
J. Parallel Distrib. Comput. 66 (2006) 1243–1258
www.elsevier.com/locate/jpdc

BlueCube: Constructing a hypercube parallel computing and communication
environment over Bluetooth radio systems

Chao-Tsun Changa, Chih-Yung Changb,∗, Jang-Ping Sheua

aDepartment of Computer Science and Information Engineering, National Central University, Chung-Li, Taiwan
bDepartment of Computer Science and Information Engineering, Tamkang University, Tamsui, Taipei, Taiwan

Received 17 November 2003; received in revised form 9 September 2005; accepted 17 April 2006
Available online 25 July 2006

Abstract

In parallel computing structures, Hypercubes [P. J. Wan, L. W. Liu, Y. Yang, Optimal routing based on the super-topology in Hypercube
WDM networks, 1999, pp. 142–149] and [Y. R. Leu, S. Y. Kuo, A fault-tolerant tree communication scheme for hypercube systems, IEEE
Trans. Comput. 45(6) (1996) 643–650] have many advantages: they support parallel computing, provide disjoint paths, and tolerate faults.
If devices with computing capabilities can be linked as a Hypercube by taking advantage of Bluetooth radio’s features, then an efficient
communication and high-performance computing environment can be established by applying currently used algorithms. A Bluetooth device
randomly searches for and connects with other devices, using time-consuming inquiry/inquiry scan and page/page scan operation and hence,
results in an uncontrolled scatternet topology and inefficient communications. The present work proposes a three-stage distributed construction
protocol for rapidly organizing a Hypercube computing environment that was constructed from Bluetooth devices. The proposed protocol
governs the construction of links, the assigning of roles and the formation of the scatternet in order to efficiently construct a Hypercube
structure. The constructed scatternet easily enables Bluetooth devices to establish a routing path, tolerate faults and create disjoint paths, and
thus, achieves parallel and distributed computing in a Bluetooth wireless environment. Experimental results reveal that the proposed protocol
can set up a scatternet that is appropriate for parallel computing and communications.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Bluetooth; Hypercube; Role switch; Piconet; Scatternet; Parallel computing; Wireless communication

1. Introduction

The simultaneous use of the computing power of many
machines to share several computations has been extensively
investigated in recent years. Grid computing [4,20,3] has re-
ceived much attention as an effective means of collecting
possible computing resources over a wired network. Bluetooth
[21] is a new wireless communication technology that has been
gradually embedded in various machines such as desktop PCs,
notebooks, Tablet PCs, workstations and others. Bluetooth
connection technology dynamically links various machines
more flexibly and easily than what could be achieved before,
and also provides channels of communication between various

∗ Corresponding author. Fax: +886 2 26209749.
E-mail addresses: cctas@tcts.seed.net.tw (C.-T. Chang),

cychang@cs.tku.edu.tw, cychang@mail.tku.edu.tw (C.-Y. Chang),
sheujp@csie.ncu.edu.tw (J.-P. Sheu).

0743-7315/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2006.04.018

types of machines. Thus, the use of Bluetooth technology to link
various machines exploits the potential of wireless networks to
be used in parallel and grid computing. Parallel architecture and
programs designed for specific architectures have been widely
discussed during the last decade. One of them is the Hypercube,
a promising topology for which existing parallel algorithms
have been designed with proven effectiveness. The present work
proposes a connection algorithm which constructs a Hypercube
topology for high-performance computing and communication
via Bluetooth radio links.

In a Bluetooth network, a piconet is comprised of one master
device and at most, seven active slave devices. A scatternet is a
wireless network consisting of several piconets and bridge de-
vices. The bridge services more than one piconet and is respon-
sible for cross-piconet communication and service. A bridge
can have different roles in different piconets. A slave/slave (S/S)
bridge plays the slave roles in all participating piconets, whereas

http://www.elsevier.com/locate/jpdc
mailto:cctas@tcts.seed.net.tw
mailto:cychang@cs.tku.edu.tw
mailto:cychang@mail.tku.edu.tw
mailto:sheujp@csie.ncu.edu.tw

1244 C.-T. Chang et al. / J. Parallel Distrib. Comput. 66 (2006) 1243–1258

a master/slave (M/S) bridge plays the master role in one pi-
conet and the slave roles in other participating piconets. How-
ever, a single device can never be a master for more than one
piconet. A Bluetooth device randomly searches and connects
with other devices using the time-consuming inquiry/inquiry
scan and page/page scan operations that eventually results to a
disconnected or uncontrolled scatternet.

Many studies [6,7,12,13,15,18] have investigated the Blue-
tooth connection problem to establish a connected scatternet.
Connected scatternets have been formed [17] using Bernoulli
trials to determine the role of each device in the Bluetooth dis-
covery process. This method not only fulfills the scatternet con-
nection requirement, but also minimizes the number of piconets
in the scatternet. Protocols [19,24] have been proposed to gen-
erate connected scatternets and enable each master to manage
its neighboring bridges in order to improve communication ef-
ficiency. In a connected scatternet, a cross-piconet routing path
should be established when two Bluetooth devices in different
piconets intend to communicate with each other. The protocols
developed in [1] construct a routing path between two devices in
different piconets. An efficient route reconstructing protocol [2]
which applies role switching operations and a relay reduction
policy, has been proposed to minimize the average single-path
length. However, the route established by these protocols relies
heavily on the existing topology of the scatternet. An improper
scatternet topology typically leads to inefficient routes associ-
ated with problems of long routing paths and hence, increases
power consumption and the rate of packet loss. The improper
topology also creates unreliable communication environments
in which the parallel computing process must tolerate faults.

Many studies [19,24] have sought to establish a con-
nected scatternet using a preset scatternet topology in order to
reduce the route length. However, the construction of the
scatternet does not take into account the disjoint path or
fault-tolerance [22,8,14]. Bluenet [23] has been proposed for
constructing a connected scatternet based on the local knowl-
edge of the node’s neighbors. It affords multiple communi-
cation paths between source and destination devices rather
than the unique path on the loop-free hierarchical structures of
Bluetree [7] or Bluestars [16], although fault-tolerance is not
addressed. BlueRing [9] is used to construct a ring structure
with M/S bridges and protocol-level remedy, while recovery
mechanisms are applied to reduce the packet delay and improve
the network throughput. Moreover, single-point or multi-point
failure is tolerated. Although routing on BlueRing scatternet
is stateless, a long routing path and congestion result to inef-
ficient communication. BlueMesh [10] has been presented to
establish a connected mesh scatternet with a small network
diameter, with disjoint paths between any pair of devices as
well as with easier routing and scheduling. However, [6] noted
that M/S bridges reduce the piconet performance since cross-
piconet communication must be suspended when the master
is participating in another piconet and hence, results in ineffi-
cient communication. Without a competent structure and role
assignments, the controlled topology of a scatternet may not
suffice to support parallel computing and optimize network
performance.

If a well-known parallel computing environment like the Hy-
percube can be automatically established in a distributed man-
ner, then the constructed scatternet will have the following char-
acteristics.

(1) Many of the well-known algorithms have been developed
for solving a set of popular problems in Hypercube. The
developed algorithms can be efficiently utilized for parallel
computing.

(2) Single and multiple disjoint routes can be established more
easily in Hypercube than in any other arrangement. Hence,
an efficient communication can be attained.

(3) Fault-tolerance has been widely addressed in relation to
Hypercube. Thus, when the power is switched off, or a
path is broken by a fault in a device, available results on
fault-tolerance can be applied to solve communication and
computing problems.

(4) Since disjoint routes are associated with every pair of de-
vices, data can be transmitted on other routes even if the
current route is a failure. This fact supports the construc-
tion of a backup route or the acceleration of data transmis-
sion using disjoint routes in communication.

(5) A Hypercube has no problem of disconnected scatternet
or redundant bridges which can increase the propagation
delay and consumption of power energy.

(6) Distributed computing can be performed in a wireless en-
vironment. Orderly transmission of data reduces the prob-
ability of packet collisions and transmission delays.

A Hypercube can be easily constructed conceptually: two
nodes are linked together if their IDs differ by exactly one bit
position. However, the core difficulties in constructing a Hy-
percube are those of rapidly assigning a unique binary code to
each distributed device and bridging piconets with S/S devices
in the constructed scatternet while randomly searching and con-
necting devices. The present work proposes a three-stage dis-
tributed protocol for constructing a Hypercube environment.
By applying encoding techniques and role switching opera-
tions to the formation of a Bluetooth scatternet, the proposed
protocol constructs the BlueCube which encompasses parallel
computing and communicative environment features of the Hy-
percube. The resulting BlueCube meets all the above mentioned
characteristics.

The rest of the present work is organized as follows. Sec-
tion 2 introduces the background of Bluetooth as well as the
challenge and basic idea behind the construction of a Blue-
Cube scatternet. Section 3 describes the three-stage protocol
for constructing a BlueCube, while Section 4 considers the per-
formance of the proposed protocol. Section 5 draws the con-
clusions of the present work.

