IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, APRIL 1990

241

Designing Efficient Parallel Algorithms on
Mesh-Connected Computers with
Multiple Broadcasting

YEN-CHENG CHEN, WEN-TSUEN CHEN, senior MeMBER, IEEE, GEN-HUEY CHEN, MEMBER, IEEE, AND
JANG-PING SHEU

Abstract—Semigroup and prefix comp
mesh-connected computers with multiple broadcasting (2-MCCMB’s) are
studied in this paper. Previously, only square 2-MCCMB’s with N
pr ing el ts were dered for semigroup computations of N
data items, and O(N'V%) time was required. 1t is found that square
machines are not the best form for igroup comp and an
O(NV?) time algorithm is thus derived on an N% x N33 rectangular 2-
MCCMB. This time complexity can be further reduced to O(NY?) if
fewer PE’s are used. Following the same way, parallel algorithms for
prefix computations are also derived with the same time complexities.

tions on ¢ di) i 1

Index Terms—Mesh-connected computers, mesh-connected computers
with multiple broadcasting, parallel algorithms, prefix computation,
rectangular hes, semigroup c i

10n.

1. INTRODUCTION

RE-‘CENTLY’ great advances in hardware technology have
ade it possible to design various computer architectures.
As a result, some multiprocessor architectures were proposed
for parallel processing [21], [10], [11). Among these, the
mesh-connected computers (MCC’s) have been widely used
because their regular structure and simple interconnection are
quite suitable for VLSI implementation. A k-dimensional
mesh-connected computer (k-MCC) of size N contains N
processing elements (PE’s) arranged in a k-dimensional grid
[16]. That is, the PE’s may be thought of as logically arranged
as in a k-dimensional array A (nx_1, nk_2, ** *, No), Where n;
is the size of the ith dimensionand N = 7y X Hgx_3 X - X
no. Very often, ng_y = ng_» = *++ = ng = NVK[2], [14],
[15], [20]. Let PE(é¢—1, ix—2, - - *» i) denote the PE at location

A1, ix-2y "5 G0). PEGk_ 1y k=2, =775 do) is connected to
PE(ix_1, *""»ij £ 1, *+, §), 0 = j < k, provided PE(i_,,
i x£ 1, -++, Ip) exists. In other words, each PE is

connected to its 2k nearest neighbors (the PE’s along the
boundary have fewer neighbors). Fig. 1 shows examples of a
1-MCC and a 2-MCC. As in [2] and [16], it is assumed that a
PE may transmit data to any of its nearest neighbors in unit
time. Besides, each PE has some local memory.

Manuscript received April 21, 1989; revised November 6, 1989. This work
was supported by the National Science Council, Taiwan, R.0.C., under
Contract NSC78-0408-E007-11.

Y.-C. Chen and W.-T. Chen are with the Institute of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China.

G.-H. Chen is with the Department of Computer Science and Information
Engineering, National Taiwan University, Taipei, Taiwan, Republic of
China.

J.-P. Sheu is with the Department of Electrical Engineering, National
Central University, Chung-Li, Taiwan, Republic of China.

IEEE Log Number 8934123.

Communication
Link

(b)

Fig. 1. Mesh-connected computers (MCC’s). (a) A 1-MCC of size 4. (b) A

4 x 4 2-MCC of size 16.

The regular pattern of the mesh-connected network makes
MCC’s suitable for solving many problems from matrix
manipulation and image processing [5], [14]. However, its
local connectivity nature will result in a long communication
delay when data have to be moved over a long distance. In an
N2 x NV22-MCC, for example, to move data from one PE
to another may take as much as N2 time in the worst case.
Thus, a large diameter is a main shortcoming of the MCC'’s.
Therefore, the execution time of the parallel algorithms that
need long distance communications is often dominated by the
long communication time. To overcome the communication
inefficiency, several authors have augmented the MCC’s with
various faster mechanisms [1], [3], [4], [6], [12], [17]-[19]. In
some of them, the capability of long distance communications
is enhanced through the use of one or more broadcast buses.
Several variants of MCC’s with broadcasting features were
thus proposed [1], [41, [12], [18], [19]. Indeed, many
problems can be solved more efficiently on these modified
MCC’s.

