
the end-to-end path key establishment. If S and D are in
the same group, they can use their pair-wise key as the path
key. If S and D belong to different groups which do not
share keys with each other, they can establish a path key
as follows. S first finds n node-disjoint paths to D. Then
S splits the secret pair-wise key K into n segments and sends
each segment to different node-disjoint paths with our hop
by hop authentication protocol. We describe the details of
the end-to-end path key establishment as follows.

Step 1: If node S wants to establish a key with node D,
node S must generate a one-way hash key chain before
finding the node-disjoint paths. To create a one-way hash
chain, S chooses a random value x and computes the list
of values h0,h1,h2, . . . ,hm, where h0 = x and hi = H(hi�1),
for 0 < i 5 m. We denote h1,h2, . . . , and hm as hash keys.
A node-disjoint routing protocol [18] is used to find
node-disjoint paths. In this protocol, we include hm in route
request messages (RREQ). Each node may receive many
RREQ packets with different values of the nth hash key
hm if there exist a few malicious nodes which can forge false
data. The majority rule is used to determine the nth hash
key hm. When the node-disjoint paths between S and D

are found [18], the destination node D selects n node-dis-
joint paths and sends route reply messages (RREP) to dif-
ferent node-disjoint paths. Because the node IDs of the
entire path are included in the RREP, each intermediate
node of each path receiving an RREP packet will record
the next one-hop and next two-hop neighboring nodes in
its routing table. Besides, each intermediate node will check
to see if it has a pair-wise key with its next two-hop node. If
it doest not have a pair-wise key with its next two-hop
node, the intermediate node will establish a two-hop path
key by using a multiple paths and secret sharing scheme.
Note that, this situation will only happen to the neighbor-
ing groups.

For example, consider six nodes S, A, B, C, E, and D,
which is one of the node-disjoint paths between nodes S

and D as shown in Fig. 2. Node D generates a RREP
packet that contains the nodes list of the routing path
and sends it along the reverse routing path. Each inter-
mediate node, which receives a RREP packet, will record
its next hop node and next two-hop node in its routing
table. Then each intermediate node can check if it has
a pair-wise key with its next hop and next two-hop neigh-
boring nodes.

Step 2: After finding the n node-disjoint paths, the
source node divides the path key KS,D = SK1 [
SK2 [� � � [SKn. Node S sends each key segment SKi,
1 5 SKi 5 n through the ith secure node-disjoint path.

Step 3: In each path transmission of key segment to des-
tination D, we use the hop by hop authentication method
to ensure that the key segments are correctly received by
the destination node.

Step 4: Upon receiving t or more key segments, node D

can rebuild the path key KS,D. Thus node D can securely
communicate with node S with key KS,D. For example, in
Fig. 2, there are four secure node-disjoint paths, and node
S sends the key shares through these paths. If the (3,4)
secret sharing scheme is adopted, node D can rebuild key
KS,D when it receives three or four key segments.

The details for the hop by hop authentication scheme
are described as follows. We assume a misbehaving node
always returns an acknowledgement to its preceding two-
hop neighbor when it receives data packets successfully
from its two-hop neighbor. If a misbehaving node refuses
to send an acknowledgement packet to its preceding two-
hop neighbor, our scheme can detect a malicious link.
When an intermediate node on a path receives a message,
it will not know whether the received message is altered
or not. Moreover, we should prevent forged message from
forwarding to destination. We can detect and identify those
who alter the message by running a malicious node detec-
tion and identification phase. The basic idea of malicious
node detection is let an intermediate node receive messages
from its previous one-hop and two-hop neighbors. After,
the intermediate node can verify the consistence of the mes-
sage sent from its one-hop and two-hop neighbors. If both
messages have the same value, the intermediate node will
forward the received message to its next one-hop and
two-hop nodes. If the received data are different, we can
know that one of its preceding one-hop and two-hop nodes
is a malicious behavior node, and the data will not be
forwarded.

