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Abstract—Bluetooth is a low cost, low power, short-range radio technology used for wireless personal area networks (PANs).

Bluetooth scatternet is a set of piconets interconnected via bridge devices. Good interpiconet schedulings are necessary for bridge

devices to switch among piconets they participate in. This paper proposes an interpiconet scheduling algorithm named “Traffic-Aware

Scatternet Scheduling” (TASS), for bridges in Bluetooth scatternets. According to masters’ traffic information, TASS can adaptively

switch the bridge to high traffic load masters, and increase the usage of the bridge. In addition, TASS can reduce the number of failed

“unsniffs” and the overhead of “bridge switch wastes” to further increase overall system performance. Simulation results show that

TASS outperforms existing interpiconet scheduling in both network throughput and adaptability for various traffic loads.

Index Terms—Ad hoc networks, Bluetooth, interpiconet scheduling, mobile computing, personal area networks (PANs).
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1 INTRODUCTION

BLUETOOTH is a low-cost, low-power, and short-range
radio technology used for wireless personal area net-

works (PANs) [1]. It operates in the unlicensed 2.4 GHz ISM
band. A Frequency Hopping Spread Spectrum (FHSS)
scheme is used. The hopping frequencies cover 79 channels,
each channel being 1 MHz wide. A piconet is a basic
structure in Bluetooth, which is constructed in an ad hoc
fashion by one master and up to seven active slaves [2], [3],
[4]. A piconet can only contain one master and the master
administers the whole piconet. A slave may connect to more
than one master. A slave connecting to two or more masters
is called a bridge. A set of piconets that are interconnected by
bridges is referred as a scatternet. Although a bridge can
participate in two or more piconets, it can only serve in one
piconet at a time. The bridge will switch among all
connected piconets in a time-sharing fashion.

The scheduling of a bridge switching among piconets is

also referred to as interpiconet scheduling. Obviously, an ill-

considered scheduling may cause severe system degrada-

tion. However, interpiconet scheduling is not specified in

Bluetooth specification. This makes it imperative that

interpiconet scheduling be developed and be well designed

so as to help the bridge switch efficiently among piconets.

On the other hand, the intrapiconet scheduling is referred as

the scheduling of a master serving the slaves connected by

him. Polling is a general scheme adopted for intrapiconet

scheduling. Much research has been done on intrapiconet

scheduling in the literature [5], [6], [7], [8], [9], [10].
However, intrapiconet scheduling is not in the scope of
this paper.

Recently, a number of researches on interpiconet
scheduling have been proposed [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20]. In [11], an Adaptive Presence Point
Density scheme (APPD) for interpiconet scheduling is
proposed. In APPD, a credit value is attached to each
connection of a bridge that is established. According to the
credit values, the bridge can decide whether to switch to
another piconet or not. The power saving mode used to
switch among piconets is referred to as the sniff mode. In
order to reduce the guard time waste caused by the
switching of the bridge among piconets and to avoid
starvation of some waiting master, a minimum average
service time is introduced to guarantee a minimum service
time. However, the decision to switch is controlled by the
bridge, without negotiating with the serving master. This
may result in one or more packets being lost since the
serving master still transmits packets to the bridge because
the master assumes that the bridge is still in service. On the
other hand, to preserve fairness among the connections, in
the APPD scheme, the probabilities of masters getting the
usage of the bridge are the same. Nevertheless, it may lead
to a bottleneck, since the master with a high traffic load may
have not enough service time to finish its transmission. In
addition, reducing the number of failed unsniffs is not
considered in the APPD scheme. In [17], an RV-maxmin
optimal forwarding throughput algorithm is proposed. Like
[11], the bridge also uses the sniff mode to switch to another
piconet at an RV point. In the RV maxmin algorithm, each
device will exchange their RV points information and
estimate the possible forwarding throughput. In order for
the algorithm to work correctly, each device has to
exchange and store a lot of information. Thus, the
communication overhead is substantial.

Instead of using the sniff mode, the authors in [12], [13],
[16], [18] use the hold mode to switch among piconets. In
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[12], [13], a Load Adaptive Algorithm (LAA) for interpiconet
scheduling is proposed for small scale scatternets. Two
conditions are considered by a bridge to determine whether
to switch to another piconet. One is when the bridge stays
in a piconet past a time limit. The other is when the bridge
reaches a commitment time with another piconet, or the
queue size of the bridge to another piconet has exceeded a
certain threshold value. In [18], two simple algorithms are
presented, LAMS (Load Adaptive Master/slave Schedul-
ing) and LASS (Load Adaptive Slave/slave Scheduling), for
the scheduling of interpiconets in scatternets with an MS
and an SS bridge, respectively. Both algorithms can
dynamically adjust the switches among the bridge and the
masters in order to minimize the end-to-end packet delays.
Both algorithms are able to achieve near-optimal perfor-
mance. However, the scheduling algorithms in [13], [18] can
be applied to a bridge which only connects to two piconets.
In [16], a distributed scatternet-scheduling scheme is
proposed. The scheme uses the hold mode for bridges to
switch among piconets. This scheme can adapt to nonuni-
form traffic. Fair allocation of bandwidth to each Bluetooth
unit is also taken into account in this paper. However, the
hold mode causes scheduling inflexibility and high negotia-
tion overhead.