2. Background and basic concepts

This section introduces the process for establishing linkages.
Some of the challenges for constructing a Hypercube scatternet
using Bluetooth devices as well as the basic concepts related
to the BlueCube construction protocol for overcoming these
challenges are presented. The role switching operations used to

C.-T. Chang et al. / J. Parallel Distrib. Comput. 66 (2006) 1243–1258 1245

improve the performance of the BlueCube are also introduced.
Furthermore, this work has the following assumptions regard-
ing the scatternet environment. In the first place, all Bluetooth
devices are within a range that enables them to be connected.
Restated, any two devices can receive signals emitted by the
other device. Secondly, all Bluetooth devices know how many
devices are present in the environment. Similar assumptions
were also made in [17,5]. Lastly, no link initially exists between
any two Bluetooth devices.

2.1. Establishing links

The Bluetooth radio frequency (RF) module hops over 79
channels at 2.4 GHz in the unlicensed ISM band at 1600 times
per second to prevent cochannel interference. Both the short
packets and fast hopping capability increase the reliability of
communication between two Bluetooth devices. Time division
duplex (TDD) technology is used to achieve full duplex for
a link connection [13]. The formation of a Bluetooth piconet
primarily involves two important procedures namely, the in-
quiry/inquiry scan and the page/page scan. In the following il-
lustration for establishing links, device A is the master while
device B is the slave.

During the inquiry/inquiry scan, device A stays in the inquiry
state to collect information about other devices to which it
will be connected. On the other hand, the slave device B in
its inquiry scan state, searches for the Bluetooth device in the
inquiry state to which it will link. Initially, device A transmits
an ID packet twice per time slot to quickly find a device in
the inquiry scan state. On the other hand, device B, while still
in the inquiry scan state, receives device A’s ID packet. When
the slave device receives the first ID packet, it must wait for a
random backoff from 0 to 1023 time slots to prevent collision.
Otherwise, it would cause a collision when they transmit back
the FHS packet. After the backoff time, device B wakes up and
stays in the inquiry scan state in order to receive the second
ID packet transmitted by device A. Upon receiving the packet,
device B enters the inquiry response state and returns to device
A the FHS packet which contains its own clock, BD_ADDR and
other relevant information. This information will assist device A

in its page state in order to predict device B’s hopping sequence
and channel location in its page scan state. Device B enters the
page scan state after transmitting back the FHS packet, while
device A enters the page state upon receiving the FHS packet.

During the page/page scan procedure, the slave device, upon
entering the page scan state, obtains the clock and BD_ADDR
information about the master device that enters the page state.
This enables the slave device to determine the hopping sequence
of the master after linkage. Once device A enters the page
state, it initially applies the slave’s clock and BD_ADDR to
predict device B’s channel location, and thereafter sends an ID
packet to device B to confirm that device B is indeed in the
predicted channel. If device B is already in the page scan state
and receives the ID packet transmitted by device A, then device
B will retransmit the ID packet back for confirmation.

After device A receives the ID packet from device B, it in
turn sends an FHS packet to device B. This packet contains in-

formation about device A’s clock and BD_ADDR, as well as a
3-bit active member address which tells the hopping sequence
of device A to device B after linkage. This 3-bit active mem-
ber address (AM _ADDR) is used to identify the slave device
which intends to communicate with the master in a piconet af-
ter linkage. On receiving the FHS packet from device A, device
B sends an ID packet back to device A to confirm that the FHS
packet was received. At this point, device B enters the con-
nection state, while device A enters the connection state upon
receiving the ID packet. After entering the connection state, de-
vice A initially transmits a POLL packet to device B to confirm
the successful connection of the piconet. Upon receiving the
POLL packet, device B, which knows that the predicted chan-
nel hopping sequence of device A is correct, sends a NULL
packet to inform device A and officially joins the piconet es-
tablished by device A. This completes the connection and then
device A or device B begins to transmit data.

As described above, a Bluetooth device stays in the in-
quiry/inquiry scan state for a long period and utilizes a large
proportion of the connection time and power. The random
search and connection also increase the difficulty of construct-
ing a regular topology. If the connection is not controlled, then
the constructed scatternet may have too many piconets and
hence, increases the probability of packet collisions in the hop-
ping sequence as well as the power consumption and the prop-
agation delay. Furthermore, if the assignment of roles is not
controlled, then the existence of the M/S bridge will reduce the
inter-piconet performance as previously stated. The following
subsection presents some of the challenges involved in con-
structing a Hypercube scatternet based on the aforementioned
link construction procedure.

2.2. Challenges in constructing a hypercube scatternet and
related basic concepts

This subsection initially addresses the challenges in con-
structing a Hypercube scatternet and these involve control-
ling the topology, role-playing and controlling the number of
piconets. The basic concepts associated with the BlueCube
construction protocol to overcome these challenges are also
presented.

2.2.1. Challenges in topology control
Some challenges are encountered when constructing a Hy-

percube using Bluetooth devices. A Bluetooth device that acts
as the master executes the inquiry procedure to connect ran-
domly with another device which executes the inquiry scan pro-
cedure. However, a Hypercube has a regular topology which
can be constructed by connecting the corresponding devices
in two subcubes. In the example shown in Fig. 1(a), the two
1D subcubes are considered in order to construct a 2D Hyper-
cube. A construction protocol without an elaborate control of
the link connection yields an unexpected topology. Figs. 1(b)
and (c) show examples of the unexpected topology in construct-
ing a 2D Hypercube from two 1D subcubes. In Fig. 1(b), those
devices which belong to the same subcube may connect with
each other. In Fig. 1(c), two devices of a subcube connect to

1246 C.-T. Chang et al. / J. Parallel Distrib. Comput. 66 (2006) 1243–1258

(b)

A B

C D

(a)

B

C D

(c)

A B

D

A

C

Fig. 1. (a) An example scatternet includes two 1D subcubes. (b) An unexpected
topology. Devices that belong to the same subcube may connect with each
other. (c) An unexpected topology. Two devices of a subcube connect to
the same device of another subcube and hence, result in an unexpected
structure.

a single device of another subcube and hence, result in an un-
expected structure. A coding mechanism should be used to de-
sign a topology construction protocol that selects exactly one
device to be connected to another device in a different subcube
and hence, prevents the construction of an unexpected topol-
ogy. Thus, a ring scatternet which connects all the Bluetooth
devices will be obtained. Finally, a Hypercube topology can be
constructed by connecting some devices in the ring scatternet.

2.2.2. Challenges in the control of role-playing and the
number of piconets

Another challenge in constructing a Hypercube is the as-
signment of unexpected roles. Even though a Hypercube topol-
ogy has been constructed, an improper role assignment will
not support parallel computing and thus, fail to provide an
optimal network performance. For example, an improper role
assignment may create a large number of piconets and hence,
increase transmission delay, power consumption and difficulty
of scheduling. As shown in Fig. 2(a), the constructed Hyper-
cube comprises four piconets and four bridges. Different pi-
conets have different hopping sequences and clock standards.
Thus, when device A receives data from device B, it will switch
to another piconet, change its hopping sequence, and adjust its
clock offset. Afterwards, the packet can be transmitted to device
C. Besides, the presence of many piconets also raises the prob-
lem of collision in the hopping sequences. If device roles are
properly assigned in the construction, the number of piconets
and bridges can be simultaneously reduced from four to two,
as shown in Fig. 2(b). Since devices A, B and C belong to the
same piconet, device A may receive a data packet from device
B, and then directly transmit it to device C in the next time slot.
An improper role assignment may also lead to the formation
of an inefficient bridge with the M/S role and hence, result in
difficulties of scheduling and coordination among the devices.
In Fig. 2(a), the constructed Hypercube has four M/S bridges.
Proper role switching operations can be applied to change the
devices’ role from M/S to S/S as presented in Fig. 2(b) and
thus, improve the performance of scheduling and coordination
between devices.

The construction of a Hypercube without an efficient and
competent connection control may cause some piconets to col-
lect an excess of slave devices and hence, increase the traf-
fic congestion rate and the packet loss rate. As shown in Fig.
3(a), master A connects three bridges and four slave devices

A B

C

D

(b)

A B

C

D

(a)

Fig. 2. (a) An example of a Hypercube scatternet constructed without a com-
petent role assignment. (b) An example of a Hypercube scatternet constructed
with a competent role assignment. Each bridge plays the S/S role and fewer
piconets exist in the scatternet.

A
B

C
D

E
F

G

A
B

C
D

E
F

GH
H

(b)(a)

Fig. 3. (a) An example of a Hypercube scatternet constructed with an excess
of slave devices collected in piconet A. (b) An example of a Hypercube
scatternet constructed with a similar number of slave devices in each piconet.

and thus, becomes a traffic bottleneck in the Hypercube scatter-
net. Proper connection control should be designed to distribute
slave devices so that the numbers of slave devices connected
with devices A, D, F and H are approximately equal as shown
in Fig. 3(b).

