
Ad Hoc Networks 5 (2007) 299–312

www.elsevier.com/locate/adhoc
An efficient reliable broadcasting protocol for wireless
mobile ad hoc networks

Chih-Shun Hsu a,*, Yu-Chee Tseng b, Jang-Ping Sheu c

a Department of Computer Science and Information Engineering, Nanya Institute of Technology,

414, Sec. 3, ChungShang East Rd., Chung-Li 320, Taiwan
b Department of Computer Science and Information Engineering, National Chiao Tung University, Hsin-Chu 300, Taiwan

c Department of Computer Science and Information Engineering, National Central University, Chung-Li 320, Taiwan

Received 3 March 2005; received in revised form 1 November 2005; accepted 28 November 2005
Available online 28 December 2005
Abstract

The mobile ad hoc network (MANET) has recently been recognized as an attractive network architecture for wireless
communication. Reliable broadcast is an important operation in MANET (e.g., giving orders, searching routes, and noti-
fying important signals). However, using a naive flooding to achieve reliable broadcasting may be very costly, causing a lot
of contention, collision, and congestion, to which we refer as the broadcast storm problem. This paper proposes an efficient
reliable broadcasting protocol by taking care of the potential broadcast storm problem that could occur in the medium-
access level. Existing protocols are either unreliable, or reliable but based on a too costly approach. Our protocol differs
from existing protocols by adopting a low-cost broadcast, which does not guarantee reliability, as a basic operation. The
reliability is ensured by additional acknowledgement and handshaking. Simulation results do justify the efficiency of the
proposed protocol.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Broadcast storm; Mobile ad hoc network (MANET); Mobile computing; Reliable broadcast; Wireless communication
1. Introduction

One wireless network architecture that has
attracted a lot of attention recently is the mobile

ad hoc network (MANET). A MANET consists of
mobile hosts only (without base stations). Under
such architecture, mobile hosts may have to com-
municate with others in a multi-hop manner, and
thus each mobile host has to serve as a router.
1570-8705/$ - see front matter � 2005 Elsevier B.V. All rights reserved

doi:10.1016/j.adhoc.2005.11.006

* Corresponding author. Tel.: +886 3 4361070.
E-mail address: chison.hsu@msa.hinet.net (C.-S. Hsu).
The challenge is that every mobile host can roam
freely at any instant. Since collecting a global
network topology is prohibitive, it is difficult to
optimize the communication cost. MANET can be
deployed quickly, and thus has applications in such
as battlefields or disaster areas.

Broadcasting is a fundamental operation in all
kinds of networks. In MANET, since the network
topology is so dynamic, broadcasting could be used
more frequently (in events such as giving orders,
searching routes, or notifying important signals).
However, due to MANET’s dynamic feature and
.

mailto:chison.hsu@msa.hinet.net

300 C.-S. Hsu et al. / Ad Hoc Networks 5 (2007) 299–312
radio’s broadcasting nature, designing a broadcast
protocol for MANET should be cautious to prevent
unnecessary deficiency.

In the literature, broadcasting has been addressed
intensively from different aspects [2,6,9,12,15–25]. A
TDMA-based broadcast protocol is proposed in [2]
to assign mobile hosts to transmission sets according
to their IDs, where transmission sets are used to indi-
cate on which time slots to send data. The protocol is
mobility-transparent and can complete in a deter-
ministic number of time slots, but the maximum
degree of the network must be known in advance.
An intra-team broadcast protocol is proposed in [9]
that uses a minimum spanning tree or a minimum
node cover set as the backbone for broadcasting,
so a global topology has to be collected. But unfor-
tunately the collision problem is not considered in
this protocol. It is shown in [12] that using a naive
flooding to broadcast may cause a broadcast storm

in a MANET; several schemes, namely counter-
based, distance-based, and location-based protocols,
are proposed to alleviate this problem. To further
alleviate the broadcast storm problem, several adap-
tive schemes are proposed in [23] to achieve higher
reliability and better efficiency. To improve the loca-
tion-based protocol proposed in [12], a location-
aided broadcast protocol is proposed in [18,19],
which allows each host to construct an optimal local
cover set to relay the broadcast packet. The concept
of the connected dominating set is used in [17,25] to
reduce the number of redundant rebroadcasts; how-
ever, the potential collision problem is not consid-
ered in these works. Ref. [15] also discusses how to
reduce redundant rebroadcasts. To solve QoS rout-
ing, Ref. [24] discusses how to construct an energy-
efficient broadcast/multicast tree in a non-mobile
environment (assuming that transmission powers
are adjustable).

Several proposed systems exist to increase the
reliability of MAC-layer broadcast. A TDMA-
based protocol is proposed in [6]. Each host has a
unique time slot. To broadcast, a RTB (request to
broadcast) and a CTB (clear to broadcast) packets
are defined to reduce the hidden-terminal problem
and thus improve broadcast reliability. It is shown
in [22] that a host can elect a neighbor host as its col-

lision detector to provide feedback to the sender and
thus increase broadcasting reliability. A simple
RTS/CTS-like protocol is proposed in [20] to
increase the reliability of a MAC-layer broadcast.
Highly reliable MAC-layer broadcast protocols are
proposed in [16,21]. These protocols are highly reli-
able, but may have a lot of redundant rebroadcasts
and still cannot guarantee 100% delivery.

Most of the above referenced protocols
[6,9,12,15,17,16,19,20,22–25] do not guarantee a
100% delivery of the broadcast message to all hosts.
The protocol proposed in [2] can achieve 100%
delivery in deterministic time slots, but is TDMA-
based which is difficult to implement in multi-hop
ad hoc networks. In this paper, we adopt an IEEE
802.11-based medium access model [13]. Reliable
broadcasting is essential when a message/signal is
urgent; otherwise, unexpected disaster may occur.
Two reliable broadcasting protocols known to us
are [1,14]. Alagar and Venkatesan [1] proposes a
protocol based on flooding. Accurate 1-hop neigh-
bor information is the first guard to increase
reliability, and a handshake procedure serves as the
second guard to guarantee 100% delivery when col-
lisions occur. The protocol is simple but suffers from
serious broadcast storm effect due to many rebroad-
casts and acknowledgements. Pagani and Rossi [14]
proposes a protocol based on the clustering struc-
ture [5,8,11]. Through distributing the broadcast
message, a forwarding tree (FT) consisting of clus-
ter heads is constructed. Reliability is guaranteed
by many unicasts among cluster heads and collec-
tion of acknowledgements from cluster members.
The protocol pays cost in maintaining the cluster
structure in a regular manner, even when broadcast-
ing is not requested, which is sometimes costly. It
also critically relies on the accuracy of the FT and
cluster structure to ensure efficiency. This is not easy
in a MANET, especially when the host mobility is
high. More detailed reviews of these two protocols
are in Section 2.