Therefore, a novel interpiconet scheduling protocol,
Traffic-Aware Scatternet Scheduling (TASS), is presented
in this paper. In it, the traffic which will last for a period of
time is considered. As a result, the sniff mode is efficient and
flexible for a bridge to switch among the piconets to which
it connects. In this paper, the master that the bridge is
serving is called the serving master, and the other masters
that the bridge is connected to, but is not in service with, are
called the waiting masters. In TASS, a bridge will switch to
another piconet only when the current serving master
notifies it to switch off. As a result, there is no packet loss
when the bridge switches to another piconet. Each master
maintains a scheduling table. The table records all the
information on the traffic of the masters and their bridge
usage status, such as how long a master has waited for the
usage of the bridge, how long the master could not use the
bridge, and so on. The scheduling table of the serving
master will be transferred to the new serving master
through the bridge when the serving master decides to
release the usage of the bridge. In other words, a master that
gets the usage of the bridge also gets the traffic information
of all the other waiting masters. Based on the scheduling
table, the serving master can predict the time it may not get
the usage of the bridge after it releases the usage of the
bridge. After releasing the bridge, the master will not
unsniff the bridge during the time interval it has predicted.
Therefore, the number of failed unsniffs is reduced
substantially. When the new serving master gets the
scheduling table from the bridge, it can figure out the
minimum time it can freely use the bridge. The bridge can
dynamically switch among the connected piconets accord-
ing to the master’s traffic loads and waiting time. To reduce
the bottleneck of the master with a high traffic load, TASS
can reflect the traffic of all masters that the bridge is
connected to, and reserve enough service time to the
serving master. It can reduce packet transmission delay

and further increase the throughput. Simulation results
demonstrate that TASS outperforms the APPD scheme with
a higher network throughput and better flexibility in a
various traffic load environment.

The rest of this paper is organized as follows: Section 2
presents the challenges of interpiconet scheduling. In
Section 3, Traffic-Aware Scatternet Scheduling is intro-
duced. The bridge switching problem and its solution are
proposed in Section 4. Simulation results are analyzed in
Section 5, and Section 6 concludes this paper.

2 CHALLENGES OF THE INTERPICONET

SCHEDULING

The power saving mode that a bridge uses to switch among
piconets directly influences the performance of the scatter-
net. Bluetooth specifies three power saving modes, the sniff,
hold, and park modes. In general, the sniff mode is used for a
bridge to switch among piconets on a regular and periodical
basis. A device in the sniff mode only wakes up periodically
in prearranged sniff slots. The master and the slave must
negotiate the sniff timing information, such as the first sniff
slot, sniff interval (TSniff ), sniff attempt, and the sniff
timeout. The sniffing slave only listens for the traffic during
the sniff slots. If no message is addressed to the sniffing
slave, the sniffing slave ceases listening for packets. If a
message is received in a sniff slot, the sniffing slave
continues listening for further sniff timeout slots after the
sniff slot. In other words, the transmission time is flexible
between the master and the sniffing slave. The master and
the sniffing slave can only communicate with each other in
their prescheduled sniff slots. If either one can not receive
packets from the other in a sniff slot, it is called a failed
unsniff. A failed unsniff will lead to the loss of one packet.
Consequently, too many failed unsniffs will significantly
degrade the performance of the piconet, even that of a
scatternet.

A bridge will switch among piconets in a time-sharing
fashion. An interpiconet scheduling is needed for a bridge
to switch among piconets. However, this scheduling is not
straightforward. The following are the challenges to be
considered by an interpiconet scheduling.

. The variation in traffic load. Since the traffic of a
network must be variable, therefore, an interpiconet
scheduling must have the flexibility to dynamically
adjust the scheduling to meet the various traffic
loads [11].

. The trade-off between throughput and transmis-
sion delay. To achieve the maximum throughput of
a scatternet, it is preferred to allocate more bridge
service time to the master with the high traffic loads.
However, this may increase the transmission delay
of the masters with low traffic loads [21]. Therefore,
in addition to increasing the throughput, reduction
of transmission delay must also be considered.

. The frequency of a bridge switching among
piconets. In Bluetooth, each piconet has its own
timeframe according to the master’s clock. There-
fore, the timing of one piconet is different from the
next. As a result, when a bridge switches to a new
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piconet, the bridge may not match the timing of the
new piconet. Therefore, the bridge has to wait until
the next even slot to be unsniffed by the new serving
master. The time that a bridge waits for being
unsniffed after switching to a new piconet is called
guard time waste. Reducing the switching frequency
of a bridge among piconets can also reduce the
guard time waste [22].

In general, the communication between two devices
always lasts for a specific amount of time. Consequently,
the traffic style will be very similar from time to time,
meaning that the traffic has temporal locality. Conse-
quently, interpiconet scheduling of a bridge can utilize the
historical information to enhance the efficiency of the
scheduling.

3 TRAFFIC-AWARE SCATTERNET SCHEDULING

(TASS) PROTOCOL

3.1 System Model

TASS is operated on a constructed scatternet. Only ACL
(Asynchronous Connectionless) link is considered in the
paper for the connection between a master and a slave. In
TASS, the sniff mode is used as the operating mode for the
bridge to switch among piconets. The sniff interval
negotiated by a bridge with its serving master is TSniff .

In TASS, each master maintains a scheduling table, which
contains the traffic information of all masters that the bridge
is connected to. When the serving master decides to release
the usage of the bridge, it has to update its traffic
information in the scheduling table. The bridge will transfer
the scheduling table from the old serving master to the new
serving master. According to the scheduling table, the new
serving master can figure out the time it can use the bridge,
and the waiting master can calculate the time it needs not to
poll the bridge in the following sniff slots. Therefore, with
the scheduling table, each master can record its traffic
information in the table and obtain the traffic information of
the neighboring masters at the same time. The scheduling
table is very helpful in designing the TASS scheme.