2.2.3. Basic concepts for overcoming the challenges of
constructing a hypercube scatternet

Each node should take a unique binary code to serve as an
ID for linking the proper devices and overcome the problem
of topological control. In the establishment of a link, a proper
role assignment results into two devices intending to connect
with each other in order to create a link with a predicted role
and to form a controlled piconet. In addition, a constructor
will be selected from each of the scatternets to connect with
another scatternet’s constructor under a proper role assignment.
Two small scatternets grouped with 2k−1 devices are connected
accordingly to form a big scatternet with 2k devices. The two
combined scatternets must have the same number of devices
prior to the combination. Thus, the encoding operation in the
protocol design facilitates the connection and role assignment
of the Bluetooth devices.

Once the Hypercube topology is constructed in the connected
scatternet, the number of bridges and piconets are reduced and
the bridge devices with M/S role are changed. The role switch-
ing operations will be applied to reduce the numbers of bridges
and piconets and change the role of each bridge from M/S to
S/S. Finally, the devices which are not yet attached to the scat-
ternet will be uniformly connected to existing piconets based
on the coding information.

C.-T. Chang et al. / J. Parallel Distrib. Comput. 66 (2006) 1243–1258 1247

A three-phase distributed construction protocol is presented
to implement the aforementioned ideas. The proposed proto-
col performs the encoding operation on CK (connection key)
and DOC (degree of connection) values to facilitate the con-
nection and role assignment of the Bluetooth devices and thus,
construct the BlueCube efficiently. The constructed BlueCube
is connected and has the shortest routing and multiple disjoint
routes. In the present work, the CK value is used to determine
whether the device enters the inquiry or the inquiry scan state.
The information from DOC determines the connection with
particular devices. The connection process consists of the fol-
lowing three phases.

Phase I. Ring construction phase (RCP): A coding mech-
anism is adopted to construct a ring scatternet and maximize
the dimensions of a Hypercube structure. All devices in a ring
scatternet form a Hypercube structure in the later phases.

Phase II. Scatternet construction phase (SCP): The SCP
phase has two purposes. The first is to reduce the number of
piconets and bridges, and the second is to connect the devices
which have not yet been connected with the master devices in
the ring scatternet. The role switching operations, piconet com-
bination and piconet splitting, are applied to reduce the number
of piconets and bridges.

Phase III. BlueCube construction phase (BCP): This phase
restructures the scatternet from the two previous phases. The
constructed BlueCube computing environment facilitates the
building of a routing path, tolerates faults, and provides disjoint
paths.

Section 3 presents the details of the three phases. The next
subsection introduces the role switching operations which will
be used in the proposed protocol.

2.3. Role switching operations

The performance of a Hypercube scatternet depends not only
on the constructed topology but also on the role assignment
of each device. The link connection procedure defined in the
Bluetooth specifications may cause a device to have an im-
proper role or yield too many piconets. Breaking radio links or
changing the roles of some devices are simple ways to reorga-
nize the topology, but doing so takes time because it involves
the inquiry/inquiry scan and page/page scan operations. The
proposed protocol uses the role switching operation to change
the roles of the devices and improve the structure of the scat-
ternet. The role switching operation [21] enables two devices
to exchange roles very quickly instead of establishing a new
link by executing the time-consuming inquiry and inquiry scan-
ning procedures. In constructing the BlueCube, the two basic
role switching operations, namely, piconet splitting and piconet
combination, are utilized as basic functions for reducing the
number of bridges and piconets and for changing the role from
M/S bridge to S/S bridge.

2.3.1. Splitting piconet
A role switching operation can split a piconet into two pi-

conets. As shown in Fig. 4(a), in piconet P , the slave device b

Fig. 4. (a) Topology before executing the piconet splitting operation. (b)
Topology after executing the piconet splitting operation.

Fig. 5. (a) Topology before executing the piconet combining operation. (b)
Topology after executing the piconet combining operation.

intends to create a new piconet P2 and acts as its master. De-
vice b initiates a role switching request to device a. Fig. 4(b)
shows that the device b creates a new piconet P2 and plays
a master role to P2. Then, device a alternately participates in
two piconets P1 and P2, with master and slave roles, respec-
tively. Such role switching increases the number of piconets
and bridges and is referred to as piconet splitting.

2.3.2. Combining piconets
As shown in Fig. 5(a), devices b and a play the master and

slave roles, respectively, in piconet P2. If device b intends to act
as a slave, it sends a role switching request to exchange its role
with that of device a. The role switching operation combines
two piconets P1 and P2 into a single piconet P , as shown in
Fig. 5(b). The role switching operation eliminates the bridge
role of device a. This type of role switching reduces the number
of bridges and piconets.

However, a proper role assignment and application of the
role switching operation to the constructed scatternet do not
guarantee the formation of a connected scatternet with a regu-
lar structure such as that of a Hypercube. Section 3 gives the
protocol for constructing a BlueCube scatternet.

3. Protocol for constructing a BlueCube

This section details the BlueCube protocol for constructing
a parallel computing and communication environment. Some
terms are defined to enable the protocol to be described clearly
and in detail.

Definition (Degree of connection (DOC)). DOC is the degree
(or number of dimensions) of a BlueCube established in a scat-
ternet. When two scatternets are linked together, their DOC
values are compared. They can link up only if their DOC val-
ues are identical. The initial value of DOC is zero. Also, 2DOC

is the number of devices in the connected scatternet.

1248 C.-T. Chang et al. / J. Parallel Distrib. Comput. 66 (2006) 1243–1258

Definition (01* Sequence). A 01* sequence is a regular
expression of bits. The sequence is represented as a leading 0,
followed by repeating 1’s. Examples of 01* sequences are 0,
01, 011, 0111 and so on.

Definition (Connection key (CK)). CK value is NULL or a
series of digits 0 and 1. The initial value of CK is NULL.
Every device must maintain a certain CK value that is used to
determine whether the device should perform an inquiry or an
inquiry scan operation.

Definition (Constructor). A device in a scatternet whose CK
value is NULL or matches a 01* sequence is known as a
constructor. Symbols Constructor(I)d and Constructor(IS)d
represent constructor d in the inquiry and inquiry scan states,
respectively.

Notably, the proposed protocol guarantees that, at any par-
ticular time, only one constructor is present in a scatternet.
This constructor will connect to another scatternet’s construc-
tor which has the same DOC value.

The proposed protocol consists of three main phases. In
Phase I, every device maintains the information on CK. An
n-degree BlueCube structure can be constructed by connecting
two (n−1)-degree subcubes. In constructing the n-degree Blue-
Cube, one constructor represents the connected (n − 1)-degree
subcube and is connected to another constructor of connected
(n − 1)-degree subcube. Every device in a connected subcube
uses its CK value to determine which one is the constructor of
this scatternet. The encoding of the CK value guarantees that
exactly one constructor is present in the current scatternet.
When two scatternets’ constructors intend to connect with each
other, their DOC values are compared. They can only form a
larger scatternet if their DOC values are the same. If yes, they
have the same degree and can establish a larger Hypercube. The
two constructors may exchange DOC values through the two
fields ‘Undefined’ and ‘AM _ADDR’ in the FHS packet. The
general rules that must be followed by all devices to ensure that
their CK and DOC values are maintained are stated below. As-
sume that the number of devices required to construct a Blue-
Cube is n. The three-phase proposed protocol is also described
below with some examples.

3.1. Ring construction phase (Phase I)

Initially, every device sets its DOC to zero and CK to NULL.
The ring construction procedure includes the following steps
and stops only when the number of devices in a ring scatternet
exceeds half of the total number of devices.

3.1.1. Ring construction procedure (RCP)
Step 1: Every device attempts to construct a ring scatternet.

The DOC is used to evaluate the number of devices, k = 2DOC ,
in the connected scatternet.

Step 2: If k�n/2 then the device performs Step 3. Other-
wise, it proceeds to Step 8 to complete RCP, and then enters
Phase II.

Step 3: Every device uses its CK value to determine which
one is a constructor of its scatternet. A device whose CK value is
NULL or matches a 01* sequence is a constructor and proceeds
to Step 4. Otherwise, it enters the waiting mode to wait for
information from the constructor.

Step 4: The constructor randomly determines whether it
should enter the inquiry or inquiry scan state, and then links
with the constructor of other scatternets. Constructor(I)a
sends out an ID packet. On receiving the ID packet from
Constructor(I)a , Constructor(IS)b sets the ‘Undefined’ and
‘AM _ADDR’ fields of the FHS packet to its own DOC value,
and then transmits the packet back to Constructor(I)a .

Step 5: On receiving the FHS packet, Constructor(I)a
determines whether the received DOC is the same as its own
DOC. If the DOC values are identical, then linking these two
constructors, Constructor(I)a and Constructor(IS)b, yields
a BlueCube with a higher degree. Thus, device a enters the
page state and sends out an ID packet to connect with device b

which already entered the page scan state. If the DOC values
are different, constructors a and b return to Step 4.

Step 6: After Constructor(I)a and Constructor(IS)b are con-
nected, device a updates its CK value by expanding the bit
value 0 at the most significant bit, and device b does the same
using the value 1. Both constructors a and b increase their DOC
values by one to indicate that a BlueCube with a higher degree
can be constructed.

