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SUMMARY

In the third generation of wireless cellular system, adaptive dynamic channel borrowing is presented to
maximize the number of served calls in wireless cellular networks. This has led to an intensive research in
mobile computing to provide mobile users access to the Internet. In this paper, a neural-fuzzy controller for
the dynamic channel-borrowing scheme (NFDCBS) is presented to provide multimedia services and to
support increasing number of users. In a cellular network, the call-arrival rate, the call duration and the
communication overhead between the base stations and the control centre are vague and uncertain.
Therefore, we propose a new efficient dynamic channel borrowing for load balancing in distributed cellular
networks based on NFDCBS. The proposed scheme exhibits better learning abilities, optimization abilities,
robustness, and fault-tolerant capability, thus yielding a better performance than other algorithms. It aims
to efficiently satisfy their diverse quality-of-service (QoS) requirements of multimedia traffic. The results
show that our algorithm has lower blocking rate, lower dropping rate, less update overhead, and shorter
channel-acquisition delays than previous methods. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In an integrated services packet network (ISPN), there have been several proposals for
supporting real-time service: mobile resource reservation set-up protocol (MRSVP), hierarchical
MRSVP (HMRSVP) and so on [1, 2]. Efficient use of limited radio channels with a simultaneous
increase in traffic capacity requires proper channel assignment. This is one of the fundamental
problems in wireless cellular network. There are three strategies for the allocation of channels to
cells [3–8]: fixed channel assignment (FCA) [8], dynamic channel assignment (DCA) [7, 9, 10],
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and hybrid channel allocation (HCA) [9, 11, 12]. The advantage of FCA is its simplicity. It does
not, however, reflect real scenarios where load may fluctuate and vary from cell to cell. DCA
schemes can dynamically assign/reassign channels, and thus are more flexible. In the centralized
DCA schemes [9, 10, 13], all channels are placed in a pool and are assigned to the new calls as
needed, and all the allocation jobs are done by control centre. In the distributed DCA schemes
[14], base stations (BSs) must be involved. HCA techniques are designed by combining the FCA
and DCA schemes. In HCA, channels are divided into two disjoint sets: one set of channels is
assigned to each cell on an FCA basis, while the others are kept in a central pool for a dynamic
assignment. In fact, increasing the bandwidth of a cell can increase the system capacity but not
the efficiency to deal with the time-varying imbalance traffic.

To be more specific, the channel borrowing for load balancing usually use some fixed
threshold values to distinguish the status of each cell [9, 10]. A cell load is marked as ‘hot’, if the
ratio of the number of available channels to the total number of channels allocated to that cell is
less than or equal to some threshold value. Otherwise it is ‘cold’. The drawback is that the
threshold values are fixed. Since load state may exhibit sharp distinction state levels, series
fluctuation like ping-pong effect may occur when loads are around the threshold. This results in
wasting a significant amount of effort in transferring channels back and forth [9, 10]. In fact,
because the locations of hot spots vary from time to time, increasing the bandwidth of a cell can
increase the system capacity but not the efficiency to deal with the time-varying imbalance
traffic. This is achieved by efficiently transferring channels from lightly loaded cells (cold status)
to heavily loaded ones (hot status). The load information collection cannot only estimate the
time-varying traffic load about the cellular networks, but also provide useful information for
making the channel-reallocation decisions.

Traditional channel-allocation approaches can be classified into update and search [15]. The
fundamental idea is that a cell must consult all the interference cells (IN(C)) within the minimum
reuse distance before it can acquire a channel. Both approaches have advantages and
disadvantages. The update approach has a short acquisition delay but a higher message
complexity, while the search approach has a lower message complexity but a longer acquisition
delay. Due to this nature, using neural-fuzzy controllers is the best way to approach the
problem. The concept of fuzzy number plays a fundamental role in formulating quantitative
fuzzy variables. The fuzzy numbers represent the linguistic concepts, such as very hot, hot,
moderate, etc. [16, 17]. The fuzzy expert-system approach has also been applied to forecasting
where the advantage of an operator’s expert knowledge is used. We adopt the number of
available channels and cell traffic load as the input variables for fuzzy sets and define a set of
membership functions. In addition, our scheme allows a requesting cell to borrow multiple
channels at a time, based on the traffic loads of the cells and channels availability, thereby
reducing the borrowing overhead further. Figure 1 shows the block diagram of our neural-fuzzy
controller for the dynamic channel-borrowing scheme (NFDCBS).