A scheduling table is shown in Table 1, where MID
represents the identity of the master and LTi, QCTi, WTi,
and �i are the traffic information of master i. The details of
the fields in the scheduling table are described below. The
scheduling table includes the following fields:

. QCT (Queue Consuming Time): the estimated time
that a link will need the bridge to serve.

. LT (Lost Time): the estimated time that a master can
not get the usage of the bridge.

. WT (Waiting Time): the time that a master has been
waiting for the usage of the bridge.

. �: the historical information of, on average, the
traffic generation rate per slot between the master
and the bridge.

The unit of time described above is a time slot.

QCT is defined as the time that a link needs to transmit

all the data packets in the queues of the master and the

bridge. There is a queue agent to monitor the status of the

queue on either side of a link. The bridge will notify the

master about this information at each communication with

the master. Based on this information, the master can obtain

the QCT .
LT is defined as the time that a master cannot use the

bridge.
The QCT s of all masters connected by the bridge are

stored in the scheduling table. When the serving master has
to release the usage of the bridge, according to the QCT s,
the serving master can predict the duration from the time it
releases the bridge to the time it obtains the bridge next
time. This duration is called LT . LT can be used to reduce
the number of failed unsniffs of the waiting masters. For
example, when master A has to release the usage of the
bridge to master B, master A will compute the LTA to
predict how many time slots that it may lose the usage of
the bridge in the future. Thus, after master A releases the
usage of the bridge, master A will skip the sniff slots during
the LTA. Therefore, master A can reduce the number of the
failed unsniffs.
WT is the time that a master has been waiting for the

usage of the bridge since it released the usage of the bridge.
� represents the history of the traffic loads, which is defined
as the historical information on the average traffic genera-
tion rate per slot between the master and the bridge. Since
the decision of the master to release the bridge depends
much on the value of QCT , the precision of QCT will
influence the performance of TASS. Therefore, to obtain a
precise QCT , the history of the traffic loads is counted so as
to evaluate the QCT due to the temporal locality of the
traffic. Let � be the increment of the traffic in queue during a
fixed time period, say T . The queue agent responds to
maintain �. Thus, � can be obtained as � ¼ �

T and will be
computed for every T time period. After � is obtained, the
queue agent will reset � to zero. For example, suppose
T ¼ 20. Assume that a master and the bridge will generate
two DH5 packets in T . So, � ¼ 10 and � ¼ 10=20 ¼ 0:5. This
means that the QCT of the master-bridge link will increase
0.5 packets per slot on average. When the serving master
has to release the usage of the bridge, it records the � in the
scheduling table. Hence, when the new serving master gets
the usage of the bridge, it can evaluate the QCT more
precisely for a waiting master.

We have introduced how to obtain QCT precisely by
means of �. In the following, we will introduce how to
obtain LT by means of QCT and �.
LT means the time that the serving master will not get

the bridge after it releases the usage of the bridge. When the
serving master i has to release the usage of the bridge, it
will find a candidate to be the new serving master, say j,
and will update the LTi. The serving master i first finds the
minimum LTj from the scheduling table for some j. If there
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are more than one minimum LT , then it selects the one with
the maximum WT . This means that the waiting master j has
the highest priority to get the usage of the bridge once the
serving master releases the bridge.

The serving master has to update LTi once it decides to

release the usage of the bridge to the new serving master j.

However, QCTj in the scheduling table of master i is an out-

of-date value since it is recorded when the master j has

released the usage of the bridge. Therefore, it does not stand

for the current traffic loads of master j. As a result, we can

use �j to roughly estimate QCTj. Therefore, the time that

the serving master i will not get the usage of the bridge, let’s

call it WS, can be obtained as follows:

WS ¼ QCTj þ �j �WTj:

At the same time, to avoid excessive transmission delay
of the waiting masters, a waiting threshold (Wthold) is used
to limit the transmission delay. If the WS is larger than
Wthold, then WS is set to Wthold. Because a master can only
communicate with a bridge on the sniff slots, WS may not
coincide with the sniff slots. So we have to add an offset, �,
to match the sniff slot exactly. � can be calculated as
follows:

� ¼ TSniff � ððWS þ 2�DÞ mod TSniffÞ;

where D is the number of slots from the current slot to the
next sniff slot. Therefore, the time that the serving master i
will not get the bridge after it has released the usage of the
bridge is

LTi ¼WS þ�:

Take Fig. 1 as an example, where master A is the serving
master and TSniff ¼ 8. At the current slot, master A finds
that LTB ¼ 0. The scheduling table of master A at the
current slot is shown at the upper left corner in Fig. 1.
Master A now has to decide whether to release the bridge or
not. Assume that master A is going to release the bridge.
Master A now has to estimate how long it may not get the
bridge, its LTA. In this example, WS ¼ QCTB þ �B �
WTB ¼ 12 (QCTB ¼ 12, �B ¼ 0, and WTB ¼ 4) and D ¼ 4.
� ¼ 8� ðð12þ 2� 4Þ mod 8Þ ¼ 6. Hence,

LTA ¼WS þ� ¼ 12þ 6 ¼ 18:

3.2 The Protocol

TASS consists of two phases: the bridge phase and the
bridgeless phase. The serving master executes the bridge phase
and all the other waiting masters perform the bridgeless
phase.