When an intermediate node detects an inconsistent in
data received from its one-hop and two-hop neighbors,
the intermediate node sends out a key disclosed request
to the source node for the authentication of the key seg-
ment using a hash key hm�1. The source node does a hash
key disclosure procedure and replies the hash key to the
intermediate node. When the intermediate node receives
the hash key, it will be able to verify who altered the
message. Assuming the source node S sends the ith key seg-
ment SKi along the ith node-disjoint path to destination D.
Let Ki,j = Kj,i be the share key of nodes i and j. A plaintext

KSD1

KSD1 KSD1 KSD1

KSD2

KSD2 KSD2 KSD2

KSD2

KSD1

KSD3 KSD3 KSD3
KSD3 KSD3

KSD4

KSD4 KSD4
KSD4

KSD4

A

J

IHGF

ECB

ON

MLK

QP

S D

Fig. 2. An example of multi-path key establishment with the (3,4) secret
sharing scheme.

J.-P. Sheu, J.-C. Cheng / Computer Communications 30 (2007) 2365–2374 2369

Author's personal copy

encrypted by a key K is denoted as K{plaintext}. In the
malicious behavior node detection phase, we have the fol-
lowing three steps:

Step 1: Assuming nodes A and B are the next one-hop
and two-hop neighbors of source node S. Node S sends a
key segment SKi through the ith node-disjoint path. To
detect a malicious node, the key segment SKi includes the
message authentication code (MAC) [25] denoted as
MAChm�1

fSKig, which is calculated by the (m � 1)th one-
way hash key hm�1. Node S encrypts SKi and
MAChm�1

fSKig with pair-wise keys KS,A and KS,B

and denoted as KS;AfSKi;MAChm�1
fSKigg and KS;BfSKi;

MAChm�1
fSKigg, respectively. Then, node S sends

KS;AfSKi;MAChm�1
fSKigg and KS;BfSKi;MAChm�1

fSKigg to
nodes A and B, respectively. Note that, each sender uses
the MAC mechanism to let the receiver verify whether
the message is sent from the sender. It also detects changes
in the message. Since node S cannot reach node B directly,
node A will relay the messages KS;BfSKi;MAChm�1

fSKigg to
node B.

Step 2: When node A receives the encrypted message, it
will decrypt the message KS;AfSKi;MAChm�1

fSKigg with
pair-wise key KS,A. Assuming node C is the next two-hop
neighbor of node A, node A encrypts the messages SKi and
MAChm�1

fSKig using pair-wise keys KA,B and KA,C denoted
as KA;BfSKi;MAChm�1

fSKigg and KA;CfSKi;MAChm�1
fSKigg,

respectively. Then, node A forwards the messages
KA;BfSKi;MAChm�1

fSKigg and KS;BfSKi;MAChm�1
fSKigg to

node B and KA;CfSKi;MAChm�1
fSKigg through node B to

node C.
Step 3: When node B gets the messages from node A, it

decrypts the message KA;BfSKi;MAChm�1
fSKigg and

KS;BfSKi;MAChm�1
fSKigg with pair-wise keys KA,B and

KS,B, respectively. If both decrypted messages have the
same value of SKi, node B will encrypt the messages SKi

and MAChm�1
fSKig with the pair-wise keys of its next one-

hop and two-hop nodes and, forward the encrypted mes-
sages to them. The above procedures occur continuously
until the encrypted messages arrived at the final destination

D. However, if the decrypted values of SKi are different,
node B stops forwarding the key segment SKi and executes
the malicious identification phase. In the above scenario,
node B can judge if node A is a malicious node directly
since source node S is a trust uncompromised node.

In the following, we assume an intermediate node E
receiving two different key values SKi from its preceding
one-hop node C and two-hop node B. Node E then exe-
cutes the following steps to identify which among nodes
C and B is the malicious one.

Step 1: Node E sends a key disclosure request ReqKey to
source node S through two different paths, the odd path
and the even path. The odd (even) path is a path traveling
through an odd (even) number of hops back to the source
node. An example is shown in Fig. 3(a). The ReqKey mes-
sage is encrypted by pair-wise keys of senders and receivers.
For example, in Fig. 3(a), the ReqKey is encrypted by KE,C

and KE,B and sends to nodes C and B, respectively. When
node C receives KE,C{ReqKey}, it decrypts the KE,C{Req-

Key} message and encrypts it using KC,A then forwards
the encrypted ReqKey to its two-hop neighbors A. Note
that, a node forwarding a message to its two-hop neighbor
need to pass through its one-hop neighbor. Finally, the
source node receives two ReqKey messages from the odd
and even paths. If there is only one malicious node in a
node-disjoint path, the source node eventually will receive
at least one correct ReqKey message.