This paper considers semigroup and prefix computations on
two-dimensional mesh-connected computers with multiple
broadcasting (2-MCCMB’s) [12]. A 2-MCCMB is a two-
dimensional mesh-connected computer (2-MCC) with a bus
for each row and each column. A detailed description of 2-

1045-9219/90/0400-0241$01.00 © 1990 IEEE

242

|

—— :RowBus

@ :re

or —:Local Link

A 4 x 4 mesh-connected computer with multiple broadcasting
(MCCMB).

| : Column Bus
Fig. 2.

MCCMB’s will appear in the next section. Semigroup
computations are an important class of computational prob-
lems. Some typical examples are to compute sum, product,
maximum/minimum, and Boolean parity. In general, a semi-
group computation can be formally described by a tuple (o,
S), where @ is an associative operator and S = {ao, a;, * -
ay_,} is a set of data items. The problem is to compute a, &
@ ® -+ ® ay_;. Using an NV2 X N2 square 2-MCCMB,
Kumar and Raghavendra [12] have proposed an O(N'/¢) time
algorithm for a semigroup computation of N data items, which
was declared to be optimal with respect to the square machine.
However, we find in Section III that to obtain better
performance, the 2-MCCMB’s used for semigroup computa-
tions are no longer square ones. Instead, an N8 x N38
rectangular 2-MCCMB is used, on which an O(N'/3) time
algorithm is developed. This time complexity can be further
reduced to O(NN'?) if fewer PE’s are used. It is shown in
Section IV that given an arbitrary X X Y rectangular 2-
MCCMB with X = Y and XY = N, a semigroup
computation of N data items can be performed in O (max
{Y'3, NV2/Y}) time. In addition, the generalization of the
algorithm to k-dimensional MCCMB’s is also discussed; an
O(k2NV®2) time algorithm is obtained by using an
N Trya2dy o N2 /62Ky oo NUE 06 g
MCCMB.

Another problem related to semigroup computation is prefix
computation. Given N numbers @y, @), ***, dn-y, a prefix
computation is to compute @o ® @, ® -+ ® g;fori = 0, 1,

++, N — 1, where & is an associative operator. In Section V,
a parallel algorithm for prefix computation is developed. Since
prefix computation can be considered to be a number of
interrelated semigroup computations, the algorithms for prefix
computation can be developed by augmenting the ones for
semigroup computation with additional computations.

I1. MesH-CoNNECTED COMPUTERS WITH MULTIPLE
BROADCASTING

A two-dimensional mesh-connected computer with mul-
tiple broadcasting (2-MCCMB) [12] is a two-dimensional
mesh-connected computer (2-MCC) with a bus for each row

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, APRIL 1990

and each column. That is, the PE’s in the same row or column
are connected to a bus in addition to the local links, as shown
in Fig. 2. Hence, 2-MCCMB’s have broadcasting capability in
each row and each column. These broadcasting features allow
parallel data transfers within each row and each column. On a
2-MCCMB, there are two types of data transfers executed by
each PE: routing data into one of its four nearest neighbors via
a local link and broadcasting data to the other PE’s in the same
row (or column) via the bus on this row (or column). As in
[12] and [19], it is assumed that broadcasting takes constant
time and only one PE is permitted to broadcast data on each
row bus and each column bus at a time. However, to avoid the
overhead caused by conflicts and to handle broadcasting more
easily, all algorithms on MCCMB’s are required to be
conflict-free [12], [19]. In other words, collision resolution
schemes are not necessary and algorithms on MCCMB’s are
developed so that no two PE’s ‘‘attempt’’ to use the same bus at
the same time. By a straightforward extension, the structure of
MCCMB’s can be easily extended from two dimensions to
higher dimensions [12].