3.2.1 Bridge Phase

If a serving master i gets the usage of the bridge, it first
finds the minimum LTj from the scheduling table, for some
j. According to this information, master i will know how
much time it has available to use the bridge freely. In
addition, master i is responsible for the maintenance of the
scheduling table. That is to say, serving master i should add
1 to each WT and subtract 1 from each LT , per slot, in the
scheduling table. When LTj ¼ 0, master i must check if it
has to release the bridge to the waiting master j. When the
release condition is satisfied, the serving master i has to
release the usage of the bridge to the waiting master j.
Serving master i then performs the serving master part of
the Bridge Release Procedure. As described above, once
serving master i intends to release the bridge, it will
calculate LTi by means of the scheduling table. After the LTi
is calculated, master i updates LTi in the scheduling table
and resets the WTi to zero. Master i then transmits the
scheduling table to the bridge, and informs the bridge to
serve the new serving master j. The role of master i is
turned from being a serving master to that of a waiting
master. Therefore, afterward, master i will perform the
bridgeless phase. The bridge receiving the scheduling table
will perform the bridge part of the Bridge Release Procedure
as well. The bridge then waits for being unsniffed by the
new serving master j and maintains the scheduling table
during this waiting period. Maintenance means that the
bridge will record the time slot count (sc) during the period
from the time it returns an ACK to the old serving master to
the time it returns another ACK to the new serving master,
acknowledging the unsniff of the new serving master. The
period should include the guard time difference between
the old and the new serving masters. When the bridge is
unsniffed by the new serving master, it subtracts sc from
each LT , adds sc to each WT in the scheduling table, and
then transmits the scheduling table to the new serving
master. The bridge phase and the bridge release procedure are
demonstrated in Algorithms 1 and 2, respectively.

Algorithm 1 Bridge Phase.
{The serving master should execute the algorithm per slot.}

Step 1:

The serving master, say i, maintains the scheduling table.

The maintenance is to add 1 to every WT , subtract 1 from

every LT (for all waiting masters), and update the QCTi in

the scheduling table according to its queue status.

Step 2:

if there is no data to send between the serving master i
and the bridge then

Execute the Bridge Release Procedure.

end if

Step 3:

if there is no any LT except LTi in scheduling table is

equal to zero then
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Go to Step 8.
end if

Step 4:

Choose a waiting master j with LTj ¼ 0.

if there are more than one waiting master withLT ¼ 0 then

Select the waiting master j with the largest WT and the

other LTs are reset to TSniff
end if

Step 5:
if WTj > Wthold then

Execute the Bridge Release Procedure {TIME event}

Go to Step 8.

end if

Step 6:

if QCTj þ �j �WTj > QCTi þQCthold then

Execute the Bridge Release Procedure {QUEUE event}

Go to Step 8.
end if

Step 7:

Reset LTj to TSniff {EXTEND event}

Go to Step 8.

Step 8:

End.

Under the following conditions, serving master i has to
release the usage of the bridge to the waiting master j.

(C1) WTj > Wthold, (TIME event),
(C2) QCTj þ �j �WTj > QCTi þQCthold, (QUEUE event).

(C1) implies that master j has been waiting for the bridge
past the Wthold. (C2) implies that all the data required to be
transmitted completely between master j and the bridge is
larger than those between master i and the bridge plus a
QCthold. The QCthold is designed for avoiding the ping-pong
effect when QCTi and QCTj are too close to each other.

(C1) is used to avoid excessive transmission delay of the
waiting master. The released event triggered by this
condition is termed a TIME event. (C2) is used to allocate
more service time to the link with high traffic loads. The
released event triggered by this condition is termed a
QUEUE event. If none of the two conditions are satisfied,
then the serving master i can keep using the bridge. This is
termed an EXTEND event. It is worth mentioning that an
EXTEND event will result in a failed unsniff for the waiting
master which has the highest possibility of getting the usage
of the bridge in the near future (here, this implies waiting
master j). However, the EXTEND event implies that the
traffic load for waiting master j is not larger than the load of
serving master i by a prespecified threshold.

To improve the throughput of a scatternet, the master
with high traffic loads will be allocated more service time.
However, when an EXTEND event is triggered, it also
implies that the LTj of the waiting master j expires.
Therefore, master j will try to unsniff the bridge on the
sniff slots in the future. Consequently, the LTj in the
scheduling table of the serving master i must reset to TSniff .

Algorithm 2 Bridge Release Procedure.

The part to be executed by the serving master.

Step 1:

Calculate LTi.

Step 2:
Update LTi and reset WTi to zero in the scheduling table.

Step 3:

Transfer the scheduling table to the bridge and inform

the bridge to be unsniffed by the new serving master.

Step 4:

Wait for the ACK from the bridge. Go to the Bridgeless

phase.

The part to be executed by the bridge.

{The bridge receiving the scheduling table and being

informed by the serving master i to switch to another

piconet to serve the new serving master j will perform the

following operations.}

Step 1:

Send an ACK to the old serving master i at the following

odd slot after it receives the scheduling table.
Step 2:

Maintain the time slot count sc during the time it returns

an ACK to the old serving master to the time it returns

another ACK to the unsniff message from the new serving

master j, including the guard time difference between the

two piconets mastered by i and j.

Step 3:

Maintain the scheduling table. Add sc to every WT and
subtract sc from every LT in the scheduling table.

Step 4:

Transfer the scheduling table to the new serving master j.

3.2.2 Bridgeless Phase

The waiting masters that do not get usage of the bridge will
perform the bridgeless phase. For some waiting master, say j,
according to the LTj that was calculated when master j
released the usage of the bridge, it can realize the time (LTj)
it might not get the usage of the bridge. Therefore, it won’t
unsniff the bridge during LTj. Hence, this can reduce the
number of failed unsniffs. All waiting masters will perform
Algorithm 3 in the bridgeless phase.