Step 2: When the source node receives ReqKeys from the
odd and even paths, it then sends the key hm�1 through the
odd and even paths back to the requested node E. The way
of sending key hm�1 back to the requested node is same as
sending ReqKey to the source node. An example is shown
in Fig. 3(b). When node E receives the hm�1 key, it checks
to see if this key is from the source node by executing func-
tion H(hm�1) = hm, where hm was received in the establish-
ment of node-disjoint paths. If the key is verified as sent
from the source node, it can verify the received key seg-
ments with hash key hm�1. Firstly, node E computes the
MAC on the key segment sent from node B using the

Fig. 3. An example of key disclosure procedure through the odd path (the dot dash line) and the even path (the dash line) forwarding. (a) Node E sends a
ReqKey to node S. (b) Node S sends hm�1 key to E.

2370 J.-P. Sheu, J.-C. Cheng / Computer Communications 30 (2007) 2365–2374

Author's personal copy

key hm�1, and checks to see if the computed result is equal
to the received MAChm�1

fSKig. If it is match, the key seg-
ment received from node B is correct. Otherwise, node B

is a malicious node. Similarly, we can identify node C in
the same way. If there is only one misbehaving node, we
can isolate it and exclude it from the network.

We summary our end-to-end key establishment protocol
as follows:

Algorithm: End-to-End key Establishment Protocol

Assuming nodes S and D want to establish a pair-wise path
key KS,D.

Initially: Source node S generates a one-way hash chain
h1,h2, . . . ,hm. Then a node-disjoint routing protocol is
used to find n node-disjoint paths from S to D. Each
intermediate node on the node-disjoint paths will keep
the nth hash value hm.

For source node S:
Step 1: The source node splits the end-to-end path key KS,D

into n key segments, SKi, for 1 5 i 5 n.
Step 2: Assuming the ith node-disjoint path consists of

nodes S,a1,a2, . . . ,am, and D. The source node encrypts
the ith key segment SKi with the pair-wise keys of its one-
hop and two-hop neighbors denoted as KS,a1{SKi} and
KS,a2{SKi}.

Step 3: On the ith node-disjoint path, the source node will
send the KS;a1fSKi;MAChm�1

fSKigg and
KS;a2fSKi;MAChm�1

fSKigg messages to its next one-hop
and two-hop neighbors. To achieve two-party
authenticity and data integrity, we use a message
authentication code (MAC). The following notations are
used to denote the messages send from the source to its
next one-hop and two-hop neighbors, respectively.

S! a1 : KS;a1fSKi;MAChm�1
fSKigg;

MACKS;a1
fKS;a1fSKi;MAChm�1

fSKiggg

S! a2 : KS;a2fSKi;MAChm�1
fSKigg;

MACKS;a2
fKS;a2fSKi;MAChm�1

fSKiggg
Step 4: If source node receives ReqKey from the odd and

even paths, it encrypts the undisclosed hash key hm�1

with its next one-hop and next two-hop pair-wise key and
forwards the encrypted message to the requested node
through the reverse odd and even paths.

For each intermediate node aj (1 5 j 5 m):
Step 1: If the received messages from its preceding one-hop

and two-hop neighbors are consistent, it forwards the
received messages to its next one-hop and two-hop
neighbors. The messages forwarding are listed as follows.

aj! ajþ 1 : Kaj;ajþ1fSKi;MAChm�1
fSKigg;

MACKaj;ajþ1
fKaj;ajþ1fSKi;MAChm�1

fSKigg

aj! ajþ 2 : Kaj;ajþ2fSKi;MAChm�1
fSKigg;

MACKaj;ajþ2
fKaj;ajþ2fSKi;MAChm�1

fSKigg

Step 2: If the received data from its preceding one-hop and
two-hop neighbors are inconsistent, the intermediate
node aj encrypts a ReqKey message with its preceding
one-hop and two-hop neighbors’ pair-wise keys, and
sends the encrypted ReqKey to the source node via the
odd path and even path.

