
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 22, 1427-1445 (2006)

1427

Interest-Based Lookup Protocols
for Mobile Ad Hoc Networks*

YI-CHUNG CHEN AND JANG-PING SHEU

Department of Computer Science and Information Engineering
National Central University

Chungli, 320 Taiwan

Peer-to-peer networks and mobile ad hoc networks (MANETs) share the same

characteristics of self-organization, decentralization, and dynamic topology. Therefore, it
is natural to apply peer-to-peer techniques to MANETs. A lookup protocol, one of the
most important issues in a peer-to-peer computing, is an essential component for re-
source searching. In this paper, we propose interest-based bandwidth-efficient lookup
protocols, simple lookup protocol and advanced lookup protocol, for mobile environ-
ments. A peer willing to search files broadcasts a query message with keywords relevant
to its interests to its neighbors in the transmission range, and only those neighbors also
interested in the query forward. Simulation results show that our protocols have higher
success rate and raise the scalability and bandwidth efficiency comparing to the previous
work. Besides, our protocols can avoid selfish behaviors, since the behavior of forward-
ing queries benefits not only the source node but also the forwarding node.

Keywords: file sharing, lookup protocol, mobile ad hoc network, peer-to-peer, distrib-
uted computing

1. INTRODUCTION

With flourishing development of Internet, more and more resources and information
are shared on the Internet. The resources and information may be in the forms of web
pages, documents, multimedia files, services, and computing powers, etc. Traditionally,
resources to be shared are located in a dedicated server and all clients request the server
for resources. This is so-called client/server architecture. However, client/server archi-
tecture encounters some problems such as fault-tolerance, scalability, load balance, and
so on. Peer-to-peer (P2P) networking provides a new paradigm for information ex-
changes. The emerging of peer-to-peer system is started by Napster, which allows shar-
ing of MP3 music files among Napster’s users. Napster provides MP3 file sharing by a
centralized directory server which only maintains basic addressability and availability
information about the user and the meta-information about the shared files. The user ex-
changes MP3 files directly from other peers after retrieving the location information.

Peer-to-peer networking is different from the client/server architecture where all the
resources are located in a server. Resources in a peer-to-peer network are distributed and
peers play both roles of servers and clients simultaneously. Peers sometimes called ser-
vents (servers/clients) exchange their resources from each other. Because of the charac-

Received October 7, 2004; revised April 12, 2005; accepted June 22, 2005.
Communicated by Chin-Teng Lin.
* This work was supported in part by the National Science Council of Taiwan, R.O.C., under grant No. NSC

93-2213-E-008-001

YI-CHUNG CHEN AND JANG-PING SHEU

1428

teristics of file sharing, peer-to-peer systems have some attractive properties: the more
users engage in, the more resources are shared, and the amount of resources in a peer-to-
peer system grows over time. Today, several peer-to-peer systems have been developed
such as Napster [17], KaZaA [13], eDonkey [4], eMule [5], and Morpheus [16]. Because
of the novelty of peer-to-peer computing, there are still lots of issues to discuss such as
social issues, intellectual property rights, lookup protocols, bandwidth efficiency, load
balance, streaming, data dissemination, security, reputation, pricing and business model
[9, 18, 20, 25].

With the increase of mobile devices as well as progress in wireless communications,
ad hoc networking is drawing more and more attention. A mobile ad hoc network
(MANET) consists of mobile devices communicating with each other using multi-hop
wireless links without any central control. Many potential applications of ad hoc net-
working have been proposed such as home networking, sensor networks, personal area
networks (PANs), and ubiquitous computing. Peer-to-peer networks and MANETs share
the same characteristics of self-organization, decentralization, and dynamic topology.
Hence, it is natural to apply peer-to-peer techniques to MANETs. Although there have
been significant research efforts in peer-to-peer systems during the past few years,
peer-to-peer systems for mobile environments is still a new research issue. 7DS [19] is
the first approach to apply peer-to-peer technique to mobile environments. It is an archi-
tecture and set of protocols supporting Web browsing by on-the-fly file sharing among
peers that are not necessarily connected to the Internet. For queries, 7DS implements a
multi-hop flooding algorithm combined with multicast delivery of queries. PDI [15] pro-
vides the lookup service by locally broadcasting query messages and response messages,
and it eliminates the need for flooding the entire network with query messages by main-
taining an index cache at every device.

To address the problem of service discovery in a mobile environment, we propose a
simple lookup protocol (SLP) and an advanced lookup protocol (ALP) for MANET. In
contrast to the previous work, our protocols are more bandwidth-efficient and scalable by
an interest-based selective forwarding scheme. In SLP, the source node broadcasts a
Query message with an interest threshold and a time-to-live (TTL), and only the neighbor
nodes whose interests in query string are larger than the threshold keep forwarding the
query. The query process goes on until the TTL is equal to zero. All nodes that have the
corresponding resources return a QueryHit containing file references reversely along the
query path to the source node. In ALP, we save the bandwidth further by determining
threshold and TTL dynamically according to feedbacks from previous query requests.
Note that, we propose lookup protocols for resources discovery, but do not discuss how
the files transmit. The data transmissions after lookup can be solved by using any existed
routing protocols such as dynamic source routing, destination-sequenced distance-vector
routing, and ad hoc on-demand distance vector routing [11].

The rest of this paper is organized as follows. Section 2 gives an overview of peer-
to-peer lookup model and some related works. Section 3 presents our lookup protocols.
In section 4, we evaluate the performance of our protocols through simulations. Finally,
we conclude our contributions in section 5.

LOOKUP PROTOCOLS FOR AD HOC NETWORKS

1429

2. PRELIMINARIES

In this section, we introduce lookup models and some related works. A lookup ser-
vice, one of the most important issues in peer-to-peer computing, is an essential compo-
nent for resource searching. Several lookup protocols (sometimes called location proto-
cols) have been proposed such as Gnutella [7], Freenet [2], Chord [26], CAN [21], Pastry
[23], and PDI [15].