Algorithm 3 Bridgeless Phase.

{The waiting master should execute the algorithm per slot.

Suppose the waiting master is master j, for some j.}

if LTj > 0 then

LTj ¼ LTj � 1

else

Back to normal operation of sniff mode.

{It implies that the master j will try to unsinff the bridge

on the following sniff slots.}

end if

if master j unsniffs the bridge successfully then

Go to the Bridge phase.

end if

3.3 An Example

Fig. 2 shows an example of TASS for a bridge with three
links each to masters A, B, and C, respectively. Assume that
TSniff ¼ 8, Wthold ¼ 20, and QCthold ¼ 5. Master A is the
serving master.
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Suppose the scheduling table of the serving master A is

shown in Fig. 3a. In the scheduling table, LTB ¼ 0. Serving

master A will check if it should release the bridge to waiting

master B. The second released condition (QUEUE event) is

satisfied since QCTB þ �B �WTB > QCTA þQCthold. There-

fore, serving master A should release the bridge by the

QUEUE event. Serving master A will calculate LTA to see

how long it may not get the usage of the bridge after it

releases the usage of the bridge. Master A will reset WTA to

zero as well. In addition, master A updates LTA, QCTA,

WTA and �A in the scheduling table, as shown in Fig. 3a.

Serving master A then transmits the scheduling table to the

bridge and informs the bridge to switch to new serving

master B. After releasing the usage of the bridge, the role of

master A is changed from being a serving master to being a

waiting master and, therefore, will be in the bridgeless phase

afterward. During the LTA, waiting master A will not

unsniff the bridge (i.e., skip the first and the second sniff

slots of MA-bridge link).
On the other hand, master B can unsniff the bridge

successfully on the first sniff slot of the MB-bridge link and

get the scheduling table transferred from the bridge, as

shown in Fig. 3b. Master B then becomes the new serving

master and will perform the bridge phase.
When LTC ¼ 0, the scheduling table of the serving

master B is shown in Fig. 3c. Since master B checks that

none of the two release conditions are satisfied (i.e., WTC <

Wthold and QCTC þ �C �WTC < QCTB þQCthold), it can

keep the usage of the bridge by EXTEND event. The

scheduling table updated by serving master B is shown in

Fig. 3d. At the same time, the LTC for waiting master C is

expired, and it will try to unsniff the bridge on its first sniff

slot of the MC-bridge link. This results in one failed unsniff.
When serving master B detects that LTC ¼ 0 again,

which is two slots before the second sniff slot of the

MC-bridge link, the first condition of the two release

conditions is satisfied (WTC > Wthold), and serving master

B will release the bridge by the TIME event. Thus, waiting

master C will get the usage of the bridge by successfully

unsniffing the bridge on the following sniff slot. The

scheduling tables that the old serving master B transfers

to the bridge and which the new serving master C receives

from the bridge, are shown in Fig. 3e and Fig. 3f,

respectively.

3.4 Implementation Issue

TASS is a practical and implementable protocol. We
analyzed TASS from the viewpoints of execution time as
well as memory space to verify its practicability.

Suppose a bridge participates in n piconets. The
scheduling table is an n� 5 table. For Algorithm 1, Steps 1,
3, and 4 take OðnÞ time and the rest take Oð1Þ time. In total,
the time complexity of Algorithm 1 is OðnÞ. Similarly, in
Algorithm 2, the part to be executed by the serving master
takes Oð1Þ time and the part to be executed by the bridge
takes OðnÞ time. Moreover, Algorithm 3 takes Oð1Þ time.
Only one of the three algorithms at a time will be performed
by a bridge or a master. Moreover, all the operations are
easy operations, both in logic and arithmetic. In general, n is
very small, about 2 to 3, and little time is required to execute
the TASS protocol. As a result, a Bluetooth device can finish
a procedure within a time slot.

On the other hand, from the storage point of view, the
size of a scheduling table is small as well, ranging from only
several bytes to tens of bytes. For a one-slot packet, the
payload can be 17 or 27 bytes (DM1/DH1). This is enough
to enclose a scheduling table in the payload of a packet.

In short, TASS is an easily implemented and cost-
effective (in both time and storage) protocol.

4 BRIDGE SWITCHING PROBLEM

If a bridge switches to a piconet, but the serving master has
no data going to the bridge, a Poll-Null sequence event
happens. It is called a bridge switch waste. In Bluetooth, the
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Fig. 2. A TASS protocol example.

Fig. 3. The scheduling tables of the example shown in Fig. 2. (a) The
scheduling table that master A transmits to the bridge by the QUEUE

event. (b) The scheduling table that master B receives from the bridge
by the QUEUE event. (c) The scheduling table of master B before the
EXTEND event. (d) The scheduling table of master B after the EXTEND

event. (e) The scheduling table that master B transmits to the bridge by
the TIME event. (f) The scheduling table that master C receives from the
bridge by the TIME event.



access to the medium is based on a Time Division Duplex
(TDD) scheme controlled by the master. So, even if there is
no data in the queue from a master to a slave, the master
still has to poll the slave by means of a poll packet to see if
there are data that the slave wants to transmit to the master.
If there is no data in the slave’s queue to the master, the
bridge will ACK the master with a null packet on the
following odd slot. Therefore, if no data is to be transmitted
between a master and a bridge, the Poll-Null sequence
event could happen frequently. However, if the Poll-Null
sequence event happens in the sniff slot between the master
and the bridge, it implies that this switch of the bridge was
wasted. It leads the bridge to go back to sleep, and the other
waiting masters will be unable to unsniff the bridge
successfully, thereby reducing the usage of the bridge.