In this paper, we propose a new reliable broad-
casting protocol, which only keeps a loose tree
relation among hosts. To alleviate the problems in
[1,14], a host does not need to know which hosts
are its children and, instead, a child only needs to
keep track of some possible parents. Our protocol
is characterized by ensuring reliability by adopting
a low-cost unreliable broadcasting protocol [12] as
a basis. Our protocol works in three phases: scatter-
ing, gathering, and purging. Reliability is enforced
only at necessary points, i.e., in the gathering phase.
This is what makes our protocol more efficient than
existing ones. Simulation results do justify the effec-
tiveness of our approach.

The rest of our paper is organized as follows.
Preliminaries are given in Section 2. In Section 3, we
describe our reliable broadcast protocol. Simulation

1 1
1

C.-S. Hsu et al. / Ad Hoc Networks 5 (2007) 299–312 301
results are presented in Section 4. Section 5 con-
cludes this paper.

2. Preliminaries

2.1. Problem statement

A MANET consists of a set of mobile hosts each
equipped with a wireless transceiver. No base stations
are supported in such an environment. Due to the
limitation of transmission distance and radio shad-
ows, mobile hosts may not be able to communicate
with each other directly. In this case, communication
should go on in a multi-hop manner. Hence each
mobile host in a MANET should serve as a router.

In this paper, we study the reliable broadcast

problem in a multi-hop MANET, where guaranteed
delivery of a message to every host is required. We
assume that the MANET may become disconnected
temporarily, but will resume connectivity eventu-
ally. All members of the MANET are closed and
known in advance and are numbered 1,2, . . . ,n.
Hosts in the network share a single common chan-
nel based on an IEEE 802.11-like protocol [13].
Due to the dynamic feature of MANET, collecting
a global topology of the MANET is prohibitive.
Without prior knowledge of the network topology,
the goal is to achieve reliable broadcasting by
efficiently using the scarce wireless bandwidth.

Fig. 1 shows the location of the proposed reliable
broadcast in the protocol stack. We assume that the
underlying MAC protocol follows the IEEE 802.11
standard [13]. Our protocol will be developed on top
of the unicast and 1-hop broadcast mechanisms
defined in IEEE 802.11. The details of the MAC
protocol are described in the following section.

2.2. IEEE 802.11’s MAC protocol

The IEEE 802.11’s medium access (MAC) proto-
col used in MANETs is the distributed coordination
Fig. 1. Location of the proposed reliable broadcast in the
protocol stack.
function (DCF) which is based on the Carrier Sense

Multiple Access with Collision Avoidance (CSMA/
CA) mechanism. When a mobile host wants to
transmit frames, it first detects the status of the
medium. If the medium is busy, the host will defer
until the medium is idle for a period of time equal
to DIFS (DCF interframe space). After this DIFS

idle time, the host will generate a random backoff
period, where backoff time = Random() · ST. Ran-

dom() is a random function, which is uniformly dis-
tributed between the interval [0, CW] and ST is the
length of a backoff time slot. The initial value of
the CW is CWmin. When a host wants to send data,
it first sense the medium. If the medium is idle for a
period of time equal to DIFS, the backoff procedure
will decrease the backoff time, otherwise, it will stop
decreasing the backoff time. When the backoff timer
expires, the host will transmit the frame. After the
sender transmits the frame, if it is a broadcast, the
receivers do nothing. Otherwise, if it is a unicast,
the receiver will wait for a period of time equals to
SIFS (short interframe space, SIFS < DIFS) and
then reply an Ack to the sender. If the sender does
not receive an Ack from the receiver, the sender will
double the size of its contention window and repeat
the DCF procedure again.

2.3. Broadcast storms caused by flooding

A naive approach to achieve broadcast is by
flooding. However, as shown in [12], flooding is very
costly. For example, in Fig. 2(a) and (b), it shows
that two transmissions are sufficient to resolve
broadcasting in the two MANETs, but flooding will
cost 4 and 7 messages, respectively. Through analy-
ses, [12] shows that flooding in MANET may cause
a lot of redundancy, contention, and collision. We
1 1

2

2 2
2

(a) (b)

Fig. 2. Two optimal broadcasting schedules in MANETS. White
nodes are sources, and gray nodes relaying hosts.

302 C.-S. Hsu et al. / Ad Hoc Networks 5 (2007) 299–312
briefly summarize the disadvantages of flooding as
follows:

• Redundant rebroadcasts: This happens when a
mobile host tries to rebroadcast a broadcast
packet to its neighbors, but all its neighbors have
already received the packet.

• Contention: When a host’s broadcast is heard by
several of its neighbors, these neighbors’ rebroad-
casts will contend for the medium at around the
same time. Since these hosts must be physically
close, the contention might be heavy, especially
when the environment is crowded.

• Collision: Because there is no RTS/CTS dialogue
and no collision detection mechanism provided,
collisions are more likely to occur. This may even
cause some mobile hosts not receiving the broad-
cast packet.

• Congestion: With flooding, broadcasting may
even be completed with longer latency.
2.4. Reviews of broadcasting protocols

2.4.1. The AV protocol

Alagar and Venkatesan [1] proposes a reliable
broadcast protocol based on flooding (termed as
AV protocol below). The source host should trans-
mit the message through broadcast to all its 1-hop
neighbors. Each receiver should return an acknowl-
edgement to the sender, and has responsibility to
broadcast the message again to all its 1-hop neigh-
bors. If the sender does not receive an acknowledge-
ment from any neighbor after a certain time
interval, it rebroadcasts the message.