Step 3: When the intermediate node receives the disclosed
hash key hm�1, it verifies whether the key is sent from the
source node by checking H(hm�1) = hm. If the key is
verified as sent from the source node, the intermediate
node can identify who is a malicious node by computing
the MAC of key segment with the hash key hm�1.

For destination node D:
Step 1: When the destination node receives two encrypted

messages from its previous one-hop and two-hop
neighbors, it will check if the received messages are
consistent. If both messages are consistent, node D will
accept the key segment. Otherwise, it will send the
ReqKey message to the source node to verify who is a
malicious node.

Step 2: When the destination node receives enough key
segments from the node-disjoint paths, it can rebuild the
pair-wise path key KS,D.

4. Security analysis and performance evaluation

Here, we analyze the security and performance of our
protocol. In [12], the authors used redundant packets to
prevent stop forwarding attacks happening. In our proto-
col, we use the (t,n) secret sharing scheme and hop by
hop authentication to mitigate this attack. Hence, we can
partially prevent this attack. The Byzantine attack is a
malicious behavior node that alters the forwarding key to
prevent the receiver from establishing a key. In our proto-
col, we use hop by hop authentication method to prevent
Byzantine attacks. A compromised sensor node can cause
not only false alarms or inject forged reports, but it can
also deplete finite amounts of energy in a battery-powered
network. The hop by hop authentication can also detect
and filter false data. Besides, our protocol can detect com-
promised node as well.

To evaluate the performance of our protocol, we focus
on four metrics: resilience against node capture attack,
key connectivity, memory overhead, communication over-
head and robustness under Byzantine attacks. We use a
direct key to represent a pre-installed pair-wise key, and
an indirect key to represent a pair-wise path key estab-
lished via the direct key. To evaluate the resilience of
our scheme against node capture attacks, we needed to
know whether the fraction of additional communication
links is compromised among uncompromised nodes.
Assuming that when x nodes are randomly compromised
in the network, let A(x) denote the fraction of additional
communication links that is compromised among the
uncompromised nodes. In our scheme, the compromised

J.-P. Sheu, J.-C. Cheng / Computer Communications 30 (2007) 2365–2374 2371

Author's personal copy

nodes cannot gain communication links between non-
compromised nodes, i.e A(x) = 0. Thus, the attacker can-
not derive more information from the captured nodes.
Hence, our proposed scheme is perfectly secure against
node capture attack.

Key connectivity probability is defined as the probabil-
ity in which a sensor network is securely connected. We
show that our scheme can ensure that a sensor network
is securely connected with high probability, as long as the
network is physically connected. In our scheme, any pair
of nodes in the same group have shared pair-wise keys
i.e., the node can establish a secure link key. However,
two nodes belonging to two neighboring groups have the
probability of ps when sharing a pair-wise key. We assume
that the nodes belonging to the same group are uniformly
distributed in a hexagonal area, as shown in Fig. 1. Thus,
each node has about nr = pr2d � 1 neighbors, where d is
the node density over the sensor network, and r is the
transmission radius of each node, and each group has c

nodes in its zone.
We simulate key connectivity with the following

assumptions. In our simulation, we assume that there are
two groups and each group has 100 nodes randomly
deployed in a circle with a radius = 56.4 m. Let r = 40 m,
d = 0.01 and nr = 49. The simulation result shows that
key connectivity of our scheme is pretty high, with various
ps as shown in Fig. 4. The probability of local connectivity
between neighboring groups is close to one.

The total memory overhead per sensor node in our
scheme is M ¼ d1

2
ðc� 1Þe þ d1

2
ð6 � c � psÞe. For example, if

ps = 0.4 and c = 100, we have M = 170 keys. We only mea-
sure the communication overhead of establishing an end-
to-end pair-wise path key among the sensors, neglecting
the communication overhead of finding node-disjoint
paths. Thus, the communication overhead is the total num-
ber of packets needed in order to establish a shared key
between any pair of sensors. Assuming the average path

length between any pair of nodes is m (m = 4). In our
scheme, the source node needs to forward two packets to
the next two intermediate nodes, the intermediate nodes
on the path need to forward three packets, and the last
intermediate node needs to forward two packets to the des-
tination node. Therefore, the number of packets needed to
establish a key between any pair of sensors is
n[3(m � 1) � 2], where n is the number of node-disjoint
paths.