2.1 Peer-to-Peer Lookup Models

Peer-to-peer systems can be classified into centralized, decentralized, and hybrid
models [18]. In a centralized peer-to-peer system, the lookup service is provided by a
central directory server which maintains basic addressability and availability information
about the peers and the meta-information about the resources. In decentralized topologies
such as Freenet and Gnutella, all the peers play equal roles. The lookup service is made
through propagating query requests. A hybrid (centralized + decentralized) peer-to-peer
system is designed for a heterogeneous network and formed by several subnets consist-
ing of one super-peer and a limited number of leaf-peers having a centralized relation-
ship to the super-peer. In hybrid systems, super-peers bear heavier burdens and run the
lookup process with each other in a decentralized manner. Leaf-peers only need to ask
their super-peers for responses. Examples of this system are KaZaA and Morpheus.

For decentralized and hybrid peer-to-peer systems, there are two types of lookup
protocols currently proposed. One is flooding-based lookup protocol where the peers
propagate query requests until the termination conditions meet. This scheme allows more
flexible resource placement and search, and it is simple and robust even when frequently
joining and leaving of peers, but it is not well scalable because of generating huge mes-
sages on querying. Gnutella protocol is a typical flooding-based lookup protocol. The
other type of lookup protocols is based on distributed hash table (DHT) such as Chord
[26], CAN [21], and Pastry [23]. DHT-based lookup protocols institute strict rules for
resource placement and search. Peers are organized into a well-defined logical structure,
and the answer to a query is in a bounded number of hops. Although DHT-based proto-
cols are more scalable, it also generates huge overhead of maintaining key distribution
which is triggered by peers’ joining/leaving the network or creation of the keys.

DHT-based protocols are not suitable to be applied in a mobile environment. This is
because logical neighbors in DHT-based protocols are probably physically many hops
away. In a mobile environment, we take physical topology and physical distance seri-
ously instead of logical ones. Frequently joining and leaving of peers resulting from mo-
bility also challenge applicability of DHT-based protocols. Contrarily, flooding-based
protocols are more resistant to the dynamic environment. Therefore, we base our proto-
cols on flooding-based approach.

2.2 Chord

In Chord [26], resource information is a pair of (key, value). A Chord-based appli-
cation would store and find each value at the node to which the value’s key maps. Chord
provides just one operation: given a key, it maps the key onto a node. All nodes are or-
ganized into a logical identifier circle (or called Chord ring), and the protocol uses con-

YI-CHUNG CHEN AND JANG-PING SHEU

1430

sistent hashing [12] to assign each node and key an identifier and distribute keys evenly
among the nodes of the network. Key k is assigned to the first node whose identifier is
equal to or follows (the identifier of) k. This node is called the successor node of key k,
denoted by successor (k). Queries for a given identifier could be passed around the circle
via these successor pointers until they encounter a pair of nodes that straddle the desired
identifier; the value in the pair is the node the query maps to. Although Chord is scalable
and guarantees to finish a lookup in bound of O(log n) messages, where n is the number
of peers in the network, it is not suitable to be implemented to be a real peer-to-peer sys-
tem. First, it is very difficult for a node to know who its successor and predecessor are.
Second, whenever a node joins or leaves, certain keys must be redistributed to other
nodes and finger tables must be updated too. Because of dynamic nature of peer-to-peer
networks, arrivals and departures of nodes are occurred quite frequently in a peer-to-peer
network, especially in a mobile environment, and maintenance overhead will be quite
huge.

2.3 Gnutella

Gnutella [7, 22] is a protocol for distributed search. In this model, participants,
called servents, play both roles of servers and clients. The Gnutella protocol defines the
way in which servents communicate over the network. In order to join the system, a new
servent initially connects itself to some of several known hosts that are almost always
available. When a servent wishes to search for some files, it broadcasts a query message
to its neighbors which forward the query message for its own neighbors. In the dynamic
environment, nodes often join and leave and network connections are unreliable. To cope
with this environment, after joining the network, a node periodically pings its neighbors
to discover other participating nodes. Using this information, a disconnected node can
always reconnect to the network. Some variation protocols [3, 8] have also been pro-
posed for operating Gnutella on hybrid topologies and (re)configuration algorithms [6]
have also been proposed for maintaining the topologies in the MANETs. Opposed to
Gnutella, our protocols don’t need to discover and maintain connections. Additionally,
we avoid flooding the whole network, and hence reduce the network load.

2.4 Interest-Based Shortcuts

In [25], the authors propose an approach in which peers loosely organize themselves
into an interest-based structure on top of the existing Gnutella network. The approach
exploits a simple, yet powerful principle called interest-based locality, which posits that
if a peer has a particular piece of content that one is interested in, it is very likely that it
will have other items that one is interested in as well. When using interest-based short-
cuts, a significant amount of flooding can be avoided, making Gnutella a more competi-
tive solution. In addition, shortcuts are modular and can be used to improve the per-
formance of protocols including distributed hash table schemes. Finally, interest-based
shortcuts often resolve queries quickly in one peer-to-peer hop, while reducing the total
load in the system. Opposed to interest-based shortcuts, our protocols are dedicated to a
mobile environment, where frequently joining and leaving of peers occur and the as-
sumption of logical topology of interest-based shortcuts is invalid.

LOOKUP PROTOCOLS FOR AD HOC NETWORKS

1431

2.5 Passive Distributed Indexing (PDI)

In [15], the authors introduce Passive Distributed Indexing (PDI), a simple ap-
proach for file searching in mobile environments. Each mobile device maintains a re-
pository consisting of a set of files stored in the local file system and an index cache
which stores pairs of keywords and document identifiers. Query-messages and response-
messages are transmitted using local broadcast. To overcome the shortcomings of low
wireless transmission range of the communication interfaces, messages may be for-
warded for a predefined number of hops. All mobile devices listen for broadcasted re-
sponses, even if they did not actually issue a query. When a response is received, all re-
ported references to matching documents are added to the local index cache for all key-
words contained in the original query. The replacement of index cache entries is con-
ducted in a least-recently-used fashion. Passive distributed indexing implicitly replicates
results for popular queries in index caches at several mobile devices. The authors in [15]
show that PDI achieves satisfactory success rate and eliminates the need of flooding the
whole network with query messages. However, it still causes considerable network over-
head due to broadcasting not only query-messages but also response-messages. Opposed
to PDI, we use selective forwarding to reduce the number of query messages needed, and
the responses are return backwards along the query path to the source node.