Apparently, reasons such as collision or tempo-
rary network disconnection may result in some
hosts missing the broadcast message. The AV proto-
col uses a handshake procedure when two hosts meet
each other to exchange their histories. On finding a
missing broadcast message, a host can ask the other
to supply it.

Potential drawbacks of the AV protocol include
the broadcast storm effect as discussed earlier. The
transmission of acknowledgements may further
aggravate the storm effect. Requiring acknowledge-
ments in fact demands each host maintain an
up-to-date neighbor list (which is sometimes inhib-
itive due to host mobility). Any inaccuracy in the
neighbor list may result in repeated resending of
the broadcast message until timeout. In addition,
one hidden problem is that a host has to acknowl-
edge every neighbor who has sent the broadcast
message to it, which causes a lot of redundancy.
This has not taken missing acknowledgements
into account; an acknowledgement which experi-
ences collision will cause the sender to rebroadcast
again.

One thing not addressed in the AV protocol is
when and how a host can clear its history records.
Since no collection of the stability of broadcasts is
conducted, the history records may grow infinitely.
However, we believe that this can be solved by some
traditional global-state protocols in distributed
computing theory [4,10].

2.4.2. The PR protocol

Pagani and Rossi [14] proposes a protocol based
on a clustering structure (termed as PR protocol

below). It is assumed that clusters are maintained
in a regular manner by any of the earlier protocols
[5,8]. To broadcast, a scattering phase is taken first,
where the source host unicasts the message reliably
to its cluster head, which will in turn unicast the mes-
sage reliably along gateways to its neighboring clus-
ter heads. Each cluster head then sends the message,
through broadcast, to its cluster members. During
the scattering phase, a forwarding tree (FT) is con-
structed. The cluster head of the source host is the
root of the FT. Every host in the FT keeps its parent
and children. Then a gathering phase is taken, where
acknowledgements are collected by each cluster head
and forwarded along the FT from leaves to the
source. If the cluster head cannot gather all acknowl-
edgements from its cluster members, it retransmits
the message (until timeout). In case that a child can-
not forward an acknowledgement to its parent suc-
cessfully, it will send the acknowledgements to the
root according to a unicast routing protocol. If the
unicast routing protocol is not available, it broad-
casts a flood-ack message to its neighboring cluster
heads. Upon receiving the flood-ack, the neighboring
cluster head will forward the acknowledgement
along the FT, if possible; otherwise, it will continue
broadcasting the flood-ack message.

When the root gathers all the acknowledgements,
it will consider the broadcast message to be stable.
Then another broadcast will be issued from the
source to announce this fact. This can be achieved
by another scattering similar to the earlier step.

There are several drawbacks associated with the
PR protocol. First, the cluster structure might be
maintained even when no broadcast is desired.
Maintaining clusters could be costly when the net-
work has mobility [7]. Second, requiring each cluster

C.-S. Hsu et al. / Ad Hoc Networks 5 (2007) 299–312 303
head maintain an up-to-date cluster member list is
not easy, and sometimes prohibitive due to host
mobility. Any inaccuracy in the member list may
result in repeated resending of the broadcast mes-
sage by the cluster head (until timeout). A new host
may be discovered by a cluster head after it has for-
warded its acknowledgements, which may further
complicate the problem. Third, it is very critical if
the FT becomes broken during the gathering phase,
because many flood-ack’s might be triggered.
Fourth, cluster heads and gateways may become a
traffic bottleneck (with a lot of contentions and
collisions).

3. Our reliable broadcasting protocol

Our protocol tries to reduce the traffic overheads
while ensuring reliability of the broadcast. The pro-
tocol works in three phases. In the first scattering

phase, the source host tries to send the broadcast
message to as many hosts in the MANET as possi-
ble, with efficiency in mind. A handshake procedure
is used to keep those hosts who miss the broadcast
message informed. Then a gathering phase is used
to collect acknowledgements from all hosts. After
the message is stabilized, a purging phase is initiated
to inform all hosts to tear down data structures
related to this broadcast. Note that both the scatter-
ing and purging phases will be based on an unreli-

able broadcast to reduce the traffic overheads. The
reliability only counts on the second phase. This is
what makes our approach different from, and more
efficient than, existing protocols.

Each broadcast message M, when first initiated,
is assigned a unique id (one simple format of id is
to use a local sequence number plus the source host
identity). Associated with each M, the following
data structures are kept by each host x:

• C(id): a counter to keep track of the number of
times M is heard.

• Par(id): an ordered list of hosts serving as x’s par-
ents in the upstream gathering tree (initially,
Par(id) is an empty list).

• Tack(id): the acknowledgement timer for M.

The following data structures are not for per
broadcast, but are used by all broadcasts:

• Cth: the counter threshold.
• Thand: the handshake timer.
• hand_req: handshake request bit.
• H: the broadcast history, which contains the fol-
lowing fields:
– stable_id[1. . .n]: an array of ids such that all

broadcast messages of host i up to identity sta-
ble_id[i] are stabilized. A broadcast message is
called stable if the source host has gathered all
the acknowledgements from all the hosts in
the network; otherwise, it is unstable.

– unstable_msg: a list of messages known by x

but are unstable.
– unstable_id: a list of ids corresponding to the

unstable messages in unstable_msg.
– unstable_ack: a list of acknowledgement vec-

tors corresponding to the unstable messages
in unstable_msg, where an acknowledgement

vector is an n-bit stream such that the ith bit
indicates whether host i has acknowledged
the receipt of the broadcast message or not.

– pending_ack: a list of acknowledgement pack-
ets that are unable to deliver through the
upstream gathering tree collected by x (ini-
tially, it is an empty list).
The packets used in our protocol are listed
below:

• B(M, id): broadcast packet, with content M and
identity id.

• ACK(id,v): acknowledgement packet, for mes-
sage id with acknowledgement vector v.