In TASS, in order to reduce the number of bridge switch
wastes, the LT will be increased as long as the bridge switch
waste occurs. When a bridge switches to a serving master,
the bridge will transfer the scheduling table to the serving
master on the first odd slot. If the serving master receives a
DH1 ACK packet from the bridge with no data included
except the scheduling table, the serving master will regard
the ACK packet as a Null packet. Thus, the LT of the
serving master will be increased accordingly. The details of
the solution are described as follows: When serving master i
gets the usage of the bridge, it will check whether a Poll-
Null sequence event is happening in the sniff slot. If a Poll-
Null sequence event has happened, then it implies that the
serving master i and the bridge have no data for each other.
Therefore, an additional time (PNT , Poll-Null time) is
added to the LTi. As a result, the LTi will be lengthened
after a Poll-Null sequence event has happened. Conse-
quently, it can reduce the number of the bridge switch
wastes. In this paper, a Poll-Null event counter is used to
record the times of successive bridge switch wastes, and the
PNT will be lengthened twice for each Poll-Null sequence
event. Hence, PNT can be obtained as follows:

PNT ¼ TSniff � 2ðPoll-Null event counterÞ:

The LTi will be lengthened after a bridge switch waste by:

LTi ¼ LTi þ PNT:

The LT increases if bridge switch wastes happen often. To
avoid excessive transmission delay while master i has data
to the bridge, an upper bound, MaxLT , is implemented to
limit the increase of LT .

At the same time, because the LTi may exceed the Wthold,
WTi ¼ �LTi and is recorded in the scheduling table so that
WTi will not be constrained by Wthold. Once there are data to
be transmitted between the master and the bridge, the Poll-
Null event counter will be reset to zero. This method to
relieve the bridge switch wastes is summarized in Algo-
rithm 4:

Algorithm 4 Bridge Switch Wastes Reducing Procedure.

{The master getting the usage of the bridge will perform

the procedure.}

Step 1:

if master i gets the usage of the bridge and the Poll-Null

sequence event is happened in the sniff slot then

Go to Step 2.

else

Reset the Poll-Null event counter to zero.

Go to the Bridge phase.
end if

Step 2:

Add 1 to Poll-Null event counter.

Compute the LTi and PNT .

Step 3:

if LTi þ PNT � Max LT then

LTi ¼ LTi þ PNT
end if

Step 4:

WTi ¼ �LTi
Execute the Bridge Release Procedure.

In the following, an example is given to demonstrate the
procedure for reducing bridge switch wastes. Fig. 4a shows
the result when there is no improvement of the bridge
switch wastes and Fig. 4b shows the result with an
improvement. In Fig. 4b, the numbers below the gray
squares indicate the values of the Poll-Null event counter
and zero implies that the Poll-Null event counter is reset to
0 due to data transmission between the master and the
bridge. Assume that LT will be the same after each bridge
switch waste. In Fig. 4b, the LT will be lengthened after
each bridge switch waste. The larger the number of
successive bridge switch wastes, the longer the LT . It is
evident in Fig. 4 that this procedure reduces the number of
bridge switch wastes three-fold.

5 SIMULATION RESULTS

In this section, we use the CSIM simulator [23] to verify the
feasibility of the proposed protocol. CSIM is a general
purpose discrete-event simulator, which can be used for
modeling wireless networks, traffic models, communication
protocols, and so on.

We have made experiments to analyze the impact of the
two thresholds, Wthold and QCthold, on the activity ratio and
network throughput. In comparison with the related work,
two scenarios are performed in the simulations. The first
scenario is to evaluate the performance of TASS in
comparison with the related work when seven masters
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Fig. 4. Comparison of the results with and without the improvement of

bridge switch waste. (a) No improvement. (b) With improvement.



share with a bridge and the traffic load of a master is much
higher than the others. The second scenario is to illustrate
the detailed behavior of TASS against the related work
when three masters share with a bridge and the traffic load
of a master varies form high to low. The specific simulation
settings are respectively described at each scenario.

The topology on which the experiment is performed is
shown in Fig. 5. In this topology, there are at most seven
piconets sharing a bridge. This is done because we are
interested in the influence of the interpiconet scheduling on
the scatternet performance. The packet generation rates of
the masters have a constant bit rate (CBR). Among these
masters, the packet generation rate of one master is fixed at
300kbps and those for the others are fixed at 60kbps. A high
packet generation rate implies that the master will need
more bridge service time. The bridge does not generate any
packets of its own, and the destinations of all packets are to
the bridge. The period to collect the historical information is
160 slots. The data queue size is 32KB. Initially, all WT s in
the scheduling table are set to Wthold. The simulation time is
200 seconds.

In TASS, two thresholds are utilized for a serving master
to decide whether to release the usage of a bridge or not.
One is Wthold, which is used for the TIME event in order to
avoid excessive delay time of waiting masters. The other
one is QCthold, which is used for the QUEUE event to prevent
the ping-pong effect. Therefore, we carried out some
experiments to observe how these thresholds effect the
performance of TASS. In the following experiments, the
bridge connects to seven masters, Tsniff ¼ 20, Wthold varies
from 20 to 100 in steps of 10, and QCthold ¼ 5; 10; 15; and 20.