In the following, we evaluate the robustness of our hop
by hop authentication scheme under a Byzantine attack.
We compare our scheme to the one proposed in [12], called
Ling’s scheme. If an attacker does not want to get the com-
munication content, but instead tries to paralyze the sys-
tem, he can just alter the value of key segments or forge
message contents. In Ling’s scheme, a path is inactive if
it has one compromised node on the path, excluding the
source node and the destination node. However, in our
scheme, a path is inactive if it two adjacent nodes on the
path are compromised.

We use a simulation to compare the robustness of our
scheme and Ling’s scheme under a Byzantine attack.
Firstly, we assume there are x random nodes captured
from a network with 1000 nodes, and these captured nodes
will launch Byzantine attacks. Each path has the same m

intermediate nodes, and the source and destination nodes
are uncompromised. Secondly, we assume that a secret
key is divided into multiple shares by the secret sharing
scheme, and is then delivered to the destination by multiple
node-disjoint paths. We assume the path length = 20,
compromised nodes x varies from 10 to 100, number of
node-disjoint paths n = 5 and a (4,5) secret sharing scheme
is used. The simulation results are an average of 1000
times. Figs. 5 and 6 show the probability that a fraction
of the paths is inactive with a different number of compro-
mised nodes. The probability that a fraction of the paths is
inactive increases quickly in Ling’s scheme when the num-
ber of compromised nodes increases. But the probability
that a fraction of the paths is inactive in our scheme
increases very slowly when the number of compromised
nodes increases. Thus, Ling’s scheme is more vulnerable
to Byzantine attacks than our scheme.

In our next simulation, we simulate the probability that
a fraction of the paths is inactive with different path

Fig. 4. Number of direct links connects to a neighboring group vs. the
probability of ps

0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ili

ty
 o

f
fr

ac
tio

n
pa

th
s

is
 in

ac
tiv

e

10 20 30 40 50 60 70 80 90 100

Number of compromised nodes

one path
two paths
three paths
four paths
five paths

Fig. 5. The probability that a fraction of the paths is inactive vs. number
of compromised nodes in Ling’s scheme.

2372 J.-P. Sheu, J.-C. Cheng / Computer Communications 30 (2007) 2365–2374

Author's personal copy

lengths. We assume that the compromised nodes = 50,
path length m varies from 10 to 50, and node-disjoint paths
n = 5. Fig. 7 shows us that, when the path length becomes
longer, the probability that a fraction of the paths is inac-
tive rises quickly in Ling’s scheme, but our scheme
increases gracefully, as shown in Fig. 8. So our scheme
can support a longer path length compared to Ling’s
scheme when establishing an end-to-end pair-wise key.
Thus, our scheme can help extend network operation time
when resisting malicious Byzantine attacks.

Our hop by hop authentication scheme not only can
detect malicious node but also can save the energy. The
energy saving is through early detection and dropping of
false shared key on intermediate nodes along the forward-
ing path to the destination. Our hop by hop authentication
scheme requires each sender to send packets to its next two
hop neighbors. Since large-scale wireless sensor networks
often involve very long forwarding paths, the compromised

intermediate node may inject a false key value and forward
it to the next hop. We show that our authentication scheme
drops a false key value within two hops except when two
adjacent nodes collude by sending false data intentionally.
So our scheme is highly effective in filtering false key shares
during their early transmission stages, thereby saving the
precious energy of legitimate nodes.

5. Conclusion

Many random key pre-distribution schemes have been
developed recently to establish pair-wise keys for wireless
sensor networks. But these previous schemes have a draw-
back in establishing a path key, which may lead to per hop
key exposure problems if a node along the path is compro-
mised. Although a number of recent research efforts have
addressed this problem, most of them cannot prevent stop
forwarding or Byzantine attacks. In our approach, we
developed a pair-wise path key establishment scheme by
taking advantage of deployment knowledge. With the help
of deployment knowledge, we achieved a higher degree of
connectivity with low memory requirement. We applied a
hop by hop authentication scheme to improve security
and robustness of pair-wise key establishment in sensor
networks. Our hop by hop authentication scheme was able
to detect malicious nodes and false messages by legitimate
nodes. It can detect and filter false data not beyond two
hops and also achieve energy savings via its early detection
and its ability to drop false data. The simulation results
showed that our scheme achieved more robustness in estab-
lishing a path key compared to Ling’s scheme. In addition,
our scheme was able to tolerate more compromised nodes
and support longer path length under a Byzantine attack
compared to Ling’s scheme.