3. OUR PROTOCOLS

Traditionally, the lookup service is provided by flooding queries over the whole
network. This method is effective to find out matching results but it is not efficient and
produces huge network overhead. Especially in the wireless environment, it also causes
large number of collisions and leads to degradation of the network performance.

In this section, we present our simple lookup protocol (SLP) and advanced lookup
protocol (ALP) for MANETs. Our lookup protocols both achieve bandwidth efficiency
and high utilization of reference cache via interest-based mechanism. In contrast to the
general lookup protocol improving the performance by peers storing related information
of query path, which changes frequently in wireless environment, our protocols achieve
the bandwidth efficiency by peer storing information of <resource, peer> pairs in the
local cache which is resistant to the mobile environment. Efficiency of bandwidth is im-
proved further in ALP by referring to feedbacks from previous query requests. We pre-
sent the details of two protocols in the following.

3.1 Simple Lookup Protocol

Since traditional flooding mechanism is not bandwidth-efficient, we propose an in-
terest-based lookup protocol selectively propagating queries. Our mechanism operates
under the following two assumptions. Firstly, every participant in the peer-to-peer system
has its own interests. Secondly, peers will request the resources which he or she is inter-
ested in, and the downloaded files reflect its interests. A peer willing to search files
broadcasts a query message with keywords relevant to its interests to its neighbors in the
transmission range, and only those neighbors also interested in the query forward. If
there are any files found, the responses are returned to the peer which issued the query.

YI-CHUNG CHEN AND JANG-PING SHEU

1432

To implement SLP, each mobile device maintains a repository and a reference
cache. A repository stores the resources obtained from other peers in the local file system.
A reference cache contains the information about the remote resources. An entry in the
cache is composed of two fields: file reference File_Ref and access time Access_Time. A
File_Ref is a pair of File_Src and File_Info. A File_Src field indicates the location infor-
mation of a resource such as IP or MAC address of a mobile device. A File_Info field,
which could be file name or the meta-descriptions of the file, is used for query matching.
The Access_Time indicates the last time the entry is accessed. We define two types of
messages, Query and QueryHit, for our protocols. A Query message contains query string
Q consisting of one or more keywords, TTL, and threshold Thresh for query matching.
TTL is the maximum number of hops a message can be forwarded in the network.
Threshold Thresh is a minimum interest value for query forwarding. A QueryHit message
contains file references.

A peer willing to search files broadcasts a Query message with an interest threshold
Thresh and a set of keywords relevant to its interests to its neighbors in the transmission
range. When a node receives the Query message, it first calculates the node’s interest in
the query string. The files downloaded due to the querying behaviors in the past, and
therefore reflect a user’s interests and requesting patterns and it can be used to predict the
requesting behaviors in the future. Thus, the latest files in the repository can be used to
reflect the recent interest and requesting pattern. We define the interest value as the av-
erage of the similarities between the query string and the latest r downloaded files, where
r is a pre-defined value. The formal definition of interest of node N for a query string Q
is defined as:

1

(,)

(,)

r

i i
i

s Q f

int N Q
r

==
∑

where N is the identifier of the node, Q is a query string in Query message, fi is ith latest
file, si is the similarity between query string Q and file fi, and r is the number of files
used to calculate the interest. We use cosine distance [10] to measure the similarity. The
cosine distance is a widely used distance measure in information retrieval (IR) applica-
tions, and has been found historically to be quite effective in practical IR experiments.
The similarity between query string Q and file D is defined as:

1

2 2

1 1

(,)

NK

k k
k

NK NK

k k
k k

q d

s Q D

q d

=

= =

=
∑

∑ ∑

where NK is the number of keywords in query string Q, qk is always 1, and dk is 1 if the
kth keyword in the query string Q exists in the meta-information of the file D, else dk is 0.

If the interest of the node int(N, Q) is larger than the Thresh, the node forwards the
Query message by broadcasting. If there are files matching the query in the node’s re-
pository or in the reference cache, the node returns a QueryHit message containing the

LOOKUP PROTOCOLS FOR AD HOC NETWORKS

1433

references to the matching files along the query path to the source node, the node issuing
the Query message and every node on the query path receiving QueryHit messages. Note
that a file matches a query only if it matches all keywords in the query. When the nodes
receive the QueryHit message, if the same entries for the references message exist in the
reference cache, the Access_Time of the entries are updated, else the nodes create new
entries for the QueryHit message. When the QueryHit messages reach the source node, it
gets knowledge of the locations of the files and launches connections and file transmis-
sions. Fig. 1 is an example using SLP to locate files.

0.3

0.5

0.6

Query

Query

0.4

0.7

Query

Query

Query

stop A
C

B

DF

E

QueryHitB

QueryHitF

QueryHitF

QueryHitF

stop

stop

f100
…

…

f2

f1

f100
…

…

f2

f1

Q

s1

s2

s100

… B’s Interest
= 1/100 ∑Si
= 0.6

TTL = 3
Threshold = 0.5

B’s repository

Fig. 1. Simple lookup protocol.

In Fig. 1, we assume TTL is equal to 3, and threshold is 0.5. The number on the

node means its interest, QueryHitB means the QueryHit message from node B, and Query-
HitF means the QueryHit message from node F. Node A initiates the lookup, and broad-
casts a Query message. When node A’s neighbors B and C receive the Query message,
they calculate their interest, and search for the files matching the query string in the re-
pository and in the reference cache. In this example, because the interest of node C is 0.3
less than threshold 0.5, node C stops forwarding. On the other hand, because the interest
of node B is 0.6 larger than the threshold, node B keeps forwarding the Query message to
node D. Besides, there is a matching file reference in the reference cache, therefore node
B returns a QueryHit message to source node A. Since there are no files matched in node
D, it just forwards Query message to nodes E and F. There is a file matched in the re-
pository of node F and node F returns a QueryHit message backwards along the path the
Query message conveyed, and nodes D and B add the file information into their reference
caches when receiving the QueryHit message. Node F stops forwarding because of insuf-
ficient interest value and TTL. Node E also stops forwarding because insufficient TTL.
Finally, node A receives two references from nodes B and F, and launches connections to
node B and/or node F, respectively.