Fig. 6a and Fig. 6b illustrate the effects of the Wthold and
QCthold on the activity ratios of the bridge between the

master with a high traffic load and between all seven
masters, respectively. Since the increase of Wthold will
decrease the switch frequency of the bridge and, therefore,
the serving master with a high traffic load can have plenty
of time to send, the activity ratio of the master with a high

traffic load will increase with the increase of Wthold. The
same is true for the total activity ratio. On the other hand, if
the QCthold is too small, the waiting master with a low traffic
load has a high possibility to obtain the usage of the bridge.
Thus, the activity ratio for the low QCthold value is worse

than those for the high QCthold values.
Fig. 7 illustrates the effects of Wthold and QCthold on the

total network throughput. Since the total activity ratio will
increase with the increase of the Wthold, the total network
throughput also increases with the increase in the Wthold.

Similarly, the throughput for the low QCthold value is worse
than those for the high QCthold values. However, if the
QCthold is too large, it will cause the serving master with a
low traffic load not to release the bridge. Therefore, the best
performance is at QCthold ¼ 10 when the Wthold is large

enough.
From the above experimental results, we find that when

Wthold and QCthold are large enough (in the above experi-
ment, Wthold > 40 and QCthold > 5), the results are very close
to each other and varying both parameters would not affect

the performance significantly.
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Fig. 5. Simulation topology.

Fig. 6. The effect of the Wthold and QCthold on the activity ratio. (a) The activity ratio of the master with a packet generation rate of 300 kbps. (b) The

total activity ratio.

Fig. 7. The effect of the Wthold and QCthold on the network throughput.



Basically, the settings of Wthold and QCthold are applica-
tion-dependent. Wthold depends on the delay time that the
application can tolerate, and QCthold depends on the queue
size and the traffic generation rate in the system. From our
simulation, threshold values that are too large and too small
result in poor performance. Otherwise, the performance of
each combination of the two threshold values is very close
to each other. Consequently, the two thresholds, Wthold and
QCthold, are set to 50 and 10, respectively, for the following
experiments.

Currently, APPD (Adaptive Presence Point Density) [11]
is a well-known interpiconet scheduling method. Moreover,
APPD also adopts the sniff mode for a bridge to switch among
the connected piconets. Therefore, the comparisons between
TASS and APPD (Adaptive Presence Point Density [11]) on
throughput, activity ratio, packet delay, and the number of
failed unsniffs are presented here as well. In the following
experiments, TSniff ¼ 20, QCthold ¼ 10, Wthold ¼ 50, and Max
LT ¼ 100, and the unit measurement is a slot.

Fig. 8 and Fig. 9 show the impact of the degree of the
bridge on the activity ratio and the throughput of a master
with a packet generation rate of 300kbps, respectively. The
bridge degree represents the number of piconets connected
to the bridge. The activity ratio means the ratio of the total
bridge service time of the master with a packet generation
rate of 300kbps for the total duration of the simulation. The
throughput is evaluated by the number of data packets
received per second by the bridge. Obviously, TASS can
allocate more bridge service time to the master with a high
traffic load. The master with a high traffic load can almost

obtain the maximum throughput. On the contrary, with the
APPD method, the bridge service time allocated to the
master with a high traffic load decreases substantially as the
degree of the bridge increases. Accordingly, the throughput
of a master with a high traffic load will decrease with the
increase in the degree of the bridge. This is because, in the
APPD method, the bridge service time allocated to the
masters is based on link level fairness. That is to say, the
chances of the masters getting the usage of the bridge are
the same, no matter how heavy the traffic load of the master
is. Therefore, the bridge service time of the master with a
high traffic load will decrease substantially as the bridge
degree increases. Contrarily, in TASS, the master with a
high traffic load will have a higher probability to obtain the
usage of the bridge due to the QUEUE event. At the same
time, TASS will not cause the master with low traffic load to
starve, since the master with a low traffic load can obtain
the usage of the bridge by the TIME event.

Fig. 10 and Fig. 11 show the impact of the bridge degree
on the total activity ratio and the total throughput of the
bridge, respectively. The total activity ratio means the ratio
of the total bridge service time for all masters to the total
simulation time, and the total throughput means the sum of
all data packets received per second by the bridge from all
masters. Note that the increase of the bridge degree implies
an increase of the total traffic load. Thus, the activity ratio
and the throughput will increase when the bridge degree
increases. As described above, TASS can dynamically
switch the bridge to a master according to the traffic load
of a master. The master with a high traffic load can have
plenty of bridge service time without starving the master
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Fig. 8. The impact of the degree of the bridge on the bridge activity ratio

of the master with a high traffic load.

Fig. 9. The impact of the degree of the bridge on the throughput of the

master with a high traffic load.

Fig. 10. The impact of the bridge degree on the total activity ratio.

Fig. 11. The impact of the bridge degree on the total throughput.



with a low traffic load. The bridge always keeps busy. Thus,
the total activity ratio of TASS is superior to that of APPD.
As a result, the total throughput of TASS is superior to that
of APPD as well. However, in APPD, it can happen that a
bridge switches to a master with no packet to send. This
will reduce the bridge service time since the bridge may go
back to sleep after the sniff slot and the other masters with a
high traffic load can not use the bridge, resulting in a low
activity ratio as well as a low throughput.

In the following, the impact of the bridge on the average
packet delay is investigated. The packet size is 384 bytes in
this experiment. Fig. 12 illustrates the average queue packet
delay of a master with a high traffic load (300kbps). In
comparison with TASS, the packet delay of the APPD
method is much higher, especially when the degree of the
bridge is larger than 3. It is evident that this is because the
master with a high traffic load in APPD cannot obtain
enough bridge service time to handle all of its data packets.
Thus, the average packet delay will increase substantially as
the bridge degree increases. In contrast to APPD, TASS can
allocate more bridge service time to the master with a high
traffic load and can thereby reduce the packet delay time
even further. The average packet delay of TASS rises
slightly when the bridge degree is larger than 6. This is
because the allocated bridge service time is insufficient to
consume all queued data packets.