References

[1] L. Eschenauer, V.D. Gligor, A key-management scheme for distrib-
uted sensor networks, in: Proceedings of the 9th ACM conference on
Computer and Communication Security, November 2002, pp. 41–47.

[2] H. Chan, A. Perrig, D. Song, Random key pre-distribution schemes
for sensor networks, in: Proceedings of IEEE Symposium on Security
and Privacy, May 2003, pp. 197–213.

[3] W. Du, J. Deng, Y.S. Han, P.K. Varshney, A pair-wise key pre-
distribution scheme for wireless sensor networks, in: Proceedings of
the 10th ACM Conference on Computer and Communication
Security, October 2003, pp. 42–51.

[4] D. Liu, P. Ning, Establishing pair-wise key establishments in
distributed sensor networks, in: Proceedings of 10th ACM Confer-
ence on Computer and Communications Security, October 2003, pp.
52–61.

[5] W. Du, J. Deng, Y.S. Han, S. Chen, P.K. Varshney, A key
management scheme for wireless sensor networks using deployment
knowledge, in: Proceedings of IEEE INFOCOM, March 2004.

[6] D. Liu, P. Ning, Location based pair-wise key establishments for
static sensor networks, in: Proceedings of the 1st ACM Workshop on
Security of Ad Hoc and Sensor Networks, 2003, pp. 72–82.

[7] D. Huang, M. Mehta, D. Medhi, H. Lein, Location aware key
management scheme for wireless sensor networks, in: Proceedings of
ACM Workshop on Security of Ad Hoc and Sensor Networks,
October 2004, pp. 29–42.

0

0.002

0.004

0.006

0.008

0.01

0.012

Pr
ob

ab
ili

ty
 o

f
fr

ac
tio

n
of

pa
th

s
is

 in
ac

tiv
e

10 15 20 25 30 35 40 45 50
Path length m

one path
two paths
three paths
four paths
five paths

Fig. 8. The probability of fraction of paths is inactive vs. different path
lengths in our scheme.

0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ili

ty
 o

f
fr

ac
tio

n
of

pa
th

s
is

 in
ac

tiv
e

10 15 20 25 30 35 40 45 50
Path length m

one path

two paths

three paths

four paths

five paths

Fig. 7. The probability of fraction of paths is inactive vs. different path
lengths in Ling’s scheme.

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

Pr
ob

ab
ili

ty
 o

f
fr

ac
tio

n
of

pa
th

s
is

 in
ac

tiv
e

10 20 30 40 50 60 70 80 90 100
Number of compromised nodes

one path
two paths
three paths
four paths
five paths

Fig. 6. The probability that a fraction of the paths is inactive vs. number
of compromised nodes in our scheme.

J.-P. Sheu, J.-C. Cheng / Computer Communications 30 (2007) 2365–2374 2373

Author's personal copy

[8] Y. Zhou, Y. Zhang, Y. Fang, LLK: a link layer key establishment
scheme in wireless sensor networks, in: Proceedings of IEEE Wireless
Communications and Networking Conference, March 2005, pp.
29–42.

[9] Z. Yu, Y. Guan, A robust group-based key management scheme for
wireless sensor networks, in: Proceedings of IEEE Wireless Commu-
nications and Networking Conference, 2005.

[10] H. Chan, A. Perrig, PIKE: peer intermediaries for key establishment
in sensor network, in: Proceedings of IEEE INFOCOM, March 2005.

[11] S. Zhu, S. Xu, S. Setia, S. Jajodia, Establishing pair-wise keys for
secure communication in ad hoc networks: a probabilistic approach,
in: Proceedings of 11th IEEE International Conference on Network
Protocols, November 2003.

[12] H. Ling, T. Znati, End to end pair-wise key establishment using
multi-path in wireless sensor network, in: Proceedings of the IEEE
Global Communications Conference, December 2005.