Row and column broadcasting has been shown to be a
powerful communication mechanism. Kumar and Raghaven-
dra [12] showed that a binary tree with n leaf nodes can be
logically simulated by an n X n 2-MCCMB through the use of
row and column buses. First, these n leaf nodes are arranged
in one row (or column) of the 2-MCCMB. For example,
suppose that each of the PE’s in row O (we number rows,
columns, row buses, and column buses, all starting from 0)
owns a data item initially and the maximum of the n data items
is to be computed. The problem can be solved with [log n]
steps by applying a technique called the simulation tree
technique. That is, in the ith step, 1 < i =< [log n], the
intermediate value in PE(0, 2k + 1)2i-1),0 = k < n/2f —
1, is sent to PE(0, 2k2'~ 1) via column buses 2k2~!, 2k +
1)2¢-! and row bus &, and then the maximum of two is found
and stored in PE(0, 2k27~!). After [log n] steps, the final
result can be obtained in PE(0, 0). Thus, a semigroup
computation of # data items can be performed in O (log n)
time on an n X n 2-MCCMB if these data items are placed in
the same row or column. However, this scheme needs too
many processing elements and buses, compared to the number
of data items. Kumar and Raghavendra [12] also derived
another algorithm for a semigroup computation of N data
items on an N'/2 x N'/22-MCCMB. Initially, each PE holds
one data item. The achieved time complexity is O(N'9),
which was declared to be optimal. This algorithm can be
regarded as a two-phase one. That is, it first partitions the N'/2
x N122-MCCMB into N3 disjoint N'/¢ x N6 submeshes,
called blocks. In the first phase, the computation result for
each block is obtained via local communications. The al-
gorithm then switches over to the second phase, in which the
N?/ intermediate values are computed with the aid of row and
column broadcasting. For a more detailed description, the
interested reader may consult [12]. In addition, when extended
to k-dimensional MCCMB’s (k-MCCMB’s), a semigroup
computation of N data items can be performed in
O(NV®k+1)) time using an N/* x --- x N'* k-MCCMB
[12].

CHEN et al.: DESIGNING PARALLEL ALGORITHMS ON MESH-CONNECTED COMPUTERS

N8
I~ Pes _\
N
18
N PEs Block Block e
Band
n5/8 pEs
N %pEs Band
L P

_.__ N8 pEs —./

Fig. 3. Partitioning of an N*® x NV 2-MCCMB.

1II. SEMIGROUP COMPUTATIONS ON RECTANGULAR 2-MCCMB’s

Square 2-MCC'’s are frequently used in applications. Data
are easily mapped onto a square, especially in graph problems
[2], image processing [14], and matrix computations [S].
Also, a square 2-MCC has minimal diameter, so that better
performance can be obtained for some problems, e.g.,
semigroup computations. Hence, it is very natural to consider
only square 2-MCCMB’s in designing parallel algorithms.
However, the number of buses in a 2-MCCMB depends on
both the number of PE’s and their arrangement. Clearly, for
the same number of PE’s, a rectangular 2-MCCMB has more
buses than a square one. This fact suggests the possiblity of
improving performance by using rectangular 2-MCCMB’s. In
this section, we derived a parallel algorithm for semigroup
computations on rectangular 2-MCCMB’s, which is superior
in performance to the best one obtained so far on square 2-
MCCMB’s. Therefore, to achieve high performance on 2-
MCCMB’s, square machines are not necessarily the right
choice.

It has been shown in [12] that on an N2 x NVZ 2-
MCCMB, a semigroup computation can be performed in
O(NV%) time. However, the time complexity can be further
reduced to O(N'/8) by using an N> x N¥82-MCCMB. The
N8 x N33 2-MCCMB is first partitioned into N¥# disjoint
N8 x NV submeshes, called blocks. A row of blocks is
called a band. Refer to Fig. 3. Initially each PE owns one data
item. The algorithm is as follows.