• NACK(H.unstable_id): negative acknowledgement.
• HAND(H.stable_id[1. . .n], H.unstable_id, H.

pending_ack): handshake packet.
• PURGE(id): to notify all hosts that message id

has stabilized.
3.1. Scattering phase

In the scattering phase, we use a counter-based

scheme revised from [12]. The scheme tries to send
the broadcast message to as many hosts as possible
with the minimum efforts, but is unreliable. It works
as follows. When a host receives a broadcast mes-
sage B(M, id) for the first time, it will set a counter
C(id) = 1. Then B(M, id) will be scheduled for
rebroadcasting. However, before B(M, id) is sent
on the air, whenever the same message is heard
again, C(id) will be increased by 1. To avoid blind
flooding (and thus the broadcast storm effect),
before M is really transmitted, if C(id) reaches the
threshold Cth, B(M, id) will be withdrawn from
the message queue. The rationale is that most of

H1

H3

H2
H4

H5

H7

H6

H8

H9

H101
1

11

1

2 2

2

2

2

2
2

3
3

3

Fig. 3. A scattering example.

304 C.-S. Hsu et al. / Ad Hoc Networks 5 (2007) 299–312
the neighbors of the host may have already received
the broadcast message. In [12], it is shown surpris-
ingly that in many situations such a simple scheme
can deliver the broadcast message to more hosts,
while saving much traffic as opposed to flooding.

In our protocol, we will adopt this counter-based
scheme, in hope of propagating B(M, id) to more
hosts in the first round. In addition, a ‘‘weak’’ tree
will be established through the message propaga-
tion. Specifically, hosts from which B(M, id) is
received will be regarded as the receiving host’s par-
ents, and appended to the list Par(id). By doing so,
multiple reverse paths pointing to the source host
will be constructed. Later on, the receiving host will
try to send acknowledgements to one of the hosts in
Par(id).

The protocol is formally shown by event-driven
rules below for a host x. Note that in the following
description, whenever we say ‘‘broadcast a packet’’,
this means a 1-hop broadcast and is unreliable,
which should not be confused with the reliable
broadcast problem discussed in this paper.

S1-1. On desiring to send a broadcast message
M)

Obtain a unique id for M.
Append M to H.unstable_msg.
Append id to H.unstable_id.
Append an n-bit vector to H.unstable_ack

with the xth bit, the only bit, equal to 1.
Broadcast B(M, id).
S1-2. On receiving from a host y a broadcast mes-
sage B(M, id) for the first time)
H4
C(id) := 1.
Append M to H.unstable_msg.
Append id to H.unstable_id.
Append an n-bit vector to H.unstable_ack

with the x and yth bits, the only bits, equal
to 1.
Append y to Par(id).
Reset the timer Tack(id).
Put B(M, id) in transmission queue for
delivery.
H2H3 H5 H6 H7
S1-3. On receiving from another host y 0 a dupli-
cate, but undelivered, B(M, id))
H1 H8 H10 H9

Fig. 4. The corresponding gathering tree.
C(id) := C(id) + 1.
if (C(id) P Cth) then remove B(M, id) from
the transmission queue.
Update the proper vector in H.unstable_ack

by setting the y 0th bit to 1.
Append y 0 to Par(id).
Reset the timer Tack(id).
For example, consider the network in Fig. 3 with
H4 being the source host. Suppose the Cth = 2. After
receiving H4’s broadcast message, H2, H3, H5, H6,
and H7 will add H4 into their parent lists. Suppose
H2 and H7 are the first hosts rebroadcasting this
message. Then H1, H3, and H5 will add H2 into their
parent lists, while H6, H8, H9, and H10 will add H7

to their parent lists. Finally, if H10 rebroadcasts
first, H8 and H9 will add it into their parent lists.
Now, all hosts’ counters have reached 2, so there
will be no further rebroadcasting. The final
upstream gathering tree is as shown in Fig. 4.

Since the above counter-based scheme does not
guarantee 100% delivery, we adopt a handshake

mechanism for hosts to exchange broadcasting his-
tory. As defined earlier, each host keeps a broadcast
history H. The history will be broadcast periodically
controlled by the handshake timer Thand. However,
note that handshaking is only necessary when there
are unstable broadcasts pending or the hand_req bit
is set (to be explained later); otherwise, doing so is
wasteful.

S2-1. On timer Thand expiring)

if (H.unstable_id 5 ;) _ (hand_req = TRUE)
then

C.-S. Hsu et al. / Ad Hoc Networks 5 (2007) 299–312 305
Broadcast
HAND(H.stable_id, H.unstable_id,
H.pending_ack).1

hand_req := FALSE.
end if.
Reset the timer Thand.

The three fields in the handshake packet will help
the receiver to discover which message has become
stable, which message is missing, and which
acknowledgement is undeliverable through the
upstream gathering tree. The following for-loop per-
forms two tasks: (i) the first if-statement is to tear
down the related records in the history for each
newly stabilized broadcast message, and (ii) the sec-
ond if-statement is to set the handshake request bit
to enforce the host to send a HAND packet in S2-1
(the reason will become clear in the purging phase).
In the third if-statement, we adopt a receiver-initi-

ated rule to acquire missing broadcasting messages.
An NACK packet will be sent explicitly for this
purpose. Finally, the pending acknowledgements
are joined together (the purpose will be discussed
later).

S2-2. On receiving
1 Not
HAND(H 0.stable_id,H 0.unstable_id,
H 0.pending_ack) from a host y)
for i := 1 to n do

if (H 0.stable_id[i] > H.stable_id[i]) then

Remove the newly stabilized messages
from H (from unstable_msg, unstable_id,
and unstable_ack)
set H.stable_id[i] := H 0.stable_id[i].

elseif (H 0.stable_id[i] < H.stable_id[i]) then

hand_req := TRUE.
end if.

end for.
if (H 0.unstable_id � H.unstable_id 5 ;) then

Send a NACK(H.unstable_id) to y

through unicast.
end if.
H.pending_ack := H.pending_ack [
H 0.pending_ack.
The NACK packet will trigger the receiving host
to send the missing broadcasts to the requesting
host, as shown below.
e again that this means a 1-hop broadcast.
S2-3. On receiving a NACK(H 0.unstable_id) from
host y)

For each id in H.unstable_id � H 0.unsta-

ble_id, send B(M, id) to y through unicast,
where M is the corresponding broadcast mes-
sage in H.unstable_msg.
Note that the message is now sent through uni-
cast and thus is more reliable than broadcast. How-
ever, note that this may still experience failure due
to high host mobility. In any case, we will count
on HAND and NACK packets to ensure reliability.
Also, note that the above B(M, id) will trigger the
previous rules (such as S1-2 and S1-3). The treat-
ment is similar.