The operation of SLP leads to a very attractive characteristic that the references to
the files are implicitly replicated on the nodes which tend to request these files in the
future. In this example, node D and node B which have at least 0.5 of interest replicate
the references and they probably request the files later. This is because the QueryHit mes-

YI-CHUNG CHEN AND JANG-PING SHEU

1434

sages are returned backwards along the query path on which the interests of the nodes
except for the end nodes are larger than the threshold value. All nodes on the query path
replicate the references when receiving the QueryHit messages. Bandwidth efficiency in
SLP is achieved by selective forwarding and further improved by high-utilization refer-
ence caches. Besides, SLP also avoids selfish behaviors because the behavior of for-
warding query message is not only beneficial for the source node but also for the for-
warding nodes themselves.

3.2 Advanced Lookup Protocol

Advanced lookup protocol (ALP) retains basic architecture of SLP and inherits all
strengths from SLP such as reduction of messages, interest-based replication of refer-
ences, and avoidance of selfish behaviors, but modifies the data structures and message
formats and adds new features of incremental threshold and dynamic determining of TTL
and threshold. In ALP, the initial threshold is lower and the probes at the beginning are
extensive. The threshold is getting higher and the probes are narrowed down gradually.
Therefore it will not give up too many possible resources at the beginning. Determination
of TTL and threshold is dynamic with the peer-to-peer network condition such as the
number of shared files in the network, the number of nodes in the network, etc.

Each mobile device in ALP maintains a repository, a reference cache, a feedback
table, and a helper table. A repository stores the resources obtained from other peers in
the local file system. A reference cache contains the information about the remote re-
sources. An entry in the reference cache is composed of four fields: File_Ref, Interest,
Popularity and Access_Time. A File_Ref consists of the pair of File_Src and File_Info. A
File_Src field indicates the location information of a resource such as IP or MAC address
of a mobile device. A File_Info field, which could be file name or meta-descriptions of
the file, is used for query matching. The value of the Interest field is calculated when
receiving the Query message and is filled in cache entry when receiving the QueryHit
message. We expect that the higher the Interest is, the more likely the reference is to be
used in the future. The Popularity indicates how popular the resource is. The Ac-
cess_Time indicates the last time the reference entry is accessed.

TTL 5 5 5 5 5 ⋅⋅⋅ 1 1 1 1 1

Thresh 1.0~0.9 0.9~0.8 0.8~0.7 ⋅⋅⋅ 0.1~0.0 ⋅⋅⋅ 1.0~0.9 0.9~0.8 0.8~0.7 ⋅⋅⋅ 0.1~0.0

N_FF 4.12 6.3 8.25 ⋅⋅⋅ 36.1 ⋅⋅⋅ 0.02 0.06 0.11 ⋅⋅⋅ 0.3

Fig. 2. Feedback table.

A feedback table contains three fields: TTL, Threshold, and N_FF. The feedback ta-

ble is used to keep track of historical query results for estimating the most appropriate
TTL and threshold for the lookup. It shows that how many files could be found under
what kind of TTL and threshold assigned to a query.

For example, an entry of <5, 0.8~0.7, 8.25> means that a query with TTL equal to 5
and threshold ranging between 0.8 and 0.7 are able to get 8.25 results on the average. We
divide the range of threshold into ten sections, (1.0~0.9), (0.9~0.8), …, and (0.1~0.0).
Then the number of entries of the feedback table is TTLmax × 10, where TTLmax is maxi-

LOOKUP PROTOCOLS FOR AD HOC NETWORKS

1435

mum value of TTL allowed in the system. In this example, the TTLmax is five, and the
size of feedback table is fifty. The size of feedback table is independent of the number of
nodes.

The helper table is used to keep track of the relationship between a Query message
and its corresponding QueryHit messages to help maintenance of the reference cache and
the feedback table. The entry of the helper table is composed of five fields: Query_ID,
TTL, Thresh, Interest, and N_FF. When a node receives the Query message, it adds an
entry and copies the IdQuery, TTL, threshold Thresh of the Query message and its interest
in the query string to the Query_ID field, TTL field, Thresh field, and Interest field of the
new entry, respectively. The default value of N_FF is zero. The N_FF means the number
of files found and it is accumulated whenever the node receives the corresponding Que-
ryHit messages. Every entry of the helper table lives for a predefined period of time. Be-
fore being removed, the information of the entry is transferred in the form of <TTL,
Thresh, N_FF> to the feedback table. The new N_FF value of the feedback entry is up-
dated as 1/2 N_FFhelper + 1/2 N_FFfeedback , where N_FFhelper is N_FF in helper table and
reflects the current network condition, N_FFfeedback is N_FF in feedback table and reflects
the historical information.

We modify the formats of Query message and QueryHit message defined in SLP. A
Query message in ALP is a query string Q including one or more keywords, TTL, a
threshold Thresh, an increment Inc, and a unique identifier IdQuery for the Query message.
TTL is the maximum number of hops a message can be forwarded. Threshold Thresh is a
minimum interest value for query forwarding. IdQuery is chosen by hashing the combina-
tion of the address of the source node, the query string, and the timestamp. The Inc is the
unit of threshold increment. A QueryHit message consists of file references, hop count
Hops for retrieving the files, and the identifier IdQuery of the Query message it corresponds
to. The initial value of Hops is one, and is increased by one as the QueryHit message is
forwarded. The IdQuery is retrieved from the received Query message.