Step 1: Perform the semigroup computation in parallel for
each block. Only local links are used and O(N'/®) time is
required.

The result of each block is held in the upper left PE of the
block, called the block leader. In each band, there are now
N'# intermediate values. However, the distance between any
two is at least N'/8, Thus, broadcasting must be exploited to
achieve better performance. To use all the row buses in
Rarallel, the intermediate values are duplicated.

243

Step 2: Copy the intermediate value in each block leader to
all the PE’s in the same column within the same block via local
links. O(N'/8) time is required.

Since the number of row buses in each band is N'/8, the
N4 intermediate values within a band are partitioned into
N groups, each containing N'/8 values, so that each group
can be assigned a row bus for broadcast communications.

Step 3: Broadcast the N'/® intermediate values of each
group in turn via the assigned row bus. In the meantime, the
leftmost PE of each row performs the semigroup computation
of the broadcast values it receives. Since the broadcasting is
performed in parallel for each row bus, O(N'"8) time is
required.

At the end of step 3, there are still N>/® intermediate values
remaining in the leftmost column, one for each PE. Note that
each band contains N'/8 values of them.

Step 4: Perform the semigroup computation of N 178
intermediate values in parallel for each band via local links.
This step takes O(N'/®) time.

The computation result of each band is held in the upper left
PE of the band, called the band leader. Totally, N'?
intermediate values remain. In order to use all the column
buses in parallel, duplicating values via row broadcasting is
required.

Step 5: Copy the intermediate value in each band leader to
all the PE’s in the same row via broadcasting. This takes
constant time.

The remaining N'/? intermediate values are partitioned into
N?3/8 groups each containing N''/® intermediate values so that
each group can share a column bus.

Step 6: Perform the semigroup computation in parallel for
each group via column broadcasting. O(N'/%) time is re-
quired.

At the end of the step, N*/8 intermediate values remain. The
computation results are held in the uppermost row, one for
each PE.

Step 7: Perform the semigroup computation of the remain-
ing N8 intermediate values by using the simulation tree
technique. Therefore, the final result can be found in the upper
left PE of the 2-MCCMB. This step takes O (log N) time.

According to the above description, we have the following
theorem.

Theorem 3.1: A semigroup computation of N data items
can be performed in O(N'®) time using an N>% x N3* 2-
MCCMB.

One way to further reduce the time complexity of the
algorithm is to use fewer PE’s. This can be described in the
following theorem.

Theorem 3.2: A semigroup computation of N data items
can be performed in O(N'/®) time using an N>° x N3 2-
MCCMB with each PE containing N'/® data items initially.

The proof of the theorem is omited for sake of brevity. The
interested reader may consult [8].

IV. Discussion
A. Extension to Arbitrary Rectangular 2-MCCMB’s

The algorithm proposed in Section III is a two-phase
algorithm. In the first phase, data communications are via only

244

local links. When the distance between any two intermediate
values becomes greater than or equal to N'/8, the algorithm
enters the second phase and starts to use row and column
broadcasting for efficient communications. The time complex-
ity achieved in Theorem 3.1 is due to the selection of the
switchover point. That is, N/ x N'/8 is the optimal block
size for the two-phase algorithm on the N>% x N33 2-
MCCMB. It will be seen that the optimal block size depends
on the form of the rectangular 2-MCCMB. In the following,
we show how to determine the block size for an arbitrary
rectangular 2-MCCMB. It can be also seen that the achieved
time complexity depends on the form of the rectangular 2-
MCCMB. Indeed, N5 x N3? is the optimal form of
rectangular 2-MCCMB’s for semigroup computations.

Suppose that an X' X Y 2-MCCMB with X' = Yand XY =
N is used for a semigroup computation of N data items. Let the
block size be m X m. The previous algorithm can be
gerneralized as follows.