3.2. Gathering phase

To ensure reliability, a host which has heard the
broadcast message should return an ACK packet to
the source. In our protocol, ACKs will be propa-
gated following the pointers in Par(id). To increase
delivery rate, unicast is always used when sending
acknowledgements. The first host in the list Par(id)
will be tried first. If after a number of trials the
ACK still experiences failure, the next host in
Par(id) will be tried. If unfortunately no host in
Par(id) is available to accept the acknowledgement
(which may be due to many reasons, such as mobil-
ity, congestion, and collision), this packet will be
appended to H.pending_ack. Then this becomes
the handshake procedure’s responsibility to deliver
the ACK.

Another problem yet to be addressed is when a
host should return its acknowledgement. One naive
approach is to send immediately after the broadcast
message is received. However, serious contention
may occur among hosts who receive the broadcast
message at around the same time. Also, one appar-
ent goal is to combine multiple acknowledgements
together and return them by one packet to reduce
traffic. In the following, we propose an approach
based on a timeout mechanism. Recall the timer
Tack(id), which will be set in rule S1-2 and S1-3.
Whenever it expires, the host should send its
acknowledgement.

S3-1. On timer Tack(id) expiring)

Send ACK(id,v) to the first host in Par(id)
through unicast, where v is the acknowledge-
ment vector for message id from the
H.unstable_ack.

c Networks 5 (2007) 299–312
S3-2. On failing to deliver ACK(id,v))
306 C.-S. Hsu et al. / Ad Ho
Delete the first element of Par(id).
if (Par(id) 5 ;) then

Send ACK(id,v) to the first host in
Par(id) through unicast.
else

Append ACK(id,v) to H.pending_ack.
end if
For example, consider the example in Fig. 5. Sup-
pose the link from H9 to H7 is broken. Then H9’s
ACK will be sent to H10, which will forward the
ACK to H7. If unfortunately the link from H7 to
H4 is also broken, this ACK will be appended to
H7’s pending_ack. Now this becomes the handshak-
ing packets’ responsibility to forward the acknowl-
edgement to the source H4 (one possibility is to go
through the link from H7 to H6 and then to H4).

Even after sending its acknowledgement, the host
may still receive ACKs from its downstream hosts.
In this case, the host will include these acknowledge-
ments, if they are not yet known to the host, into its
broadcast history. Then timer Tack(id) will be set for
forwarding these acknowledgements. In the follow-
ing rule, �u is the complement of u, s denotes bitwise
logic-AND, and � denotes bitwise logic-OR.

S3-3. On receiving ACK(id,v))

Let u be the acknowledgement vector in
H.unstable_ack corresponding to message id.
if ð�u � v 6¼ 0Þ then

u := u�v.
Reset Tack(id).

end if.
3.3. Purging phase

When the source host finds that a message
(M, id) initiated by itself has stabilized, a PURGE
H4

H2H3 H5 H6 H7

H1 H8 H10 H9

Fig. 5. A gathering example.
packet should be broadcast to inform all hosts
to tear down the related data structures. In our
protocol, this can be found by checking the corre-
sponding acknowledgement vector in H.unstable_
ack. We say that (M, id) can be purged if itself is
stable and all other messages broadcast by the
same host with smaller identities have also
stabilized.

S4-1. On finding that a message (M, id) can be
purged)

Remove the related entries in H.unsta-
ble_msg, H.unstable_id, H.unstable_ack, and
H.pending_ack.
H.stable_id[x] := id.
Broadcast PURGE(id).
The PURGE packet is also broadcast through
the unreliable counter-based scheme. So the follow-
ing rules are similar to S1-2 and S1-3.

S4-2. On receiving PURGE(id) for the first time)

Remove the related entries in
H.unstable_msg, H.unstable_id, H.unstable_
ack, and H.pending_ack.
H.stable_id[x] := id.
C(id) := 1.
Put PURGE(id) in transmission queue for
delivery (through broadcast).
S4-3. On receiving a duplicate, but undelivered,
PURGE(id))

C(id) := C(id) + 1.
if (C(id) P Cth) then remove PURGE(id)
from the transmission queue.
Since PURGE is sent through an unreliable
broadcast, some host may miss this message. In this
case, this host (which owns unstable message) will
periodically broadcast HAND packets. This will
trigger other hosts (which already received the
PURGE packet) to set their hand_req bits in S2-2;
this will in turn trigger them to perform S2-1 to
broadcast HAND packets. Thus, as long as the net-
work remains connected, eventually every host will
realize which broadcasts have been stabilized and
tear down the related data structures.
3.4. Optional rules

In our protocol, ACK packets are sent through
unicast. However, due to radio’s broadcasting

C.-S. Hsu et al. / Ad Hoc Networks 5 (2007) 299–312 307
nature, they can still be overheard by other irrele-
vant hosts (using a promiscuous mode). Thus, a
host can use an overheard ACK to identify which
broadcast message it has missed. This may help
the host to request for missing message(s) at an ear-
lier time (as opposed to using handshaking). As
shown below, this is implemented by sending a
NACK, which will trigger S2-3 to send the missing
message(s).

S5-1. On overhearing ACK(id,v) from host y such
that id is not in H.unstable_id)

Send a NACK(H.unstable_id) to y through
unicast.
Fig. 6. Impact of counterthreshold (number of hosts = 100,
mobility = 5 m/s; rate = 1 broadcast/s; packet size = 256 bytes).
3.5. Memory requirement and computation cost

Assume that there are n hosts in the networks,
the broadcast rate is r broadcasts/s, and the maxi-
mum time for a broadcast to become stable is s sec-
onds. Each host will require O(n) memory space to
maintain the necessary data structure for each
unstable broadcast and each host will require at
most O(srn) memory space to maintain the neces-
sary data structure for all the unstable broadcasts.
Assume that a host has at most k neighbors. It will
take at most O(kn) computations for a host to
merge the gathered acknowledgements in each reli-
able broadcast.

4. Simulation results

To compare our protocol to other protocols, we
have developed a simulator using C. The MAC part
follows the IEEE 802.11 standard [13]. In our simu-
lations, the following parameters are fixed: trans-
mission radius = 250 m, area size = 1000 m · 1000 m,
transmission rate = 2M bits/s, beacon interval =
1 s, pause time = 30 s, contention window MIN_
CW = 31 and MAX_CW = 1023, retry limit = 5,
Thand = 1 s, and Tack = MAX_CW · ST.