Besides, a system parameter PNFF (prospective number of file found) can be set to
promise around PNFF files will be found. A larger value of PNFF leads to more but
slower responses. Contrarily, a smaller value leads to faster but fewer responses. After
PNFF is set, when someone desires to issue queries, the most appropriate TTL and
Thresh are determined dynamically for the query request. If the query hit h files in the
reference table, we update PNFF to PNFF – h. We search for two adjacent entries E1 =
<TTL1, Thresh1, N_FF1> and E2 = <TTL2, Thresh2, N_FF2> in the feedback table such
that TTL1 is the same as TTL2, N_FF1 is smaller than PNFF, and N_FF2 is larger than
PNFF. Finally, we calculate the threshold Thresh by the ratio of equality:

1 1

2 2

1 2 2 1

1 2

PNFF N_FF Thresh Thresh

PNFF N_FF Thresh Thresh

Thresh (PNFF N_FF) Thresh (PNFF N_FF)
Thresh .

N_FF N_FF

− −
=

− −
− − −

⇒ =
−

After executing the above steps, the TTL and Thresh are produced and filled in the
Query message. The increment Inc is set to (MaxThresh-Thresh)/TTL, where MaxThresh
is the maximum threshold allowed in the network. If there are not enough information for

YI-CHUNG CHEN AND JANG-PING SHEU

1436

calculating TTL and Thresh, we just set TTL to maximum TTL allowed in the system and
Thresh to zero.

After calculation of TTL, Thresh and Inc, the source node broadcasts the Query mes-
sage to their neighbors in the transmission range. When a node N receives the Query
message, it searches for files matching the query in the repository or in the reference
cache and calculates the node’s interest in the query message. If the interest of the node
int(N, Q) is larger than or equal to the threshold, the node keeps track of the information
<IdQuery, TTL, Thresh, int(N, Q), N_FF> in the helper table, and forwards the Query mes-
sage by broadcasting. The field Thresh of the forwarded Query message is increased by
Inc. If there are files matching the query in the reference cache, the node returns a Que-
ryHit message and increases the Popularity value of the corresponding cache entry. A
QueryHit message contains the identifier of corresponding Query message, a hop count
initial to one and the references of the files matching the query backwards along the
query path to the source node.

When a node receives the QueryHit message, if the same entries for the QueryHit
message exist in the reference cache, the Popularity field and Access_Time field of the
entries are updated; otherwise the node creates new entry of the reference cache for the
QueryHit message. The content of File_Ref field of the created entry of the reference
cache is retrieved from the reference in the QueryHit message. The value of Interest field
of the created entry of reference cache is retrieved from the entry of the helper table in
which the identifier of the Query message is equal to the identifier in the QueryHit mes-
sage. The Popularity is zero and the Access_Time is the time the entry is created. The
entries of the helper table live for a period of time for helping collect query results. Be-
fore its end, the query result (the number of the files found) is transferred to the N_FF
field of corresponding entry in the feedback table. When the QueryHit messages reach the
source node, it can get knowledge of the location of the files and launch connections and
transmissions. Fig. 3 is an example shows how ALP works.

0.3

0.7

A
C

B

Query
= < Q308_MHA, “friends
1stepisode”, 5, 0.5, 0.1 >

50.80.42
Q264_

MHk

00.70.64
Q308_
MHA

N_FFInterestThreshTTL
Query

_Id

50.80.42
Q264_

MHk

00.70.64
Q308_
MHA

N_FFInterestThreshTTL
Query

_Id

stop

Query
= < Q308_MHA, “friends
1stepisode”, 4, 0.6, 0.1 >

Node B’s helper table

QueryHit
= < Q308_MHA, (C, F3), 1) >

Query
= < Q308_MHA, “friends
1stepisode”, 5, 0.5, 0.1 >

Fig. 3. Advanced lookup protocol – receiving Query.

LOOKUP PROTOCOLS FOR AD HOC NETWORKS

1437

In Fig. 3, node A broadcasts a Query message where IdQuery is Q308_MHA , key-
words in the query string Q are “friends” and “1st episode”, TTL is 5, and threshold
Thresh is 0.5, and Inc is 0.1. Assume that node A’s neighbors nodes B and C receive the
Query message. Because node B’s interest is 0.7 larger than threshold, node B forwards
the Query message with new TTL = 4, and increases threshold to 0.6. Besides, node B
creates a new entry <Q308_MHA, 4, 0.6, 0.7, 0> in the helper table. The information con-
tained in the helper table is used for the maintenance of the reference cache and the feed-
back table. On the other hand, node C returns a QueryHit but stops forwarding because
there are files matched in node C but node C’s interest is 0.3 less than the threshold. The
QueryHit message consists of an identifier copied from the corresponding Query message,
a hop count 1, and a file reference (C, F3) where C indicates the file source, and F3 is the
information for the file.

In Fig. 4, node B receives the responses of the Query message but node C doesn’t
receive any response because it didn’t forward the Query message due to its insufficient
interest. When node B receives the QueryHit messages, it adds entries for them in the
reference cache. For example, the cache entry <P, F5, 0.7, 15:25> is added for the Que-
ryHit message <Q308_MHA, (P, F5), 1>. Besides, node B returns the QueryHit message
to node A. Finally, source node A gets five query results. In our protocol, we do not re-
cord the hop counts for the files in the reference cache, because the nodes are able to
move arbitrarily in the mobile environment and lead to the recorded hop counts may not
make sense when requesting the file.

0

0

0

0

0

3

Popularit
y

15:420.7F9L

15:280.7F56K

File_Ref

File_
Info

16:030.7F16E

15:360.7F47J

15:250.7F5P

11:230.79F12D

Access_
Time

InterestFile_
Src

0

0

0

0

0

3

Popularit
y

15:420.7F9L

15:280.7F56K

File_Ref

File_
Info

16:030.7F16E

15:360.7F47J

15:250.7F5P

11:230.79F12D

Access_
Time

InterestFile_
Src

Node B’s reference cache

0.3

0.7

A
C

B
QueryHit
= < Q308_MHA, (P, F5), 1 >

QueryHit
= < Q308_MHA,

(K, F56), 1 >

QueryHit
= < Q308_MHA,

(E, F16), 3 >

QueryHit
= < Q308_MHA,

(L, F9), 3 >
QueryHit
= < Q308_MHA, (J, F47), 2 >

QueryHit
QueryHit

QueryHit
QueryHit

QueryHit

50.70.64
Q308_
MHA

N_FFInterestThreshTTL
Query

_Id

50.70.64
Q308_
MHA

N_FFInterestThreshTTL
Query

_Id

Node B’s helper table

Fig. 4. Advanced lookup protocol – receiving QueryHit.