Step 1: Perform the semigroup computation in parallel for
each block by using local links. This takes O(m) time.

In each band, there are now Y/m intermediate values.

Step 2: Copy the intermediate value in each block leader to
all the PE’s in the same column within the same block via local
links. O(m) time is required.

Since the number of row buses in each band is m, the Y/m
intermediate values within a band are partitioned into m
groups each containing Y/m? values.

Step 3: Broadcast the Y/m? intermediate values of each
group in turn via the assigned row bus. In the meantime, the
leftmost PE of each row performs the semigroup computation
of the broadcast values it receives. This step requires O(Y/
m?) time.

There are now X values remaining in the leftmost column;
each band contains m values in its leftmost block.

Step 4: Perform the semigroup computation of m interme-
diate values for each band via local links. This step takes O(m)
time.

Now, X/m values remain; each band leader contains one of
them.

Step 5: Copy the intermediate value in each band leader 10
all the PE’s in the same row via row broadcasting. This takes
constant time.

The remaining X/m values are partitioned into Y groups
each containing X/(Ym) values.

Step 6: Perform the semigroup computation in parallel for
each group via column broadcasting. O(X/(Ym)) = ON/
(Y2m)) time is required.

After step 6, each PE in the uppermost row owns an
intermediate value.

Step 7: Perform the semigroup computation of the remain-
ing Y values by using the simulation tree technique. This step
takes O (log Y) time.

The total time complexity is O (max {m, Y/m?, N/(Y*m),
log Y}), which is a function of m. The minimum is O (max
{Y3, NV2/Y}) when m = max {Y'?3, N'/2/Y}. Thus, we
have the following theorem.

Theorem 4.1: Given an X X Y 2-MCCMB with X = Y
and XY = N, a semigroup computation of NV data items can be
performed in O (max {Y'3, N'/2/Y}) time.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, APRIL, 1990

Since max {Y'3, N'2/Y} has the minimum value N'/8
when Y = N¥3, we have the following theorem.

Theorem 4.2: The optimal form of 2-MCCMB’s with size
N is N5/8 x N3/® when the two-phase algorithm is used to
perform a semigroup computation of N data items. The time
complexity is O(N®).

B. Extension to k-Dimensional MCCMB'’s

The results obtained in Section III and Section IV-A can be
further extended to k-dimensional MCCMB’s (k-MCCMB’s).
For example, a semigroup computation can be performed in
O(N'/24) time using an N'¥2* x N7/% x N'/¢ 3.MCCMB,
where the 3-MCCMB is first partitioned into blocks of size
NV 5 NV x NVY2[7]. It is not difficult to extend the
result to higher dimensions. We describe the generalized result
on k-MCCMB’s as follows.

Theorem 4.3: A semigroup computation of N data items
can be performed in O(k*NY ®2%) time using an
N Tkspeky s Ne*—Zkenehy ooy NG+ /62Ky

k-MCCMB, k = 1. The block size is
k

NVwK) o N1k ool NV@2ky

Following the same idea, the algorithm performing the
semigroup computation on the --MCCMB can be derived with
some effort [7]. Since the detailed description about the
algorithm is very tedious, we omit it here.

For an arbitrary given k--MCCMB, the time required for a
semigroup computation can also be determined. For example,
O(NV*) time is required for an N3* x N'/42-MCCMB, and
O(NV'8) time is required for an N*® X N¥° x N?° 3-
MCCMB. This can be stated formally as follows.

Theorem 4.4: Consider an A;_; X Ag_ 5 X+ X Ag k-
MCCMB, k = 1, with A, = Ay, = = Apand 4, _; X
Ay, X+ X Ay = N. Initially, each PE contains one data
item. The time complexity achieved by the two-phase algo-
rithm is O(max{A Y%+, (4,/Aq)"%, (A/(A1Ag)) &0,
sy (Apo/(Apg—a X Az X X Ap)VD).