Step 7: Constructors a and b send the expanded bit to every
device in the scatternet before linkage. Every other device in the
waiting mode follows the constructor to update the CK value
by expanding one bit at the most significant bit. Their DOC
values are increased by one for yielding a value equal to that
of the constructor. Every device, after its DOC and CK values
are modified, repeats Step 1.

Step 8: Two devices whose CK values are 01* and 11* in the
scatternet randomly enter the inquiry or inquiry scan state to
connect with each other in order to construct a ring scatternet.

Initially, every device sets its DOC to zero and CK to NULL,
as shown in Fig. 6(a). Devices A and B are used as examples.
Each device executes Steps 1, 2 and 3. Initially, each device
evaluates 2DOC = 1 and retains this value as the number of
the device in a linked scatternet. Since the initial CK value of
each device is NULL, each device plays the role of constructor
and executes Steps 4 and 5. In Step 4, all devices randomly
determine whether they should enter the inquiry state or the
inquiry scan state. They try to connect with other devices of
the same DOC value to form a piconet with twin devices as
shown in Fig. 6(b). When the link was established, all the linked
devices proceeded to Step 6. Device B already formed a link in
the inquiry state and hence, its CK value was expanded to 0 and
its DOC value was increased to one. Device A constructed a link
in the inquiry scan state and thus, its CK value was expanded
to 1 while its DOC value was increased to one. Afterwards,
devices A and B proceeded to Step 7 to adjust the other devices’
CK and DOC values, but no operation was done since devices
A and B were not connected to any device.

As shown in Fig. 7(a), the CK and DOC values of devices
B and C, respectively, are all 0’s and 1. Hence, they become

C.-T. Chang et al. / J. Parallel Distrib. Comput. 66 (2006) 1243–1258 1249

Fig. 6. Initial connection of devices A and B: (a) initial state; (b) piconet
formed by twin devices.

Fig. 7. Connected linkage for the second time in Phase I: (a) ring scatternet
formation at CK = 0 and DOC = 1; (b) connection of devices B and C and
modification of CK and DOC values.

constructors of their scatternets. In Step 4, devices B and C,
which are now masters, randomly determine whether to enter
the inquiry or the inquiry scan state, and attempt to link to other
devices. The device whose CK value is inconsistent with the 01*
sequence stays in the waiting mode. In Fig. 7(b), devices B and
C are taken as examples to explain the connection procedure.
After executing Step 5, devices C and B enter the inquiry and
inquiry scan states, respectively. Devices B and C establish a
connection with each other since their DOC values are equal.
Then they proceed to Step 6. Device C is in the inquiry state
during the connection and hence, its CK value is expanded to 00
while the DOC value is increased by one. Device B constructs
the link in the inquiry scan state and hence, its CK value is
expanded to 10 while its DOC value is increased by one. In Fig.
7(b) the arrows signify that devices B and C perform Step 7 to
inform all devices in the scatternet to change the CK and DOC
values. Each device in the waiting mode follows the original
constructor while expanding its CK value by the same bit and
increasing the DOC value by one. The resulting DOC values
of all devices in the waiting state are now the same as those of
the constructors.

Fig. 8(a) shows the formation of a ring scatternet at CK =
01 and DOC = 2 according to the same RCP. Devices E and
D play the role of constructors in their scatternets and link up
because they have the same DOC value. However, unlike in the
previous step, both constructors D and E act as slaves before
they are connected. Thus, device E adopts the role of master
and constructs a new piconet after being connected to device
D and yields the results plotted as black dotted lines in Fig.
8(b). Afterwards, device E expands its CK value to 001 and
increases its DOC to three. Similarly, device D expands its CK
value to 101 and increases its DOC value to three.

Fig. 9(a) shows the formation of a ring scatternet at CK =
011 and DOC = 3, following the same RCP. Devices H and
I are constructors of their scatternets and link up because they
have the same DOC value. Fig. 9(b) uses the devices H and I

as examples to illustrate the linking procedure. They implement
Step 6. During the connection, device H is in the inquiry state
and expands its CK value to 0011 and increases its DOC value
to four. Similarly, device I is in the inquiry scan state, and
expands its CK value to 1011 and increases its DOC value to
four. The arrows in Fig. 9(b) show that, after executing Step 7,
both devices H and I transmit the new CK and DOC values
to all devices in the scatternet in which they were previously
included. Each device in the waiting mode modifies its own
CK and DOC values according to the newly received CK and
DOC values.

Each device in the constructed chain scatternet now executes
Steps 1 and 2. Then it knows that the number of connected
devices is 16, or 2DOC , which exceeds half of the total number
of devices. Fig. 10 shows that every device performs Step 8
to form a ring scatternet. Device A, which has a CK value of
0111, will link to device P , whose CK value is 1111. Thus,
the beginning of the chain can be connected to its end. Fig.
11 shows the resultant ring scatternet. The other constructors,
which are not linked with the ring scatternet, enter Phase II
after a timeout.

3.2. Scatternet construction phase (Phase II)

In a Bluetooth network, an excess of piconets can easily
cause collision in the hopping sequence and hence, increase the
packet loss rate [11,25]. In addition, a study [2] depicts that the
small number of bridges in a route increases the success rate
of data transmission and saves the guard time. The probabil-
ity of packet collisions increases with the number of piconets
in the constructed BlueCube. Furthermore, the guard time cost
decreases with the number of bridges in the BlueCube. Execut-
ing role switch operations in Phase II reduces the number of
piconets and bridges and thus, increases the success rate and
reduces the guard time cost. Another aim of Phase II is that the
devices which have not been connected to the ring scatternet
will construct a link to a particular piconet of the ring. This
Phase comprises two main procedures.

(1) Role switching procedure (RSP): This procedure applies
role switching operations to reduce the number of piconets
and bridges. It is implemented by combining piconets,
splitting piconets and switching the roles of devices.

(2) Remaining device connection procedure (RDCP): This
procedure enables the devices which have not yet partici-
pated in the ring scatternet to connect to the ring such that
the number of newly constructed links in all the piconets
is approximately the same.

During the execution of the RSP, only devices with the role
of master (M/S bridge or pure master) can initiate a role switch
request. This prevents the master and slave devices from simul-
taneously initiating a role switch request that would lead to an
awkward situation wherein both are waiting for each other to

1250 C.-T. Chang et al. / J. Parallel Distrib. Comput. 66 (2006) 1243–1258

Fig. 8. The third connection built in Phase I: (a) ring scatternet formation at CK = 01 and DOC = 2; (b) connection of devices D and E and modification
of CK and DOC values.

Fig. 9. The fourth connection built in Phase I: (a) ring scatternet formation at CK = 011 and DOC = 3; (b) connection of devices H and I and modification
of CK and DOC values.

Fig. 10. Devices A and P established a connection to construct a ring
scatternet.

reply. As shown in Fig. 11, a device that acts as an M/S bridge
can take the role of a pure master or S/S bridge such that the
role of each device in the ring scatternet eventually alternates
between master and S/S bridge. Fig. 12(a) shows devices G

and H as examples to illustrate role switching. Devices G and
H originally act as M/S bridges and connect to devices F and
I , respectively. Three piconets are constructed from four de-
vices in the original ring scatternet. Here, devices G and H

change their roles to S/S bridge and master, respectively, and
hence, yield two piconets in the ring scatternet. The number
of piconets and bridge devices can then be reduced by one,

Fig. 11. The resulting ring scatternet constructed in Phase I.

Fig. 12. An example of role switch operations applied on devices G and H

in the ring scatternet: (a) the role playing of devices in the scatternet; (b) the
role playing after executing the piconet combination.

as shown in Fig. 12(b). The term Subsequence of CK value is
defined to illustrate the operation of Phase II.

Definition (Subsequence of CK value). Let the m-bit CK value
S be S1S2 . . . Sm, where Si = 0 or 1. The subsequence of

C.-T. Chang et al. / J. Parallel Distrib. Comput. 66 (2006) 1243–1258 1251

S is defined as S′ = Si, Si+1, . . . , Sm, for all 2� i�m. For
example, the subsequence of CK = 1101 is {101, 01, 1}.

The RSP is described below. The results of the example in
Phase I will be used to illustrate Phase II.

3.2.1. Role switching procedure
Step 1: A device that plays the role of either the master or M/S

bridge applies the following Role Determination (RD) formula
to determine which of the two roles it should adopt.

RD(CK) =
{

S/S bridge if number of 1’s in CK is odd,

Master if number of 1’s in CK is even.

Step 2: A master device that intends to act as the S/S bridge
will initially send an LMP_Switch_req message to its slave with
smaller CK value in order to request a role switching. After the
master exchanges its role with that of the slave with smaller
CK value, it will request another role switching with the other
slave.

Step 3: An M/S bridge that intends to act as a S/S bridge will
switch role with its slave device in piconet.

Step 4: Once the devices have completed role switching, the
master devices initiate RDCP to link with other devices which
have not yet been connected into the ring. Devices that have
become S/S bridges remain in the waiting mode to wait for the
master to complete Phase II.