3.3 Maintenance of Data Structures

In SLP, every node needs to maintain two data structures, which are a repository
and a reference cache. The repository is managed by the local file system. When the node

YI-CHUNG CHEN AND JANG-PING SHEU

1438

retrieves a file, it is stored in the repository. The files in the repository also can be deleted
by the user when unnecessary. As to the reference cache, it contains a fixed number of
entries. The entry is added when the node receives a new file reference. When the space
of the cache is inadequate, we use LRU (least recently used) algorithm [24] for replace-
ment.

In ALP, every node needs to maintain four data structures, which are a repository, a
reference cache, a helper table, and a feedback table. The maintenance of the repository
is the same as those in SLP, but the maintenance of the reference cache is a bit different
from those in SLP. We combine LRU algorithm and second-chance algorithm to develop
a new algorithm for cache replacement. We use LRU as basic replacement algorithm but
give most popular and most interested references second chances. When an entry has
been selected, we inspect whether it has the right of second chance. If it does not have
the right of second chance, we proceed to replace this entry. If it has the right, we give
that entry a second chance and move on to select the next LRU entry. When an entry gets
a second chance, its Access_Time is updated to the current time. As to the helper table,
an entry is created when nodes receives a Query message, and lives for a predefined pe-
riod of time. Before it is removed, the N_FF value of the entry is transferred to the feed-
back table. The size of a feedback table is fixed and independent of the number of the
nodes on the network. When the latest information N_FF stored in the helper table is
transferred to the feedback table, the N_FF in the feedback table is updated to reflect the
latest network condition.

4. SIMULATION RESULTS

In this section, we demonstrate the simulation results comparing the performance of
our protocols simple lookup protocol (SLP) and advanced lookup protocol (ALP) with
Passive Distributed Indexing (PDI) [15], a lookup protocol for the mobile environment.
The mobile devices are randomly placed within an area of 1,000 meters × 1,000 meters.
There are 100 mobile devices moving according to the random waypoint mobility model
[1] in this area. The transmission range for each mobile device is 150 meters. The speed
of the device is randomly chosen from 0 to 1.5 meters per second. Each device maintains
a repository which is able to store 512 files and a reference cache with capacity 32 en-
tries. We assume each device initially stores 100 files in the local repository.

For the file matching, we assume files and query strings are composed of several
keywords chosen from the keyword set K of size Nkeywords = 256. Ninterests is number of
keywords a node is interested in. For each node, Ninterests keywords can be randomly cho-
sen from the keyword set K to form the initial files and the query strings. We assume
each file has 8 to 16 attributes, which implies that each file is composed of 8 to 16 key-
words. The query string consists of at most 3 keywords. To calculate the interest, we
average the similarities of the latest 10 files in the repository. The time-to-live (TTL) for
query messages is 3. Interest threshold for SLP is 0.2. The initial interest threshold and
the maximum interest threshold for ALP are 0.0 and 0.5, respectively. We simulate 5000
query requests issued by randomly chosen peers.

 We make our observations from six performance measures: success rate, scalability,
bandwidth efficiency, query efficiency, search responsiveness, and search efficiency.

LOOKUP PROTOCOLS FOR AD HOC NETWORKS

1439

Finally, we demonstrate our ALP with supporting dynamic determining TTL and thresh-
old for query requests.

(A) Success rate: In this experiment, we investigate the success rates of our protocols
and PDI is also involved for comparison purpose. We say a query request is suc-
cessful if only if it finds at least one replica of the file. The success rate is defined as:

 .

number of successful query requests
success rate

number of all query requests
=

0

10

20

30

40

50

60

70

80

90

100

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

36
00

39
00

42
00

45
00

48
00

Number of Query Requests

Su
cc

es
s

R
at

e(
%

)

PDI
SLP
ALP

Fig. 5. Number of query requests vs. success rate.

The simulation result is shown in Fig. 5. The success rates of SLP and ALP increase
gradually, and reach about 80% and 90% at the end of the simulation. With the
growing number of query requests, the number of files to be spread, replicated, and
shared is increasing. Therefore, it becomes easier to find matching files, and the
success rate grows steadily. We also find an interesting result that the success rate of
PDI reaches its peak 80% at executing around 2,000 queries, and then falls. Since
PDI use local broadcast of query messages and response messages, its success rate
booms at the beginning. With the growing number of shared resources, broadcasting
query responses will fill caches with junk entries, and it also lead to the replacement
of entries frequently.

(B) Scalability: In this experiment, we examine the scalability of the protocols. A scal-
able lookup protocol should involve only few messages during the search process.
We exploit Messages per Query to evaluate the scalability of lookup protocols.
As shown in Fig. 6, on average, there are 46.97 messages generated during a PDI
search process, 13.84 messages during SLP, and 24.79 messages during ALP. We
raise the scalability up to 339%. Only few messages generated by SLP, since query
messages are selectively forwarded, and query hits are backwards returned. ALP
generates slightly more messages due to its incremental-threshold policy. PDI gen-
erates much more messages than SLP and ALP, since it locally broadcasts not only
query messages but also response messages. Therefore, our protocols are more scal-
able.

YI-CHUNG CHEN AND JANG-PING SHEU

1440

 46.97

13.84

24.79

0

5

10

15

20

25

30

35

40

45

50

M
es

sa
ge

s
pe

r
Q

ue
ry

PDI
SLP
ALP

Fig. 6. Messages per query.

(C) Bandwidth Efficiency: In this experiment, we investigate the efficiency of bandwidth

of the protocols. A bandwidth-efficient lookup protocol should take only few mes-
sages to achieve a successful query request. Therefore, Messages per Success (Cost
of Success) is used to measure the bandwidth efficiency. The simulation result is
shown in Fig. 7.