The derivation of the two-phase algorithm is a straightfor-
ward extension of that described in Section IV-A. Note that the
minimal time complexity occurs when

O(AL/tk+1)
=O((A,/A0)"%)
=O0((A2/(A Ag) V', D)

= O((Ap- 1 /(Ag 2 X Ap 3 X X Ag))'?).

Therefore, the time complexity stated in Theorem 4.3 is the
minimal one for the two-phase algorithm on arbitrary k-
MCCMB’s.

V. ALGORITHM FOR PREFIXx COMPUTATION

Let S, = ay @ a; &+ & a;. A prefix computation is t0
compute all §’s, 0 < i =N — 1. AlsoletS;; = a; & ;1
® - @ a;,i < j, which is called local prefix from a; to a;.
Clearly, S; = So; = So,iy @ Siyj+1,, @ @ Sipg+1,j» where 0

CHEN et al.: DESIGNING PARALLEL ALGORITHMS ON MESH-CONNECTED COMPUTERS

< i < < < iy < j. In our algorithms each §; is
obtained through continuous merging of adjacent local pre-
fixes. As discussed in previous sections, the PE’s in a 2-
MCCMB are grouped into blocks, groups, and bands. Local
prefix computations are performed simultaneously within each
block, each group, and each band. The blocks are numbered
(starting from 0) in a row-major order. Also, within each
block, the PE’s are numbered in a row-major order. The input
data items aq, ay, - * *, an_ are distributed into the 2-MCCMB
in an increasing sequence of block numbers and in an
increasing sequence of PE numbers when they are within the
same block. Thus, if g; is held in PE j of block &, S; depends
on the data items stored in the first k£ blocks and the first j + 1
PE’s of block k. The algorithms are to generate S; in the PE
holding @;. According to the data distribution, the algorithm
consists of the following four major steps.

Step 1: Compute S;, ; in parallel for each block, where g; is
held in the block and i, = min {j|a; is held in the block}.

Step 2: Compute S, ; in parallel for each group, where g; is
held in the group and i; = min {j|a; is held in the group}.

Step 3: Compute S;,, ; in parallel for each band, where g; is
held in the band and i,; = min {/]a; is held in the band}.

Step 4: Compute S;, 0 < j < N — 1.

It is not difficult to derive an O(N'/%) time algorithm
performing a prefix computation of N data items on an N2 x
NV2 2-MCCMB, with block size N6 x N6 group size
N6 x N3 and band size N x N2, Considering
rectangular 2-MCCMB'’s, we use an N>% x N38 2-MCCMB
for prefix computations. The block size is N/ x N1/8. N8
continguous blocks form a group and a row of blocks form a
band. In addition, we define a band-group to be N/
contiguous bands. The algorithm first computes local prefixes
for each block (i.e., Step 1). This step takes O(N'®) time. At
Step 2, in O(N'/?) time, each block in a group can obtain, by
the aid of a series of data broadcasting, the result of the
semigroup computation of all the data items that are contained
in its preceding blocks of the same group. Furthermore, in
additional O(N!/3) time, the obtained result is propagated to
each PE of the same block. Then, the local prefixes for each
group are computed in constant time. Like Step 2, Step 3 can
be performed in O(N'/%) time. At the end of Step 3, local
prefixes for each band are obtained. Then, each band-group is
assigned a column bus and local prefixes for each band-group
are determined in O(N'/?) time. Finally, by the use of a
simulation tree, all S;’s can be computed in O (log N) time.
Since each of the above four steps takes O(N'/?) time, we
have the following theorem.

Theorem 5.1: A prefix computation of N data items can be
performed in O(N'/#) time on an N*/8 x N%8 2-MCCMB.

As in Theorem 3.2, if fewer PE’s are used for prefix
computation, an O(N"?) time algorithm can be obtained.