The example presented in the previous section is now used
to clarify the RSP. As shown in Fig. 11, device C intends to
act as a S/S bridge. According to Step 2 of RSP, device C

initially switches its role with device D and changes its role
from master to M/S bridge. As a result, piconet P 1 contains
devices C and D and a new piconet P 4 containing devices C

and B is constructed as shown in Fig. 13. In piconet P 1, devices
C and D become M/S bridges. Device C then switches its role
again with device B. When device B accepts the request sent
by device C, piconets P 3 and P 4 are combined into the new
piconet P 3 as plotted by the black dotted lines in Fig. 14 and
device C becomes an S/S bridge. Since device B has changed
its role from master to S/S bridge, it skips Step 3 and enters
waiting mode as described in Step 4. Then device E will intend
to change its role from M/S bridge to S/S bridge. According to
Step 3 of RSP, device E switches its role with device D and
hence, piconets P 1 and P 2 are combined into a new piconet
as shown in Fig. 15. Similarly, the other devices in the ring
scatternet follow the operations of the RSP to change their
device roles. The RSP operations cause the role of each device
in the ring scatternet to eventually alternate between master
and S/S bridge. Thus, the number of piconets and bridges are
decreased from 12 to eight as shown in Fig. 15.

When the RSP is complete, the master devices and the devices
which have not yet been connected to the ring will implement
the RDCP. The master devices will begin linking up with the
devices that have not been connected to the ring scatternet.
The unconnected devices can connect to the masters in the ring
according to their CK values in such a way that the new links
are distributed equally in the existing piconets. The steps of

Fig. 13. Piconet splitting in the ring scatternet.

Fig. 14. Piconet combination in the ring scatternet.

Fig. 15. The role of each device after executing the RSP.

RDCP are described below and explained with reference to the
example in Phase I.

3.2.2. Procedure for connecting the remaining devices
Step 1: The formula below, which is in terms of DOC and

n, yields the maximum number called the collection number
CN (n, DOC) of devices that the master can collect.

CN (n, DOC) =
⌈

n − 2DOC

2DOC−1

⌉
.

Step 2: The master device checks whether the number of
collected devices has reached CN. If it does, it proceeds to Step
8. Phase III is then implemented. Otherwise, it proceeds to
Step 3.

Step 3: The master sends an ID packet to search for devices
that have not yet been connected to the ring scatternet.

Step 4: Devices that have not yet been connected to the ring
scatternet are still in Phase I, and may have formed a scatternet

1252 C.-T. Chang et al. / J. Parallel Distrib. Comput. 66 (2006) 1243–1258

or remained isolated. The master device in the ring scatternet,
upon receiving the FHS packet sent as a reply from the con-
structor or the isolated point, can then check the constructor’s
DOC value against its own value. The difference between the
values indicates that the constructor cannot still be connected
to the ring scatternet. Subsequently, one party enters the page
state and the other enters the page scan state, to establish a con-
nection. However, if the master has not received any reply from
the slave after the timeout, then all devices have been linked to
the ring scatternet, and the master proceeds to Step 8 and then
enters Phase III.

Step 5: After the link has been established, the master sends
a subsequence of its CK value to the newly connected device
as the new CK value of that device. Notably, the sent subse-
quence element will be marked to enable the master to send an
unmarked subsequence to a newly connected device later on.
Thereafter, the master device repeats Step 2. Devices that are
newly linked to the ring scatternet proceed to Step 6.

Step 6: A device that is linked to the ring scatternet sends an
inquiry scan request packet to all devices in the ring scatternet
to which it originally belonged in order to inform all devices
to enter the inquiry scan state.

Step 7: A device that receives an inquiry scan request packet
will break its current link and become an isolated point. Then,
it will enter the inquiry scan state and wait in order to accept
the ID packet sent out by the master in the ring scatternet.

Step 8: The device completes the RDCP and enters the wait-
ing mode.

As shown in Fig. 16, when device N changes its role, it will
enter the inquiry state and begin executing the RDCP. In Step 1,
device N evaluates the CN (n, DOC) with n = 25 and DOC =
4 and hence, understands that no more than two devices can
be collected. In Steps 3 and 4, device N connects to device V

which is assumed to be in the inquiry scan state. The CK value
of device N is 1100 and thus, its subsequence is {100, 00, 0}.
In Step 5, device N assigns and sends a new CK value of 100 to
device V . In Step 6, device V sends out the inquiry scan request
packets to inform all the devices {Q, R, S, T , U, W, Y }
which belong to its original scatternet to enter the inquiry scan
state. In Step 7, upon receiving the inquiry scan request packet,
the informed devices cut all links with themselves and become
isolated. Then, these devices enter the inquiry scan state and
try to connect with the ring scatternet. After devices N and V

have established a connection, device N checks whether the
number of collected devices is CN. Device N has collected
only one device and thus, has not reached CN = 2. Hence, it
attempts to enter the inquiry state in order to collect another
device. Device N is assumed not to receive any return message
from any device after the timeout, and then enters the waiting
mode to facilitate Phase III.

Like device N , other master devices in the ring scatternet,
including B, D, F, H, J, L and P , enter the inquiry state to
connect the isolated devices and link all of the devices into a
single scatternet, as shown in Fig. 17. When the masters in the
ring scatternet connect the desired number of devices, or when
the timeout for connecting devices occurs, Phase II ends while
Phase III begins.

Fig. 16. Linking of devices N and V .

Fig. 17. All devices linking as a single scatternet.

3.3. BlueCube construction phase (Phase III)

When Phase II is completed, all devices in the ring scatternet
enter the BlueCube construction phase. The following defini-
tions are introduced to detail Phase III.

Definition (Hamming distance). The Hamming distance,
HD(A, B), is the number of distinct corresponding bits be-
tween two CK values, A and B. Two devices with a HD of one
will connect to each other to establish a BlueCube structure.

Definition (BlueCube construction information packet (BCI
packet)). The format of a BCI packet is shown below. In con-
structing a BlueCube structure, the master whose CK value is
zero sends out a BCI packet in the ring scatternet in order to col-
lect the CK, Clk_offset and BD_ADDR from every S/S bridge
device.

The goal of Phase III is to construct a BlueCube that is
structurally similar to a Hypercube so as to have its favorable
characteristics. Devices in the ring scatternet use the BCI packet
to exchange CK, Clk_offset and BD_ADDR. If the HD of two
CK values is one, then the information from Clk_offset and

C.-T. Chang et al. / J. Parallel Distrib. Comput. 66 (2006) 1243–1258 1253

Fig. 18. Directions of BCI Packet sent in the ring scatternet.

BD_ADDR is used to make a connection quickly. Phase III is
described below.

3.3.1. BlueCube construction procedure
Step 1: In a ring scatternet, the device whose CK value is

zero sends out BCI packets to the master and S/S bridge devices
in both clockwise and counter-clockwise directions in the ring
scatternet.

Step 2: Upon receiving the BCI packet sent from one neigh-
boring master, the bridge adds the information, including CK,
Clk_offset and BD_ADDR, to the BCI packet, and sends it to an-
other neighboring master device. Then, the S/S bridge switches
alternately between the page scan state and active mode. The
S/S bridge either waits to receive the BCI packets in active
mode, or connects to other devices at the page scan state in
order to construct a BlueCube.

Step 3: Upon receiving the BCI packet sent from one neigh-
boring bridge, the master device checks each CK value, e.g.,
v, in the BCI packet and determines whether the HD between
v and its own CK value is one. If this is the case and the cor-
responding devices are not connected in previous phase, then
the master device records their Clk_offset and BD_ADDR val-
ues from the BCI packet, and sends this BCI packet to another
neighboring bridge device before entering the page state. The
recorded Clk_offset and BD_ADDR values are used to connect
quickly to the device whose CK value has a HD of one. The
BCI packets are sent clockwise and counter-clockwise in the
ring scatternet. When a BCI packet eventually returns to the
device whose CK value is zero, the transmission of the BCI
packet is halted.

Step 4: After a link is established, the master device deter-
mines whether it is linked to fewer devices than the DOC value.
If yes, the master device enters the waiting mode upon receiv-
ing another BCI packet and repeats Step 2.

As shown in Fig. 18, in Step 1, master F with a CK value
of zero sends BCI packets to neighboring devices, E and G. In
Step 2, upon receiving the BCI packet, devices E and G append
their CK, Clk_offset and BD_ADDR to the packet and forward
it to neighboring devices D and H , respectively. Afterwards,
devices E and G alternate between the page scan state and the
active mode. The forwarding of BCI packets ends only when
the packets have returned to master F .

In Fig. 19, the CK values of devices E and M are 0001 and
1101, respectively. In Step 3, upon receiving the BCI packet

Fig. 19. The master device links with those bridge devices whose CK value
has a hamming distance of 1 with the master’s CK value.