Fig. 13 shows the impact of the bridge degree on the
average queued packets delay of the masters with a low
traffic load (60kbps). Since the probabilities of these masters
getting usage of the bridge are the same, the packet delay

times of the masters with low traffic loads are almost the
same when the bridge degrees vary from 2 to 7. However,
in TASS, the packet delay time will increase as the bridge
degree increases. This is because the master with a high
traffic load can get more bridge service time. This will
increase the packet delay time of the masters with low
traffic load. Nevertheless, TASS will not cause starvation of
the masters with a low traffic load due to the implementa-
tion of the TIME event. Although the packet delay time of
TASS in the case of a master with a low traffic load is higher
than that of APPD, as a whole, the total packet delay time of
TASS is still lower than that of APPD.

Fig. 14 illustrates the impact of the bridge degree on the
number of failed unsniffs. Due to the lack of the traffic
information in APPD, the number of unsniffs in APPD is
higher than that in TASS. In APPD, the waiting master that
has packets to transmit will try to unsniff the bridge on each
sniff slot until it successfully unsniffs the bridge. Conse-
quently, the number of failed unsniffs of APPD will be high.
However, in TASS, the waiting masters know how long
they can not get the usage of the bridge. Therefore, the
waiting master will not unsniff the bridge until its LT
expires. As a result, the number of failed unsniffs of TASS is
reduced accordingly.

The switching of the bridge among piconets is the main
reason for guard time waste. The higher the frequency of
the bridge switch is, the higher the guard time wastes.
Fig. 15 shows the bridge switch frequencies of TASS and
APPD for various bridge degrees. Due to the lack of traffic
information and the fact that all masters have the same
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Fig. 12. The impact of the bridge degree on the average packets delay

for a master with a high traffic load (300kbps).

Fig. 13. The impact of the bridge degree on the average packet delay of

masters with a low traffic load (60kbps).

Fig. 14. The impact of the bridge degree on the number of failed

unsniffs.

Fig. 15. The impact of the bridge degree on the frequency of bridge

switches.



probabilities of getting usage of the bridge in APPD, the
bridge may switch to a master with no packet to send and
the bridge switch waste will be high. On the contrary, TASS
takes traffic information into consideration. The bridge
service time for a master is different depending upon the
traffic load of the master. The bridge will not switch blindly
among the piconets. In TASS, the average bridge service
time of a master with data packets to send will be longer
than that in APPD. This implies that the frequency of bridge
switch in TASS is lower than that in APPD, as shown in
Fig. 15.

In the following, we investigate the impact of the various
traffic loads on the total throughput when a bridge connects
with three masters. Among the three masters, one master
will vary its packet generation rates from 100kbps to
400kbps to 20kbps every 20 seconds and the other two
masters will fix their packet generation rates at 100kbps.
Initially, the packet generation rate of each master is
100kbps. Fig. 16 illustrates the total throughputs of TASS
and APPD, which are obtained from every 1,600 slots (i.e.,
1 second). As shown in Fig. 16, both TASS and APPD can
reach the maximum throughput in the first 20 seconds since
the packet generation rates of the three masters are the
same. In the following 20 seconds, the packet generation
rate of one master rises to 400kbps. Since APPD does not
take traffic information into consideration, it cannot adjust
the switch scheduling according to the different traffic load
of the master. Consequently, TASS can maintain the
maximum total throughput, but APPD cannot. At the last
20 seconds, the packet generation rate of one master is
reduced to 20kbps. As the figure shows, TASS can adapt to
the real traffic quite rapidly, but APPD requires additional
time to adapt to the real traffic load situation. This comes
because there are still a lot of data packets queued for the
previous 20 seconds in APPD; hence, it needs additional
time to consume the queued packets. It is evident that the
adaptability of TASS is superior to that of APPD.

6 CONCLUSIONS

In this paper, we presented an interpiconet scheduling,
Traffic-Aware Scatternet Scheduling (TASS) scheme, which
can dynamically adjust the bridge service time according to
a master’s traffic load, reduce the number of failed unsniffs,
and further increase the system’s throughput. The primary
idea of TASS is to allocate the bridge service time to that

master which needs it the most. That is, TASS allocates

enough bridge service time to the master with a high traffic

load and reduces the bridge switch wastes. At the same

time, to avoid excessive transmission delay of the master

with a low traffic load, TASS will allocate the bridge service

time to a master once that master has waited for a period of

time, but no longer than Wthold. Moreover, the masters in the

bridgeless phase will reduce their number of failed unsniffs

because of the LT . To improve the bridge switch problem,

TASS will lengthen the LT after each bridge switch waste

and, hence, reduces the number of the bridge switch wastes.
Simulation results revealed that, when the traffic loads of

the masters vary, the bridge switch scheduling of TASS is

more efficient than that of APPD. In addition, TASS is

superior to APPD in adaptability. The number of failed

unsniffs of TASS is also fewer than that of APPD. All in all,

the performance of TASS is superior to that of APPD,

especially under an environment with various traffic loads.
In this paper, TASS has been shown that it can perform

well in the case of a bridge shared by multiple piconets.

However, it is possible that two or more masters share more

than one bridge. Therefore, for the sake of completeness, a

comprehensive investigation should be made in the future

to find out how TASS performs in all cases, including as a

bridge shared by multiple piconets, multiple bridges shared

by multiple piconets, or both.
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