Theorem 5.2: A prefix computation of N data items can be
performed in O(N'?) time on an N*° x N'73 2-MCCMB
with each PE containing N'/° data items initially.

VI. CONCLUDING REMARKS

In this paper, it is shown that square 2-MCCMB’s are not
favorable for semigroup computations and prefix computa-

245

tions. We have discussed semigroup computations and prefix
computations on rectangular 2-MCCMB’s, and were able to
achieve better preformance than on square 2-MCCMB’s.
Algorithms with time complexity O(N'/%) were developed on
an N¥3 x N33 2-MCCMB, versus O(N'/¢) on an N2 x
N2 2-MCCMB.

On N2 x NVY2 2.MCCMB’s, Kumar and Raghavendra
[12] have developed algorithms for the median row problem
and the median problem with time complexity O(N'/¢) and
O(N'% x log?? N), respectively. Both semigroup computa-
tions and prefix computations can be regarded as basic
operations for solving these two problems. We have success-
fully developed algorithms for the median row problem (and
the median problem) with time complexity O(N"®) (O(N'/
x log N)) also on N*/8 x N¥8 2-MCCMB’s [9].

REFERENCES

[1] A. Aggarwal, “‘Optimal bounds for finding maximum on array of
processors with k global buses,” IEEE Trans. Comput., vol. C-35,
pp. 62-64, Jan. 1986.

2] M. 1. Atallah and S. R. Kosaraju, ‘‘Graph problems on a mesh—
connected processor array,”’ J. Assoc. Comput. Mach., vol. 31, no.
3, pp. 649-667, July 1984.

[31 S.H. Bokhari, ‘*‘MAX: An algorithm for finding maximum in an array
processor with a global bus,”” in Proc. Int. Conf. Parallel Processing,
Aug. 1981, pp. 302-303.

[4] ——, “Finding maximum on an array processor with a global bus,””
1EEE Trans. Comput., vol. C-33, pp. 133-139, Feb. 1984.

[5] P.R. Cappelio, ‘A mesh automaton for solving dense linear systems,’’
in Proc. Int. Conf. Parallel Processing, Aug. 1985, pp. 418-425.

[6] D. A. Carlson, *‘Performing tree and prefix computations on modified
mesh-connected parallel computers,” in Proc. Int. Conf. Parallel
Processing, Aug. 1985, pp. 715-718.

[7] Y. C. Chen and G. H. Chen, ‘‘Parallel algorithms on mesh-connected
computers with multiple broadcasting,”” unpublished manuscript.

[8] Y.C.Chen, W.T.Chen, G. H. Chen, andJ. P. Sheu, “‘Reducing time
complexties of semigroup computations on mesh-connected computers
with multiple broadcasting,”” in Proc. Int. Conf. Parallel Processing,
Vol. III, Aug. 1989, pp. 234-241.

[9] Y. C. Chen, W. T. Chen, and G. H. Chen, ‘“‘Finding median and

median row on mesh-connected computers with multiple broadcast-

ing,”’ to be published.

T. Y. Feng, ‘A survey of interconnection networks,”” JEEE Comput.

Mag., pp. 12-27, Dec. 1981.

K. Hwang and F. A. Briggs, Computer Architecture and Parallel

Processing. New York: McGraw-Hill, 1984.

V. K. Prasanna Kumar and C. S. Raghavendra, *‘Array processor with

multiple broadcasting,”” J. Distribut. Comput., vol. 2, pp. 173-190,

1987.

S. P. Levitan, ‘‘Algorithms for a broadcast protocol multiprocessor,”

in Proc. 3rd Int. Conf. Distribut. Comput. Syst., 1982, pp. 666~

671.

R. Miller and Q. F. Stout, ‘‘Geometric algorithms for digitized pictures

on a mesh-connected computer,”” IEEE Trans. Pattern Anal. Mach.

Intell., vol. PAMI-7, Mar. 1985.