We adopt the random waypoint mobility model
[3]: each node randomly generates a destination in
the simulated region, and then move to the destina-
tion at the chosen velocity. Upon arriving at the
destination, the host pauses for a certain period of
time and then repeats the same procedures until
the simulation is over.

Five parameters are tunable in our simulations:

• Counterthreshold = 2–5.
• Moving speed of hosts = 0–20 m/s.
• Broadcast rate = Broadcasts are generated by a
Poisson distribution with rate between 1 and 4
broadcasts/s (in the whole network).

• Number of hosts = 50–250.
• Broadcast packet size = 256–1024 bytes.

We mainly compare to the aforementioned AV
and PR protocols. In our simulation, the protocol
proposed in [8] is adopted to maintain PR’s cluster-
ing structure. Each simulation lasts for 100 s and the
simulation results are derived from the average of
100 simulations. Three performance metrics are
used:

• Average data traffic: the average amount of data
(in bytes) transmitted per host for each reliable
broadcast request.

• Average control traffic: the average amount of
control packets (in bytes) transmitted per host
for each reliable broadcast request (including
the beacon frame, broadcast ACK, ACK for uni-
cast, NACK, and handshake packets).

• Average latency: the interval from the time the
source host initiating the broadcast to the time
all the hosts have received the broadcast packet.

In the following sections, we make observations
from several aspects.

4.1. Impact of counterthreshold

To observe the effect of counterthreshold (Cth),
we vary Cth between 2 and 5. Fig. 6 shows the
impact of counterthreshold. As Cth increases, only
a few hosts would receive Cth or more duplicate
broadcast packets, hence, most of the hosts would
rebroadcast the broadcast packet, and thus

Fig. 8. Average control traffic vs. mobility (number of
hosts = 100; rate = 1 broadcast/s; packet size = 256 bytes).

Fig. 9. Average latency vs. mobility (number of hosts = 100;
rate = 1 broadcast/s; packet size = 256 bytes).

308 C.-S. Hsu et al. / Ad Hoc Networks 5 (2007) 299–312
increases the data traffic. On the other hand, all the
hosts still need to transmit the ACK packet through
the gathering tree no matter what Cth is set, Cth has
little effect to the control traffic. As for the latency,
when Cth increases, since most of the hosts need to
rebroadcast the broadcast packet, we can always
achieve 100% delivery ratio during the scattering
phase, and thus reduces the latency. However, when
Cth is small, a few hosts may not be able to receive
the broadcast packet during the scattering phase,
they may retrieve the broadcast packet from their
neighbors during the gathering phase, and thus
increases the latency. Overall, when Cth is set as 2,
the traffic load is the lowest; when Cth is set as 3,
the traffic load is lower than that of the higher Cth

and the latency is close to that of the higher Cth.
Therefore, we will set Cth as 2 and 3 in the following
simulations. For the ease of presenting the simula-
tion results, our protocol is denoted as Ours(Cth).

4.2. Impact of host mobility

In this section, we vary the moving speed
between 0 and 20 m/s to observe the impact of
mobility. The broadcast rate is fixed to 1 broad-
cast/s with packet size of 256 bytes.

As Figs. 7–9 show, all the three protocols’ traffics
and latency increase as the moving speed increases.
Our protocol incurs lower traffic load and latency
than AV and PR do in all cases. AV is sensitive to
mobility because it is based on each host’s neighbor
list. As mobility increases, hosts’ neighbor list
becomes inaccurate, which causes unnecessary
rebroadcast, and thus increases traffic load and
latency. PR’s control traffic and data traffic increase
as mobility increases due to higher cluster mainte-
Fig. 7. Average data traffic vs. mobility (number of hosts = 100;
rate = 1 broadcast/s; packet size = 256 bytes).
nance cost and retransmission cost as cluster mem-
bership changes. As to the broadcast latency of
PR, it takes longer time to complete as mobility
increases, because the cluster head and the new clus-
ter members will not realize each other until their
beacon frames are received by each other. Mobility
has a little impact to our protocol because it is a
partially counterbased, partially tree-based
approach. The handshake mechanism and the exis-
tence of secondary parents help acknowledgement
packets to be transmitted to source hosts but cause
some extra traffics and latency. Ours(2) incurs lower
traffic and higher latency than Ours(3) does because
of the reason mentioned in Section 4.1.

4.3. Impact of host density

In this simulation, we tune the number of hosts
to see its impact. Since the area size is fixed, tuning
the number of hosts in fact reflects the host density.

C.-S. Hsu et al. / Ad Hoc Networks 5 (2007) 299–312 309
As shown in Figs. 10–12, our protocol is the best in
all density ranges. The data traffic of PR and our
protocol decreases, as the density increases. In a
high density network, since higher ratio of hosts will
receive Cth or more duplicate broadcast packets,
Fig. 10. Average data traffic vs. host density. (mobility = 5 m/s;
rate = 1 broadcast/s; packet size = 256 bytes).

Fig. 11. Average control traffic vs. host density (mobility = 5 m/
s; rate = 1 broadcast/s; packet size = 256 bytes).

Fig. 12. Average latency vs. host density (mobility = 5 m/s;
rate = 1 broadcast/s; packet size = 256 bytes).
lower ratio of hosts will rebroadcast the packet
and thus decreases the data traffic. Similarly, since
PR protocol is a cluster-based protocol, lower ratio
of hosts will become cluster heads and rebroadcast
the packet and thus decreases the data traffic. In
PR and our protocols, since every host needs to
forward its ACK packet to the source host, higher
density of host will incur more collisions and
retransmissions, and thus increases the control traf-
fic and latency. As for the AV protocol, the traffic
load increases when host density increases. This is
even more significant for latency. This is because
there is more contentions and collisions when the
network is dense (recall the broadcast storm prob-
lem reviewed earlier).

4.4. Impact of broadcast rate

In this experiment, we vary the broadcast rate.
Figs. 13 and 14 show that AV, PR and our proto-
cols will have higher traffic as rate increases due to
Fig. 13. Average data traffic vs. broadcast rate (number of
hosts = 100; mobility = 5 m/s; packet size = 256 bytes).