0

10

20

30

40

50

60

70

80

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

36
00

39
00

42
00

45
00

48
00

Number of Query Requests

M
es

sa
ge

s
pe

r
Su

cc
es

s

PDI
SLP
ALP

Fig. 7. Number of query requests vs. messages per success.

Before executing around 1,200 queries, the replicated files and references of our
schemes help raise the probability of success and reduce the required messages re-
markably. Due to the limited size of the cache, afterwards, the cache reaches full
utilization, replacement for cache entries starts to take place frequently, and reduc-
tion of the cost of success becomes slower. We also find an interesting phenomenon
that the cost of success of PDI even raises after executing around 1,200 queries. The
reason is that local broadcasting makes query responses overflowing, caches full of
junk entries, the replacement of entries quite frequently, and utilization of cache in-
efficient. Since our protocols take only few messages and achieve satisfactory suc-
cess rates, from the simulation result, we can obviously observe that SLP and ALP
are much bandwidth-efficient than PDI.

LOOKUP PROTOCOLS FOR AD HOC NETWORKS

1441

(D) Query Efficiency: Query Efficiency [14] is defined as the ratio of query hits of mes-
sages per node:

 .

Nubmer of QueryHits Number of QueryHits
Query Efficiency

Number of Messages Messages per Node
Number of Nodes

= =

Our interest-based selective forwarding scheme reduces number of messages effec-
tively and still has good search performance. From Fig. 8, we can observe that
Query Efficiencies of our protocols SLP and ALP are 3.5 and 2.5 times higher than
PDI. We also find that Query Efficiency of PDI remains almost constant after exe-
cuting around 1,200 queries. The reason is that local broadcasting makes query re-
sponses overflowing, caches full of junk entries, and therefore the searching ineffi-
cient.

0

10

20

30

40

50

60

70

80

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

36
00

39
00

42
00

45
00

48
00

Number of Query Requests

Q
ue

ry
 E

ff
ic

ie
nc

y

PDI
SLP
ALP

Fig. 8. Number of query requests vs. query efficiency.

(E) Search Responsiveness: Search Responsiveness [14] evaluates responsiveness and

reliability. Responsiveness is the ability of a lookup protocol to respond quickly to
meet the needs of a user. Reliability means the ability for a lookup protocol to find
out the matching resources successfully. Therefore, Search Responsiveness measur-
ing the responsiveness and reliability of a lookup protocol can be defined as:

 .

Success Rate
Search Responsiveness

Average Path Length
=

The simulation result is shown in Fig. 9. Because of the efficient cache utilization,
our protocols have higher success rate and lower path length. We also find that the
method of incremental threshold of ALP improves the responsiveness further. On
the other hand, local broadcasting scheme makes cache utilization of PDI inefficient,
and the success rate decays after running for a period of time (as shown in Fig. 5).
Therefore, our protocols are more responsive than PDI.

YI-CHUNG CHEN AND JANG-PING SHEU

1442

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

36
00

39
00

42
00

45
00

48
00

Number of Query Requests

Se
ar

ch
 R

es
po

ns
iv

en
es

s

PDI
SLP
ALP

Fig. 9. Number of query requests vs. search responsiveness.

(F) Search Efficiency: In this experiment, we measure the overall performance of a

lookup protocol. A unified criterion Search Efficiency [14] can be defined as:

Search Efficiency = Query Efficiency × Search Responsiveness.

The simulation result is shown in Fig. 10. Since the Query Efficiency (see Fig. 8)
and Search Responsiveness (see Fig. 9) of our protocols are much better than those
of PDI, our protocols outperform PDI by up to 385%.

0

5

10

15

20

25

30

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

36
00

39
00

42
00

45
00

48
00

Number of Query Requests

Se
ar

ch
 E

ff
ic

ie
nc

y

PDI
SLP
ALP

Fig. 10. Number of query requests vs. search efficiency.

5. CONCLUSIONS

Lookup protocol is one of the critical issues for peer-to-peer networks. However,
the most of existing protocols are not suitable for a mobile environment. In this paper, we
propose two protocols, SLP and ALP, for MANETs. We use interest-based selective
forwarding mechanisms to reduce the overhead on the networks and the operation of our
protocols also leads to a very attractive characteristic that the references to the files are
implicitly replicated on the nodes which tend to request these files in the future. There-
fore, when a node issues a query, some file references are probably hit in the local cache,

LOOKUP PROTOCOLS FOR AD HOC NETWORKS

1443

and the query message to be sent can be with a smaller TTL and a larger threshold to
reduce the overhead further. We also propose a scheme, incremental threshold, to im-
prove the performance further. The initial threshold is lower and the probes at the begin-
ning are extensive. The threshold is getting higher and the probes are narrowed down
gradually. Therefore it will not give up too many possible resources at the beginning. We
measure the lookup protocols from six aspects: success rate, scalability, bandwidth effi-
ciency, query efficiency, search responsiveness, and search efficiency. Simulation results
show that our protocols have higher success rate and raise the scalability and bandwidth
efficiency comparing to PDI. Query efficiency and search efficiency are also better than
PDI. Besides, our protocols are more responsive. Finally, our protocols can avoid selfish
behaviors, since the behavior of forwarding queries benefits not only the source node but
also the forwarding node.

REFERENCES

1. J. Broch, D. Maltz, D. Johnson, Y. C. Hu, and J. Jetcheva, “A performance com-
parison of multi-hop wireless ad hoc network routing protocols,” in Proceedings of
the 4th Annual ACM/IEEE International Conference on Mobile Computing and Net-
working, 1998, pp. 85-97.

2. I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: a distributed anonymous
information storage and retrieval system,” in Proceedings of the International Com-
puter Science Institute (ICSI) Workshop on Design Issues in Anonymity and Unob-
servability, 2000, pp. 311-320.