[13] G. Li, H. Ling, T. Znati, ’’Path key establishment using multiple
secured paths in wireless sensor networks, in: Proceedings of the 2005
ACM Conference on Emerging Network Experiment and Technol-
ogy, 2005, pp. 43–49.

[14] L. Zhou, J. Ni, C.V. Ravishankar, Efficient key establishment for
group-based wireless sensor deployments, in: Proceedings of the 4th
ACM Workshop on Wireless security, September 2005, pp. 1–10.

[15] A. Shamir, How to share a secret, in: Proceedings of Communications
of the ACM, vol. 22, November 1979, pp. 612–613.

[17] K. Balakrishnan, J. Deng, P.K. Varshney, TWOACK: preventing
selfishness in mobile ad hoc networks, in: Proceedings of the IEEE
Wireless Communications and Networking Conference, vol. 4, 2005,
pp. 2137–2142.

[18] X. Li, L. Cuthbert, Node-disjointness based multi-path routing for
mobile ad hoc networks, in: Proceedings of the 1st ACM Interna-
tional Workshop on Performance Evaluation of Wireless Ad Hoc,
Sensor, and Ubiquitous Networks, October 2004.

[19] A. Wacker, M. Knoll, T. Heiber, K. Rothermel, A new approach for
establishing pair-wise keys for securing wireless sensor networks, in:
Proceedings of the 3rd International Conference on Embedded
Networked Sensor Systems, November 2005, pp. 27–38.

[20] R.L. Rivest, A. Shamir, L.M. Adleman, A method for obtaining
digital signatures and public-key cryptosystems, in: Proceedings of
Communications of the ACM, 1987, pp. 120–126.

[22] D. Huang, D. Medhi, A Byzantine resilient multi-path key establish-
ment scheme and its robustness analysis for sensor networks, in:
Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium, April 2005.

[23] W. Diffie, M.E. Hellman, New directions in cryptography, IEEE
Transactions on Information Theory (1976) 644–654.

[24] L. Lamport, Password authentication with insecure communication,
Communications of the ACM (1981) 770–772.

[25] M. Bellare, R. Canetti, H. Krawczyk, Keying hash functions for
message authentication, in: Proceedings of Advances in Cryptology –
Crypto’96, 1996, pp. 1–15.

Jang-Ping Sheu received the B.S. degree in com-
puter science from Tamkang University, Taiwan,
Republic of China, in 1981, and the M.S. and
Ph.D. degrees in computer science from National
Tsing Hua University, Taiwan, Republic of
China, in 1983 and 1987, respectively. He is
currently a Professor of the Department of
Computer Science and Information Engineering,
National Central University. He was a Chair of
Department of Computer Science and Informa-
tion Engineering, National Central University

from 1997 to 1999. He was a Director of Computer Center, National
Central University from 2003 to 2006. His current research interests
include wireless communications and mobile computing.

He was an associate editor of Journal of the Chinese Institute of Electrical
Engineering, Journal of Information Science and Engineering, Journal of
the Chinese Institute of Engineers, and Journal of Internet Technology. He
is an associate editor of the IEEE Transactions on Parallel and Distributed
Systems, International Journal of Ad Hoc and Ubiquitous Computing,
and International Journal of Sensor Networks.

He received the Distinguished Research Awards of the National Science
Council of the Republic of China in 1993–1994, 1995–1996, and 1997–
1998. He received the Distinguished Engineering Professor Award of the
Chinese Institute of Engineers in 2003. He received the certificate of Dis-
tinguished Professorship, National Central University in 2005. He received
the K.-T. Li Research Breakthrough Award of the Institute of Information
and Computing Machinery. Dr. Sheu is a senior member of the IEEE, a
member of the ACM, and Phi Tau Phi Society.

Jui-Che Cheng received the B.S. degree in com-
puter science and information engineering from
Tunghai University, Taichung, Taiwan, Republic
of China, in 2004 and the M.S. degree in com-
puter science and information engineering from
National Central University, Jhongli, Taiwan,
Republic of China, in 2006, respectively. His
current research interests include security in
wireless sensor networks and mobile computing.

2374 J.-P. Sheu, J.-C. Cheng / Computer Communications 30 (2007) 2365–2374