Fig. 14. Average control traffic vs. broadcast rate (number of
hosts = 100; mobility = 5 m/s; packet size = 256 bytes).

310 C.-S. Hsu et al. / Ad Hoc Networks 5 (2007) 299–312
higher chances of collisions, which cause retransmis-
sion. Fig. 15 compares the average latency. Our pro-
tocol still outperforms others at high traffic load.

4.5. Impact of packet size

In wireless communication, larger packets suffer
from high chances of collision. This is particularly
Fig. 15. Average latency vs. broadcast rate (number of
hosts = 100; mobility = 5 m/s; packet size = 256 bytes).

Fig. 16. Average data traffic vs. packet size (number of
hosts = 100; mobility = 5 m/s; rate = 1 broadcast/s).

Fig. 17. Average control traffic vs. packet size. (number of
hosts = 100; mobility = 5 m/s; rate = 1 broadcast/s).

Fig. 18. Average latency vs. packet size (number of hosts = 100;
mobility = 5 m/s; rate = 1 broadcast/s).
true for broadcast since no RTS/CTS dialogue is
used. Figs. 16–18 demonstrate this effect on these
three protocols. As the packet size increases, colli-
sions, retransmissions, and transmission time for
each broadcast packet also increases, and thus
incurs more traffic load and longer latency.

5. Conclusions

We have proposed an efficient reliable broadcast
protocol. This protocol takes a mixture of counter-
based and tree-based approach. The counterbased
mechanism relieves the broadcast storm effect. Our
tree is in fact a very loose tree—in order to return
acknowledgement, a host tries to maintain multiple
parents as reverse paths to the source host. The tree
structure is not actually maintained, and a hand-
shake mechanism is used to resolve this problem
when the tree is broken. We also avoid using the
brute-force approach that is adopted by existing
schemes that a host will repeatedly rebroadcast the
same broadcast packet if it does not receive
acknowledgements of the packet from all of its
neighbors. Through simulations, we show the
advantage of our protocol in situations with various
parameters.

References

[1] S. Alagar, S. Venkatesan, Reliable broadcast in mobile
wireless network, in: Proceedings of the Military Communi-
cations Conference, vol. 1, 1995, pp. 236–240.

[2] S. Basagni, D. Bruschi, I. Chlamtac, A mobility-transparent
deterministic broadcast mechanism for ad hoc networks,
IEEE Transactions on Networking 7 (1999) 799–807.

[3] J. Broch, D.A. Maltz, D.B. Johnson, Y.C. Hu, J. Jetcheva, A
performance comparison of multi-hop wireless ad hoc
network routing protocols, in: Proceedings of the Interna-
tional Conference on Mobile Computing and Networking,
1998, pp. 85–97.

C.-S. Hsu et al. / Ad Hoc Networks 5 (2007) 299–312 311
[4] K.M. Chandy, L. Lamport, Distributed snapshots: deter-
mining global states of distributed systems, ACM Transac-
tions on Computer Systems 1 (1985) 63–75.

[5] C.C. Chiang, M. Gerla, Routing and multicast in multihop
mobile wireless networks, in: Proceedings of the IEEE
International Conference on Universal Personal Communi-
cations, vol. 2, 1997, pp. 546–551.

[6] I. Chlamtac, A.D. Myers, V.R. Syrotiuk, G. Zaruba, An
adaptive medium access control (mac) protocol for reliable
broadcast in wireless networks, in: Proceedings of the IEEE
International Conference on Communications, vol. 3, 2000,
pp. 1692–1696.

[7] M. Gerla, T.J. Kwon, G. Pei, On demand routing in large ad
hoc wireless networks with passive clustering, in: Proceed-
ings of the IEEE Wireless Communications and Networking
Conference, vol. 1, 2000, pp. 100–105.

[8] M. Gerla, J.T.C. Tsai, Multicluster, mobile, multimedia
radio network, Wireless Networks 1 (1995) 255–265.

[9] I. Koutsopoulos, D. Connors, A. Savvides, S.K. Dao, Intra-
team multi-hop broadcasting (itmb): a mac layer protocol
for efficient control signaling in wireless ad-hoc networks, in:
Proceedings of the IEEE International Conference on
Communications, vol. 3, 2000, pp. 1723–1727.

[10] H.F. Li, T. Radhakrishnan, K. Venkatesh, Global state
detection in non-fifo networks, in: Proceedings of the 7th
International Conference on Distributed Computing Sys-
tems, 1987, pp. 364–370.

[11] C.R. Lin, M. Gerla, Adaptive clustering for mobile wireless
networks, IEEE Journal of Selected Areas in Communica-
tions 15 (1997) 1265–1275.

[12] S.Y. Ni, Y.C. Tseng, Y.S. Chen, J.P. Sheu, The broadcast
storm problem in a mobile ad hoc network, in: Proceedings
of the International Conference on Mobile Computing and
Networking, 1999, pp. 151–162.

[13] L.M.S.C. of the IEEE Computer Society. Ieee std 802.11-
1997, wireless lan medium access control (mac) and physical
layer (phy) specifications. IEEE, 1997.

[14] E. Pagani, G.P. Rossi, Providing reliable and fault tolerant
broadcast delivery in mobile ad-hoc networks, Mobile
Networks and Applications 4 (1999) 175–192.

[15] W. Peng, X.C. Lu, On the reduction of broadcast redun-
dancy in mobile ad hoc networks, in: Proceedings of the First
Annual Workshop on Mobile and Ad Hoc Networking and
Computing, 2000, pp. 129–130.

[16] S.T. Sheu, Y.J. Tsai, J.H. Chen, A highly reliable broadcast
scheme for ieee 802.11 multi-hop ad hoc networks, Interna-
tional Conference on Communications (2002) 610–615.

[17] I. Stojmenovic, M. Seddigh, J. Zunic, Internal nodes based
broadcasting algorithms in wireless networks, in: Hawaii
International Conference on System Sciences, 2001.

[18] M.T. Sun, T.H. Lai, Computing optimal cover set for
broadcast in ad hoc network, International Conference on
Communications (2002) 3291–3295.