Fig. 20. Completion of connection of all master devices in the ring scatternet.

from device M , master L determines that HD(1001, 0001)

and HD(1001, 1101) are both equal to one. Master L extracts
Clk_offset and BD_ADDR of devices E and M from the BCI
packet, and then sends the BCI packet to bridge K . Then mas-
ter L uses the recorded Clk_offset and BD_ADDR of device E

to establish a connection with device E, which has already en-
tered the page scan state. Although device M also fulfills the
requirements to connect with master L, devices M and L are
already connected to the ring scatternet. Hence, device L does
not reestablish a link with device M . Now, only the three de-
vices K , M and E are linked to device L. Since the number
of links connected to device L is not equal to the DOC value,
master L continues to wait to receive another BCI packet. Once
it receives another BCI packet from device K , it checks the CK
values in the BCI packet, and determines that HD(1001, 1011)

and HD(1001, 1000) are both one. As indicated above, master
L sends out the BCI packet to master M and then connects it to
device I . Since the number of links to master L equals its DOC
value, device L terminates the BlueCube construction phase.

In Phase III, every master repeatedly establishes links until
its number of connections equals the DOC value. When all
devices in the ring scatternet have completed the BlueCube
construction phase, the resultant ring scatternet is as shown in
Fig. 20. Fig. 21 presents another perspective of the constructed
BlueCube scatternet, in which the backbone of a Hypercube
structure has been constructed to provide slaves with a good
environment for computation and communication.

Note that, although a master can only connect to seven slaves,
there is no limitation in the number of masters to which the

1254 C.-T. Chang et al. / J. Parallel Distrib. Comput. 66 (2006) 1243–1258

Fig. 21. A constructed BlueCube scatternet where a Hypercube backbone
has been constructed for providing slaves with a parallel computing and
communication environment.

slave could connect. It is possible to construct a BlueCube with
a dimension higher than 8. Constructing a BlueCube with
higher dimensions requires extra operations in Step 4 in the
BlueCube construction procedure to arrange the role of the
devices. In the extra operations, the master device checks if
its DOC value is greater than seven. If yes, the master device
applies the role switching operation to switch its role with the
connected device during the link establishment. As a result,
the master will become an M/S bridge since it uses the mas-
ter role to connect with seven slaves in the original piconet,
but uses the slave role to establish new links. However, M/S
bridges reduce the piconet performance since intra-piconet
communication must be suspended when the master partici-
pate and play a slave role in another piconet and hence, results
in inefficient communication. In the present paper, we aim to
construct the BlueCube with a reasonably sized scatternet that
includes less than 128 devices in the personal area and uses
only the roles of master, S/S bridge and slave.

4. Performance

This section investigates the performance of the constructed
BlueCube using a Java-based simulator. The size of the simula-
tion region is set to 10×10 units, whereas the range of the radio
transmission is set to a constant of 10 units. The number of
devices varies from 10 to 80, and their locations, BD_ADDRs
and native clocks are randomly chosen. The source and
destination of each route are randomly selected from the scat-
ternet, and the routing protocol proposed in [1] is used to es-
tablish the route. The constant bit rate (CBR) model is utilized
to generate the traffic load for each route. Each performance
result was obtained from the average results of 100 exper-
iments. To evaluate the effectiveness of fault-tolerance, the
device failure ratio, which is defined by the ratio of the number
of failure devices to the number of all devices, is investigated.
The performance of the proposed BlueCube and three existing
structures—Mesh [10], Mesh_h and Seven_Ary Star [16]—is
examined. The topology of the Mesh_h structure has the same
number of slave devices and internal bridges as BlueCube, and
its internal bridges are linked in a mesh. The performance is

0

10

20

30

40

50

60

9 16 25 36 49 64 81
Number of Devices

N
um

be
r

of
 P

ic
on

et
s

Before Phase II

After Phase III

Fig. 22. The effect of piconet reduction in the BlueCube protocol.

N
um

be
r

of
 B

ri
dg

es

0

10

20

30

40

50

60

9 16 25 36 49 64 81

Number of Devices

Before Phase II

After Phase III

Fig. 23. The effect of bridge reduction in the BlueCube protocol.

measured by the number of piconets, the number of bridges,
the average length of the routing paths, the average time for
route construction, the congestion rate for communication, the
effectiveness of disjoint routes and fault-tolerance.

Increasing the number of piconets in a specific region in-
creases the packet collision rate and hence, increases packet
retransmission. Fig. 22 shows the effect of role switching oper-
ations in Phase II of the proposed protocol. The number of pi-
conets increases with the number of devices. Applying the role
switching operations markedly reduced the number of piconets.
An excess of bridges in the scatternet wastes the guard time re-
quired to switch among the participating piconets and increases
the master’s difficulty in scheduling. Reducing the number of
bridges in the scatternet reduces the delay in inter-piconet data
transmission and hence, increases the throughput of the scat-
ternet. Fig. 23 shows the effect of applying role switching op-
erations to reduce the number of bridges. The proposed role
switching operation in Phase II significantly reduces the num-
ber of bridges. This saves the guard time and increases the rate
of successful data transmission and thus, improves the perfor-
mance of the network.

Figs. 24 and 25 show the number of piconets and bridges
associated with various scatternet structures, including Blue-
Cube, Mesh, Mesh_h and Star. A centralized formation algo-
rithm [16] is applied to construct a scatternet with a Seven_Ary
Star structure. The Star structure has fewer piconets than
BlueCube, Mesh and Mesh_h. The centralized collection of
information about the number of devices helps to control the
construction of the star structure, but it creates an overhead of

C.-T. Chang et al. / J. Parallel Distrib. Comput. 66 (2006) 1243–1258 1255

0

5

10

15

20

25

30

35

40

9 16 25 36 49 64

Number of Devices

N
um

be
r o

f P
ic

on
et

s

BlueCube

Mesh

Mesh_h

Star

Fig. 24. Comparison of the average number of piconets constructed for various
scatternet structures.

N
um

be
r

of
 B

ri
dg

es

0
5

10
15
20
25
30
35

45
40

9 16 25 36 49 64

Number of Devices

BlueCube

Mesh

Mesh_h

Star

Fig. 25. Comparison of the average number of bridges constructed for various
scatternet structures.

control packets for collecting information. The proposed Blue-
Cube construction protocol applies role switching operations,
such as piconet combination and piconet splitting, to reduce
the number of piconets and bridges in a distributed manner.
As shown in Figs. 24 and 25, BlueCube has fewer piconets
and bridges than those of Mesh or Mesh_h. Thus, it suffers
fewer collisions in the hopping sequence and has an easier
scheduling.

Two devices which are in different piconets but intend to
communicate must establish a routing path and then use the
master and bridge devices to forward packets. Properly struc-
turing the scatternet reduces the length of the route and pro-
vides disjoint paths and hence, reduces the transmission delay.
Fig. 26 compares the route-discovery times of various scatter-
net structures using the RVM [1] and the proposed BlueCube
with 9, 16, 25, 36, 49 and 64 devices. On the average, the
BlueCube structure requires less time to discover a route com-
pared to the other structures, because the Hypercube structure
has the smallest network diameter. Fig. 27 shows the average
route length of various scatternet structures. The routing length
typically increases with the number of devices. The Hypercube
structure has the smallest network diameter. Thus, the average
length of the routes constructed by BlueCube is lower than
those constructed by Mesh, Mesh_h and Star.

Reducing the average routing length also reduces the average
network traffic. The congestion rate is the ratio of the number

1.5

2

2.5

3

3.5

4

4.5

5

9 16 25 36 49 64

Number of Devices

R
ou

te
 D

is
co

ve
ri

ng
 T

im
e

(u
ni

ts
)

BlueCube

Mesh

Mesh_h

Star

Fig. 26. Comparison of average time for route discovering for various scat-
ternet structures.

A
ve

ra
ge

 L
en

gt
h

of
 R

ou
te

s
(h

op
s)

1

1.5

2

2.5

3

3.5

4

4.5

5

8 9 1615 25 3231 36 49 6463

Number of Devices

BlueCube

Mesh

Mesh_h

Star

Fig. 27. Comparison of average routing length discovered for various scatternet
structures.

0
10
20

30
40
50
60
70
80

90

9 16 25 36 49 64
Number of Devices

C
on

ge
st

io
n

R
at

e
(%

)

70kb/s

110kb/s

150kb/s

190kb/s

240kb/s

Fig. 28. Comparison of the congestion rate of BlueCube structure for various
traffic loads.

of relaying devices which suffer transmission congestion to
the total number of relaying devices. Reducing the congestion
rate also reduces the delivery delay and the packet loss rate in
inter-piconet communication. Fig. 28 shows the congestion rate
in BlueCube for various traffic loads. In Fig. 28, the sources
and destinations of the routes are randomly selected and the
bandwidth required for the route is determined using the CBR
model to generate the traffic loads from 70 to 240 Kb/s.