, ““Varying diameter and problem size in mesh-connected com-

puters,” in Proc. Int. Conf. Parallel Processing, Aug. 1985, pp.

697-699.

D. Nassimi and S. Sahni, ‘‘Data broadcasting in SIMD computers,”’

IEEE Trans. Comput., vol. C-30, p. 101-107, Feb. 1981.

Q. F. Stout, ‘‘Broadcasting in mesh-connected computers,”” in Proc.

1982 Conf. Info. Sci. Syst., Princeton Univ., Princeton, NI, 1982,

pp. 85-90.

., ““Mesh-connected computers with broadcasting,”” IEEE Trans.

Comput., vol. C-32, pp. 826-830, Sept. 1983.

., ‘““Meshes with multiple buses,”’ in Proc. 27th IEEE Symp.

Found. Comput. Sci., 1986, pp. 264-273.

C. D. Thompson and H. T. Kung, ‘‘Sorting on a mesh-connected

computer,” Commun. Assoc. Comput. Mach., vol. 20, no. 4, pp.

263-271, Apr. 1977.

L. D. Wittie, ‘‘Communication structures for large networks of

microcomputers,”” IEEE Trans. Comput., vol. C-30, no. 4, pp. 264~

273, Apr. 1981.

(10]
(1]
(12]

[13)

(14]

[15]

(16}

[n

[18]
(9]

{20]

(21}

246 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, APRIL 1990

Yen-Cheng Chen received the B.S. degree in
electrical engineering from National Cheng Kung
University in 1986 and the M..S. degree in informa-
tion engineering from Tatung Institute of Technol-
ogy in 1988.

Since September 1988, he has been working
towards the Ph.D. degree in the Institute of Com-
puter Science of the National Tsing Hua University,
Taiwan, Republic of China. His research interests
are parallel algorithms and multiprocessor systems.

Wen-Tsuen Chen (M’87-SM’89) was born in
Taiwan, Republic of China, on May 27, 1948. He
received the B.S. degree in nuclear engineering
from National Tsing-Hua University, Taiwan, Re-
public of China, and the M.S. and Ph.D. degrees
both from University of California, Berkeley, in
1970, 1973, and 1976, respectively.

He joined the faculty of the Institute of Computer
Science, National Tsing-Hua University in March
1976 as an Associate Professor. Since 1979, he has
been a Professor and from 1983 to 1988 he served
as the Director of the Institute. In 1980, he was a visiting professor in the
EECS Department of the University of California, Berkeley. From 1984 to
1985, he was elected as an IEEE Distinguished Visitor in region 10. Since
1988, he has been a member of the Science and Technology Advisory Board
of the Ministry of Education, Taiwan, Republic of China. His current research
interests include computer networks, broadband ISDN, multiprocessing
systems, parallel algorithms.

Dr. Chen is a member of the Association for Computing Machinery.

Gen-Huey Chen (M’88) was born in Taiwan, on
October 10, 1959. He received the B.S. degree in
computer science from National Taiwan University,
Taiwan, in June, 1981 and the M.S. and Ph.D.
degrees in computer science from National Tsing
Hua University in June 1983 and January 1987,
respectively.

In February 1987, he joined the faculty of
National Taiwan University and he now is an
Associate Professor of the Department of Computer
Science and Information Engineering. His current

research interests include design and analysis of algorithms, distributed
algorithms, parallel computation, and parallel computer architectures.

Jang-Ping Sheu (S’85-M’86) was born in Taiwan,
Republic of China, on April 28, 1959. He received
the B.S. degree in computer science from Tamkang
University, Taiwan, in 1981 and the M.S. and
Ph.D. degrees in computer science from the Na-
tional Tsing Hua University, Taiwan, in 1983 and
1987, respectively.

He joined the faculty in the Department of
Electrical Engineering at the National Central Uni-
versity, Taiwan, as an Associate Professor in 1987.
His current research interests include distributed

computing systems and parallel processing.