[19] M.T. Sun, T.H. Lai, Location aided broadcast in wireless ad
hoc network systems, International Conference on Commu-
nications (2002) 597–602.

[20] K. Tang, M. Gerla, Mac layer broadcast support in 802.11
wireless networks, in: Proceedings of the Military Commu-
nications Conference, 2000, pp. 544–548.

[21] K. Tang, M. Gerla, Mac reliable broadcast in ad hoc
networks, Military Communications Conference (2001)
1008–1013.
[22] J. Tourrilhes, Robust broadcast: improving the reliability of
broadcast transmissions on csma/ca, IEEE International
Symposium on Personal, Indoor and Mobile Radio Com-
munications 3 (1998) 1111–1115.

[23] Y.C. Tseng, S.Y. Ni, E.Y. Shih, Adaptive approaches to
relieving broadcast storms in a wireless multihop mobile ad
hoc network, International Conference on Distributed
Computing Systems (2001) 481–488.

[24] J.E. Wieselthier, G.D. Nguyen, A. Ephremides, On the
construction of energy-efficient broadcast and multicast trees
in wireless networks, in: Proceedings of INFOCOM, 2000,
pp. 585–594.

[25] J. Wu, H. Li, On calculating connected dominating set for
efficient routing in ad hoc wireless networks, in: Proceedings
of DIAL-M, 1999, pp. 7–14.

Chih-Shun Hsu received his B.S. degree
in computer education from National
Taiwan Normal University, Taiwan, in
1990, and the M.S. degree in computer
science from National Taiwan Univer-
sity, Taiwan, in 1992. He obtained his
Ph.D. degree in Computer Science from
National Central University, Taiwan, in
2004. He joined the faculty of the
Department of Information Manage-
ment, Nanya Institute of Technology,

Taiwan, as an instructor in 1996, and has become an associate
professor since August 2004. He has become the chairman of the

Department of Computer Science and Information Engineering,
Nanya Institute of Technology, since August 2005. His current
research interests include wireless communications and mobile
computing.

Yu-Chee Tseng received his Ph.D. in
Computer and Information Science from
the Ohio State University in January of
1994. He is currently a Professor and the
Chairman at the Department of Com-
puter Science, National Chiao-Tung
University. He served as a Program
Chair in the Wireless Networks and

Mobile Computing Workshop, 2000 and
2001, as a Vice Program Chair in the
Int’l Conf. on Distributed Computing

Systems (ICDCS), 2004, as a Vice Program Chair in the IEEE

Int’l Conf. on Mobile Ad-hoc and Sensor Systems (MASS), 2004,

as an Associate Editor for The Computer Journal, as a Guest
Editor for ACM Wireless Networks special issue on ‘‘Advances in
Mobile and Wireless Systems’’, as a Guest Editor for IEEE

Transactions on Computers special on ‘‘Wireless Internet’’, as a
Guest Editor for Journal of Internet Technology special issue on
‘‘Wireless Internet: Applications and Systems’’, as a Guest Editor
for Wireless Communications and Mobile Computing special issue
on ‘‘Research in Ad Hoc Networking, Smart Sensing, and Per-
vasive Computing’’, as an Editor for Journal of Information

Science and Engineering, as a Guest Editor for Telecommunication

Systems special issue on ‘‘Wireless Sensor Networks’’, and as a
Guest Editor for Journal of Information Science and Engineering

special issue on ‘‘Mobile Computing’’.

312 C.-S. Hsu et al. / Ad Hoc Networks 5 (2007) 299–312
He received the Outstanding Research Award, by National
Science Council, ROC, in both 2001–2002 and 2003–2005, the
Best Paper Award, by Int’l Conf. on Parallel Processing, in 2003,
the Elite I.T. Award in 2004, and the Distinguished Alumnus
Award, by the Ohio State University, in 2005. His research
interests include mobile computing, wireless communication,
network security, and parallel and distributed computing. He is a
member of ACM and a Senior Member of IEEE.

Jang-Ping Sheu received the B.S. degree
in computer science from Tamkang
University, Taiwan, Republic of China,
in 1981, and the M.S. and Ph.D. degrees
in computer science from National Tsing
Hua University, Taiwan, Republic of
China, in 1983 and 1987, respectively.

He joined the faculty of the Depart-
ment of Electrical Engineering, National
Central University, Taiwan, Republic of
China, as an Associate Professor in 1987.

He is currently a Professor of the Department of Computer
Science and Information Engineering and Director of Computer

Center, National Central University. He was a Chair of
Department of Computer Science and Information Engineering,
National Central University from 1997 to 1999. He was a visiting
professor at the Department of Electrical and Computer Engi-
neering, University of California, Irvine from July 1999 to April
2000. His current research interests include wireless communi-
cations, mobile computing and parallel processing. He was an
associate editor of Journal of the Chinese Institute of Electrical
Engineering, from 1996 to 2000. He was an associate editor of
Journal of Information Science and Engineering from 1996 to
2002. He was an associate editor of Journal of the Chinese
Institute of Engineers from 1998 to 2004. He is an associate editor
of the IEEE Transactions on Parallel and Distributed Systems
and International Journal of Ad Hoc and Ubiquitous Comput-
ing. He was a Program Chair of IEEE ICPADS’2002.

He received the Distinguished Research Awards of the
National Science Council of the Republic of China in 1993–1994,
1995–1996, and 1997–1998. He was the Specially Granted
Researchers, National Science Council, from 1999 to 2005. He
received the Distinguished Engineering Professor Award of the
Chinese Institute of Engineers in 2003. He received the Distin-
guished Professor award of the National Central University in
2005. He is a senior member of the IEEE, a member of the ACM,
and Phi Tau Phi Society.

	An efficient reliable broadcasting protocol for wireless mobile ad hoc networks
	Introduction
	Preliminaries
	Problem statement
	IEEE 802.11 rsquo s MAC protocol
	Broadcast storms caused by flooding
	Reviews of broadcasting protocols
	The AV protocol
	The PR protocol

	Our reliable broadcasting protocol
	Scattering phase
	Gathering phase
	Purging phase
	Optional rules
	Memory requirement and computation cost

	Simulation results
	Impact of counterthreshold
	Impact of host mobility
	Impact of host density
	Impact of broadcast rate
	Impact of packet size

	Conclusions
	References