In general, the congestion rate increases with the traffic load.
Notice that most curves have high congestion rates when the
number of devices is equal to 25 or 49. The reason for this is

1256 C.-T. Chang et al. / J. Parallel Distrib. Comput. 66 (2006) 1243–1258

0
10
20
30
40
50
60
70

9 16 25 36 49 64

BlueCube Mesh Mesh_h BlueCube Mesh Mesh_h BlueCube Mesh Mesh_h

St
ru

ct
ur

e
C

on
ge

st
io

n
R

at
e

(%
)

0
10
20
30
40
50
60
70

St
ru

ct
ur

e
C

on
ge

st
io

n
R

at
e

(%
)

0
10
20
30
40
50
60
70

St
ru

ct
ur

e
C

on
ge

st
io

n
R

at
e

(%
)

Number of Devices
9 16 25 36 49 64

Number of Devices
9 16 25 36 49 64

Number of Devices(a) (b) (c)

Fig. 29. Comparison of the congestion rate of different structures for various traffic loads: (a) traffic load at 70 Kb/s; (b) traffic load at 110 Kb/s; (c) traffic
load at 150 Kb/s.

analyzed below. The excess devices in the BlueCube increase
the number of slave devices in a piconet. The degree of traffic
congestion at the master device increases with the number of
slaves in a piconet. The constructed BlueCubes with 9, 16, 25,
36, 49 or 64 devices have the number of slave devices 1, 0, 9, 4,
17 or 0, respectively. Hence, the constructed BlueCubes with 25
or 49 devices have a higher congestion rate than the BlueCubes
constructed with 9, 16, 36 or 64 devices. Fig. 30 indicates that
BlueCube has a low congestion rate when the traffic on each
route is under 110 Kb/s. Fig. 29 uses different traffic loads to
compare the congestion rates of BlueCube, Mesh and Mesh_h
structures. In Figs. 29(a)–(c), the traffic loads are controlled at
70, 110, and 150 Kb/s, respectively. In general, the congestion
rate increases with the traffic load for all structures. Both Mesh
and Mesh_h typically exhibit more congestion than BlueCube
under different traffic loads because the average routing length
discovered in BlueCube is smaller than those discovered in
Mesh or Mesh_h. In particular, the average traffic at 70 Kb/s in
Mesh or Mesh_h has the same congestion as those at 110 Kb/s
in BlueCube. Moreover, BlueCube constructed with 64 devices
at 150 Kb/s suffers half the congestion rate of Mesh or Mesh_h
with the same number of devices.

A well-structured scatternet should also support disjoint
paths between any pair of devices. Disjoint paths provide
not only backup routes but also higher bandwidths because
data can be transmitted through disjoint paths in parallel. The
backup path immediately supports the data communication
service as another transmission route if the original route
breaks and thus, faults caused by route breakage can be tol-
erated. Let � be the ratio of the number of slave devices to
the number of internal bridges. If the number of bridges (or
internal bridges) is high, then many disjoint routes are candi-
date backup paths. Thus, a smaller � value means that more
candidate main routes or backup routes are available. A route
is said to be tolerated if the packet transmissions are always
successful due to the existence of disjoint routes. The device
fault-tolerance rate (DFTR) is defined by the ratio of the num-
ber of tolerated routes to the number of all routes at a specific
device failure ratio. The number of devices is set to 16, 36, 50
and 66 to represent various � values. The relationship between
DFTR and the device failure ratio is examined by setting the
device failure ratio to 20%, 30% and 40%. Fig. 30 shows that

50

60

70

80

90

100

0 12.5 56 97
Terminal Devices/Internal Bridge (%)

D
FT

R
 (

%
)

BlueCube (20%)

BlueCube (30%)

BlueCube (40%)

Mesh_h (20%)

Mesh_h (30%)

Mesh_h (40%)

Fig. 30. Comparison of DFTR for communicating at various device failure
ratios in the BlueCube.

the fault-tolerance generally falls as � value increases. Both
Mesh_h and BlueCube structures exhibit this trend. The DFTR
generally falls as the device failure ratio increases. However,
BlueCube outperforms Mesh_h in terms of DFTR, for the fol-
lowing reasons. A structure with more disjoint paths has more
backup routes and hence, can better tolerate device faults.
When few devices are involved, each device in the Mesh_h
structure has a larger degree than in the BlueCube structure and
thus, Mesh_h tolerates faults better than BlueCube. However,
the degree of devices in Mesh_h cannot exceed four. When the
number of devices is large, BlueCube tolerates faults better.

The device fault-tolerance overhead (DFTO), which is re-
lated to the DFTR, is used to evaluate the overhead associated
with the extra length beyond that of the original path for a
backup route. The DFTO is the ratio of the number of hops
on the backup path to those on the original path. A smaller
DFTO means a lower overhead associated with the backup path
when the bridge devices fail. Fig. 31 compares the lengths of
the backup paths. The backup paths in BlueCube are shorter
than those in Mesh_h because the Hypercube structure has the
smallest network diameter.

The probability that a route fault occurs increases with the
device failure ratio. A high device failure ratio requires rerout-
ing and hence, increases the traffic load in the scatternet. Fig. 32
shows the DFTR of BlueCube and Mesh_h against the number
of devices from 9 to 64 for device failure ratios of 20%, 30%
and 40%. Fig. 32 shows that Mesh_h has a better fault-tolerance

C.-T. Chang et al. / J. Parallel Distrib. Comput. 66 (2006) 1243–1258 1257

100

105

110

115

120

125

130

135

D
FT

O
 (

%
)

0 12.5 56 97
Terminal Devices/Internal Bridge (%)

BlueCube (20%)

BlueCube (30%)

BlueCube (40%)

Mesh_h (20%)

Mesh_h (30%)

Mesh_h (40%)

Fig. 31. Comparison of DFTO for communicating at various device failure
ratios in the BlueCube.

50

60

70

80

90

100

9 16 25 36 49 63 64

Number of Devices

D
FT

R
 (

%
)

BlueCube (20%)

BlueCube (30%)

BlueCube (40%)

Mesh_h (20%)

Mesh_h (30%)

Mesh_h (40%)

Fig. 32. Comparison of the fault-tolerance rate for communication at various
device failure ratios in structures.

than BlueCube at low device failure ratios. However, as the
device failure ratio increases, the fault-tolerance of BlueCube
exceeds that of Mesh_h. Fig. 30 shows the same results. This
result is quite reasonable. The number of dimensions of Blue-
Cube increases with the number of devices. If the number of
devices is large, the dimensionality of BlueCube is high and
thus, BlueCube provides more disjoint routes to help toler-
ate route faults. Fig. 33 compares the fault-tolerance overhead,
DFTO, for backup paths in various numbers of devices. In-
creasing the number of devices increases the number of disjoint
routes for tolerating route faults and hence, reduces the fault-
tolerance overhead. The probability of route fault increases with
the device failure ratio and thus, the fault-tolerance overhead
also increases with the device failure ratio. Fig. 33 shows that
the fault-tolerance overhead markedly increases with the num-
ber of devices in Mesh_h, but remains steady in BlueCube.
Increasing the number of devices in scatternet also increases
the average degree of internal bridges in the BlueCube struc-
ture. Thus, the lengths of the backup paths in BlueCube are
steady. The simulation results in Figs. 31 and 33 show that the
backup paths in BlueCube are around half of those in Mesh_h,
regardless of � and the number of devices. The fault-tolerance
overhead increases with the device failure ratio in both Blue-
Cube and Mesh_h structures. However, BlueCube outperforms
Mesh_h in fault-tolerance overhead even when the device fail-

100
105
110
115
120
125
130
135
140
145

D
FT

O
 (

%
)

9 16 25 36 49 63 64

Number of Devices

BlueCube (20%)

BlueCube (30%)

BlueCube (40%)

Mesh_h (20%)

Mesh_h (30%)

Mesh_h (40%)

Fig. 33. Comparison of the fault-tolerance overhead for communication at
various device failure ratios in structures.

ure ratios of BlueCube and the Mesh_h are 40% and 20%, re-
spectively.

5. Conclusions

The present work extends the network model of grid com-
puting from a wired network to an integrated wired and wire-
less network via a pilot application of Bluetooth wireless tech-
nology. A BlueCube protocol is proposed for constructing a
Hypercube structure by linking various Bluetooth machines. In
the constructed BlueCube structure, machines are able to com-
municate with each other efficiently and utilize the wireless
bandwidth and thus, increase the potential of parallel comput-
ing and communication. A three-phase protocol is proposed to
enable Bluetooth devices to construct a parallel computing and
communication environment. Existing algorithms designed for
Hypercube can therefore be applied to the BlueCube scatternet.
The BlueCube scatternet includes no extra bridges between two
piconets and supports disjoint paths and shorter routing paths.
Experimental results reveal that the proposed protocol yields
a scatternet structure with favorable characteristics for parallel
computing and communication.

References

[1] P. Bhagwat, A. Segall, A routing vector method (RVM) for routing
in Bluetooth scatternets, Proceedings of the Sixth IEEE International
Workshop on Mobile Multimedia Communications (MoMuC), November
1999, pp. 375–379.

[2] C. Y. Chang, G. J. Yu, C. F. Lin, T. T. Wu, Relay reduction and route
construction for scatternet over Bluetooth radio systems, Proceedings
of the IEEE 16th International Conference on Information Networking
(ICOIN), January 2002, pp. 5B2.1–5B2.10.