3. S. Daswani and A. Fisk, “Gnutella UDP extension for scalable searches v0.1,”
http://cvs.limewire.org/.

4. eDonkey, http://www.edonkey2000.com/.
5. eMule, http://www.emule-project.net/.
6. F. P. Franciscani, M. A. Vasconcelos, R. P. Couto, and A. A. F. Loureiro, “Peer-to-

peer over ad hoc networks: (re)configuration algorithms,” in Proceedings of the In-
ternational Parallel and Distributed Processing Symposium, 2003, pp. 32-41.

7. Gnutella, “The Gnutella protocol specification v0.4,” http://www9.limewire.com/de-
veloper/gnutella_protocol_0.4.pdf.

8. Gnutella2, “The Gnutella2 protocol specification,” http://www.gnutella2.com/index.
php/Main_Page.

9. Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2Cast: peer-to-peer patching scheme
for VoD service,” in Proceedings of the International Conference on World Wide
Web, 2003, pp. 301-309.

10. D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining, MIT Press, Cam-
bridge, MA, U.S.A., 2001.

11. C. E. Perkins, Ad Hoc Networking, Addison-Wesley, New York, 2001.
12. D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy, “Con-

sistent hashing and random trees: distributed caching protocols for relieving hot
spots on the world wide web,” in Proceedings of the 29th Annual ACM Symposium
on Theory of Computing, 1997, pp. 654-663.

13. KaZaA, http://www.kazaa.com/.

YI-CHUNG CHEN AND JANG-PING SHEU

1444

14. T. Lin and H. Wang, “Search performance analysis in peer-to-peer networks,” in
Proceedings of the 3rd International Conference on Peer-to-peer Computing, 2003,
pp. 204-205.

15. C. Lindemann and O. P. Waldhorst, “A distributed search service for peer-to-peer
file sharing in mobile applications,” in Proceedings of the 2nd International Con-
ference on Peer-to-Peer Computing, 2002, pp. 73-80.

16. Morpheus, http://www.morpheus.com/.
17. Napster, http://www.napster.com.
18. A. Oram, Peer-to-Peer: Harnessing the Benefits of a disruptive Technology, O’Reilly

and Associates, Inc., Sebastopol, CA, U.S.A., 2001.
19. M. Papadopouli and H. Schulzrinne, “Effects of power conservation, wireless cov-

erage and cooperation on data dissemination among mobile devices,” in Proceedings
of the ACM International Symposium on Mobile Ad Hoc Networking and Computing,
2001, pp. 117-127.

20. G. P. Premkumar, “Alternate distribution strategies for digital music,” Communica-
tions of the ACM, Vol. 46, 2003, pp. 89-95.

21. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content-
addressable network,” in Proceedings of the ACM SIGCOMM, 2001, pp. 161-172.

22. M. Rieanu, “Peer-to-peer architecture case study: Gnutella network,” in Proceedings
of the 1st International Conference on Peer-to-Peer Computing, 2001, pp. 99-100.

23. A. Rowstron and P. Druschel, “Pastry: scalable, decentralized object location and
routing for large-scale peer-to-peer systems,” in Proceedings of the IFIP/ACM In-
ternational Conference on Distributed Systems Platforms, 2001, pp. 329-350.

24. A. Silberschatz, G. Gagne, and P. B. Galvin, Operating System Concepts, 6th ed.,
John Wiley and Sons, Inc., New York, 2002.

25. K. Sripanidkulchai, B. Maggs, H. Zhang, “Efficient content location using interest-
based locality in peer-to-peer systems,” in Proceedings of the IEEE INFOCOM,
2003, pp. 53-63.

26. I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and
H. Balakrishnan, “Chord: a scalable peer-to-peer lookup service for internet applica-
tions,” IEEE/ACM Transactions on Networking, Vol. 11, 2003, pp. 17-32.

Yi-Chung Chen (陳貽中) received the B.S. degree in Com-
puter Science and Engineering from Yuan Ze University, Chun-
gli, Taiwan, R.O.C., in 2002 and the M.S. degree in Computer
Science and Information Engineering from National Central
University, Chungli, Taiwan, R.O.C., in 2004, respectively. He
received the High Honor Paper Award of the 19th IEEE Interna-
tional Conference on Advanced Information Networking and
Applications. His current research interests include quality of
service (QoS) in wireless and mobile networks, peer-to-peer
computing, and pervasing computing.

LOOKUP PROTOCOLS FOR AD HOC NETWORKS

1445

Jang-Ping Sheu (許健平) received the B.S. degree in
Computer Science from Tamkang University, Taiwan, R.O.C., in
1981, and the M.S. and Ph.D. degrees in Computer Science from
National Tsing Hua University, Taiwan, R.O.C., in 1983 and
1987, respectively. He joined the faculty of the Department of
Electrical Engineering, National Central University, Taiwan,
R.O.C., as an Associate Professor in 1987. He is currently a Pro-
fessor of the Department of Computer Science and Information
Engineering and Director of Computer Center, National Central
University. He was a Chair of Department of Computer Science

and Information Engineering, National Central University from 1997 to 1999. He was a
visiting professor at the Department of Electrical and Computer Engineering, University
of California, Irvine from July 1999 to April 2000. His current research interests include
wireless communications, mobile computing and parallel processing. He was an associ-
ate editor of Journal of the Chinese Institute of Electrical Engineering, from 1996 to 2000.
He was an associate editor of Journal of Information Science and Engineering from 1996
to 2002. He was an associate editor of Journal of the Chinese Institute of Engineers from
1998 to 2004. He is an associate editor of IEEE Transactions on Parallel and Distributed
Systems. He was a Guest Editor of Special Issue for Wireless Communications and Mo-
bil Computing Journal. He was a Program Chair of IEEE ICPADS 2002. He was a Vice-
Program Chair of ICPP 2003.

He received the Distinguished Research Awards of the National Science Council of
the Republic of China in 1993-1994, 1995-1996, and 1997-1998. He was the Specially
Granted Researchers, National Science Council, from 1999 to 2005. He received the Dis-
tinguished Engineering Professor Award of the Chinese Institute of Engineers in 2003.
He received the Distinguished Professor award of the National Central University. Dr.
Sheu is a senior member of the IEEE, a member of the ACM, and Phi Tau Phi Society.