[3] S. W. Cheng, D. Garlan, B. Schmerl, P. Steenkiste, Hu. Ningning,
Software architecture-based adaptation for grid computing, Proceedings
of the 11th IEEE Conference on High Performance Distributed
Computing (HPDC), 2002, pp. 389–398.

[4] S. K. Das, D. J. Harvey, R. Biswas, Latency hiding in dynamic
partitioning and load balancing of grid computing applications,
Proceedings of the First IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID), 2001, pp. 347–354.

[5] T. Havashi, K. Nakano, S. Olariu, Randomized initialization protocols
for packet radio networks, Proceedings of the 13th International Parallel
Processing Symposium (IPPS), April 1999, pp. 554–548.

1258 C.-T. Chang et al. / J. Parallel Distrib. Comput. 66 (2006) 1243–1258

[6] M. Kalia, S. Garg, R. Shorey, Scatternet structure and inter-piconet
communication in the Bluetooth system, Proceedings of the IEEE
National Conference on Communications, New Delhi, 2000.

[7] C. Law, K. Y. Siu, A Bluetooth scatternet formation algorithm,
Proceedings of the IEEE Global Telecommunications Conference
(GLOBECOM), November 2001, pp. 2864–2869.

[8] Y.R. Leu, S.Y. Kuo, A fault-tolerant tree communication scheme for
hypercube systems, IEEE Trans. Comput. 45 (6) (1996) 643–650.

[9] T. Y. Lin, Y. C. Tseng, K. M. Chang, A new BlueRing scatternet topology
for Bluetooth with its formation, routing, and maintenance protocols,
Proceedings of the Wireless Communications and Mobile Computing,
June 2003, pp. 517–537.

[10] M. Medidi, A. Daptardar, A distributed algorithm for mesh scatternet
formation in Bluetooth networks, Proceedings of the International
Conference on Wireless Networks (ICWN) June 2004, pp. 295–301.

[11] Gy. Miklos, A. Racz, Z. Turanyi, A. Valko, P. Johansson, Performance
aspects of Bluetooth scatternet formation, Proceedings of the First Annual
Workshop on Mobile Ad Hoc Networking and Computing (Mobi Hoc)
August 2000, pp. 147–148.

[12] R. Nusser, R. Bosch, R.M. Pelz, Bluetooth-based wireless connectivity
in an automotive environment, Proceedings of the IEEE Vehicular
Technology Conference (VTC), September 2000, pp. 1935–1942.

[13] P. Zhang, W. Li, J. Wang, Y. Wang, Bluetooth—the fastest developing
wireless technology, Proceedings of the International Conference
Technology (ICCT), 2000, pp. 1657–1664.

[14] K. Persson, D. Manivannan, Distributed self-healing Bluetooth scatternet
formation, Proceedings of the International Conference on Wireless
Networks (ICWN) June 2003, pp. 325–334.

[15] C. Petrioli, S. Basagni, BlueMesh: Degree-constrained multihop
scatternet formation for Bluetooth networks, ACM/Kluwer Journal on
Mobile Networks and Applications (MONET), 9(1) (2004) 33–47.

[16] C. Petrioli, S. Basagni, I. Chlamtac, Configuring bluestars: multihop
scatternet formation for Bluetooth networks, IEEE Trans. Comput. 52
(6) (2003) 779–790.

[17] L. Ramachandran, M. Kapoor, A. Sarkar, A. Aggarwal, Clustering
algorithms for wireless ad hoc networks, Proceedings of the Fourth
International Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (DIALM), August 2000, pp. 54–63.

[18] T. Salonidis, P. Bhagwat, L. Tassiulas, Proximity awareness and fast
connection establishment in Bluetooth, Proceedings of the First Annual
Workshop on Mobile and Ad Hoc Networking and Computing, 2000,
pp. 141–142.

[19] T. Salonidis, P. Bhagwat, L. Tassiulas, Distributed topology construction
of Bluetooth personal area networks, Proceedings of the (INFOCOM),
April 2001, pp. 1577–1586.

[20] A. Sohm, R. Biswas, H. D. Simon, Impact of load balancing
on unstructured adaptive grid computations for distributed-memory
multiprocessors, Proceedings of the Eighth IEEE Symposium on Parallel
and Distributed Processing, 1996, pp. 26–33.

[21] The Bluetooth Specification, 1.0b & 1.1.
[22] P. J. Wan, L. W. Liu, Y. Yang, Optimal routing based on the super-

topology in hypercube WDM networks, Proceedings of the 24th Annual
IEEE Conference on Local Computer Network (LCN) 1999, pp.
142–149.

[23] Z. Wang, R. J. Thomas, Z. Haas, Bluenet—a new scatternet formation
scheme, Proceedings of the 35th Hawaii International Conference on
System Science (HICSS) January 2002, pp. 779–790.

[24] G. V. Zaruba, S. Basagni, I. Chlamtac, Bluetrees—scatternet formation
to enable Bluetooth-based ad hoc networks, Proceedings of the
IEEE International Conference on Communications (ICC), 2001,
pp. 273–277.

[25] S. Zurbes, Considerations on link and system throughput of Bluetooth
networks, Proceedings of the 11th IEEE International Symposium on
Personal, Indoor and Mobile Radio Communication (PIMRC) September
2000, pp. 1315–1319.

Chao-Tsun Chang received the Ph.D. degree
in Computer Science and Information Engineer-
ing from National Central University, Taiwan,
in 2006. He joined the faculty of the Depart-
ment of Department of Information Manage-
ment, Hsiuping Institute of Technology, Taiwan,
as an Assistant Professor in 2006. His current
research interests include wireless sensor net-
works, Bluetooth radio networks, Ad Hoc wire-
less networks, and mobile computing.

Chih-Yung Chang received the Ph.D. degree
in Computer Science and Information Engineer-
ing from National Central University, Taiwan,
in 1995. He joined the faculty of the Depart-
ment of Computer and Information Science at
Aletheia University, Taiwan, as an Assistant
Professor in 1997. He was the Chair of the
Department of Computer and Information Sci-
ence, Aletheia University, from August 2000 to
July 2002. He is currently an Associate Pro-
fessor of Department of Computer Science and
Information Engineering at Tamkang Univer-
sity, Taiwan. Dr Chang served as an Associate

Guest Editor of Journal of Internet Technology (JIT, 2004), Journal of Mobile
Multimedia (JMM, 2005), and a member of Editorial Board of Tamsui Oxford
Journal of Mathematical Sciences (2001–2005). He was an Area Chair of
IEEE AINA’2005, Vice Chair of IEEE WisCom’2005 and EUC’2005, Track
Chair (Learning Technology in Education Track) of IEEE ITRE’2005, Pro-
gram Co-Chair of MNSAT’2005 and UbiLearn’ 2006, Workshop Co-Chair of
INA’2005, MSEAT’2003, MSEAT’2004, and Publication Chair of MSEAT’2005
and SCORM’2006. Dr. Chang is a member of the IEEE Computer Society,
Communication Society and IEICE society. His current research interests in-
clude wireless sensor networks, mobile learning, Bluetooth radio networks,
Ad Hoc wireless networks, and mobile computing.

Jang-Ping Sheu received the B.S. degree in
computer science from Tamkang University, Tai-
wan, Republic of China, in 1981, and the M.S.
and Ph.D. degrees in computer science from Na-
tional Tsing Hua University, Taiwan, Republic
of China, in 1983 and 1987, respectively. He
joined the faculty of the Department of Elec-
trical Engineering, National Central University,
Taiwan, Republic of China, as an Associate Pro-
fessor in 1987. He is currently a Professor of
the Department of Computer Science and Infor-
mation Engineering and Director of Computer
Center, National Central University. He was a

Chair of Department of Computer Science and Information Engineering,
National Central University from 1997 to 1999. He was a visiting professor
at the Department of Electrical and Computer Engineering, University of
California, Irvine from July 1999 to April 2000. His current research interests
include wireless communications, mobile computing and parallel processing.
He was an associate editor of Journal of the Chinese Institute of Electrical
Engineering, from 1996 to 2000. He was an associate editor of Journal of
Information Science and Engineering from 1996 to 2002. He was an associate
editor of Journal of the Chinese Institute of Engineers from 1998 to 2004. He
is an associate editor of the IEEE Transactions on Parallel and Distributed
Systems and International Journal of Ad Hoc and Ubiquitous Computing.
He has served as a Program Chair and Vice Program Chair for a number
of international conferences including IEEE ICPADS’02, ICPP’03, and IEEE
MSN’05. He received the Distinguished Research Awards of the National
Science Council of the Republic of China in 1993–1994, 1995–1996, and
1997–1998. He received the Distinguished Engineering Professor Award of
the Chinese Institute of Engineers in 2003. He received the Distinguished
Professor award of the National Central University in 2005. Dr. Sheu is a
senior member of the IEEE, a member of the ACM, and Phi Tau Phi Society.