Our neural-fuzzy controllers consist of five modules: a fuzzy rule base, a fuzzy inference
engine, fuzzification, defuzzification modules, and neural networks. The NFDCBS consists of
cell load decision-making, cell-involved negotiation, and multi-channels migration phases. The
structure of a dynamic channel borrowing for a wireless cellular network is composed of three
design phases by applying artificial neural networks and fuzzy logic control to them. The main
purpose of a neural-fuzzy controller is to apply neural learning techniques to find and tune the
parameters. In this parameter-learning phase, the possible parameters to be tuned include those
associated with membership functions such as centre, widths, and slope; the parameters of the
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parameterized fuzzy connectives; and the weights of the fuzzy logic control rules. The
performance of our NFDCBS is compared with the FCA [18], simple borrowing [8], directed
retry [19], channel borrowing without locking (CBWL) [20], and load balancing with selective
borrowing (LBSB) [9]. The experimental results reveal that our proposed scheme performs
better than conventional schemes. Our adaptive neural-fuzzy controllers for load-balancing
algorithm not only effectively reduces the blocking rate and the dropping rate, but also provides
considerable improvement in the overall performance, such as with fewer update messages
and short channel-acquisition delays. The remainder of this paper is organized as follows. In
Section 2, we provide the structure of the cellular system model and channel-borrowing strategy.
The design issues of our proposed neural-fuzzy controller wireless cellular system are given in
Section 3. Experimental results are given in Section 4. Finally, concluding remarks are made
in Section 5.

2. CELLULAR SYSTEM MODEL AND CHANNEL-BORROWING STRATEGY

The universal mobile telecommunication system (UMTS) consists of the radio network
controller (RNC), which owns and controls the radio resources in its domain, and the BSs
connected to it. RNC is the service access point for all services; UMTS terrestrial RAN
(UTRAN) provides the core network (CN), and management of connection to the user
equipment (UE). The concept also applies to RNC in next generation of wireless cellular system,
and a BS directly communicates with all mobile stations (MSs) or mobile equipment (ME)
within its wireless transmission radius. The cellular system model proposed in this paper is
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Figure 1. Block diagram of NFDCBS.
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assumed to be as follows. A given geographical area consists of a number of hexagonal cells,
each served by the BS.

The BS and the MSs communicate through the wireless links using channel. Each cell is
allocated with a fixed set of channels CH and the same set of channels are reused by those
identical cells, which channels are sufficiently far away from each other in order to avoid
interference [15].

The set of all cells is partitioned into a number of disjoint subsets, G0;G1; . . . ;Gk�1 such that
any two cells in the same subset are apart from each other by at least a distance of Dmin,
partitioning the set of all channels into K disjoint subsets, P0;P1; . . . ;Pk�1: The channels in Pi

ði ¼ 0; 1; . . . ; k� 1Þ are called the primary (nominal) channels for the cells in Gi, it is arranged in
an ordered list. A channel i either used (Ui) or available (Vi) depending on whether it is assigned
to a MS. For convenience, a cell Ci is a primary cell of a channel CH if and only if CH is a
primary channel of Ci. Thus, the cells in Gi are primary cells of the channels in Pi and secondary
cells of the channels in Pjðj=iÞ: A group of cells using distinct channels forms a compact pattern
of radius R.

Given a cell c, the interference neighbourhood of c, denoted by INðcÞ ¼ fc0jdistðc; c0Þ5Dming;
where Dmin ¼ 3

ffiffiffiffiffiffi
3R

p
: A channel available for c becomes interfered if some cell in uses it IN(c). If

Ni denotes the number of cell in the ring i, then for the hexagonal geometry Ni ¼ 1 if i ¼ 0; and
Ni ¼ 6i if i>0, the collection of cells in the coverage of the group of the BSs is called a cluster, as
shown in Figure 2. While the motivation behind all basic channel-borrowing strategies is the
better utilization of the available channels with the consequent reduction in call-blocking
probability in each cell, very few of the schemes deal with the problem of non-uniformity traffic
demand in different cells which may lead to a gross imbalance in the system performance.

In simple borrowing strategy [8] this variant of the fixed assignment scheme proposes to
borrow a channel from neighbouring cells provided it does not interfere with the existing calls
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and locked in the co-channel cells of the lending one. In the directed retry with load-sharing
scheme [19], it is assumed that the neighbouring cells and the users overlap the region and the
main drawback of this scheme include increased number of handoffs and co-channel
interference, and also the load sharing is dependent upon the number of users in the overlap
region. The CBWL scheme [20] proposes channel borrowing when the set of channels in a cell
gets exhausted; but it uses the borrowed channels under reduced transmission power to avoid
co-channel interference. Additionally, only a fraction of the channels in all neighbouring cells
are available for borrowing. In the LBSB [9], a cell is classified as ‘hot’, if its degrees of coldness
defined as the ratio of the number of available channel to the total number of channel; channels
allocated to that cell is less than or equal to some threshold value. Otherwise, the cell is ‘cold’.
Aided by a channel-allocation strategy within each cell, it has been presented that the centralized
LBSB achieves almost perfect load balancing and leads to a significant improvement over FCA,
simple borrowing, directories and CBWL schemes in case of an overloaded cellular system.

LBSB has two disadvantages. First, too much dependency on the central server maintenance
of continuous status information of the cells in an environment. The traffic load changes
dynamically leading to enormous amount of updating traffic, consumption of bandwidth and
message delays. Second, the strategy of the channel borrowing for load balancing usually uses
fixed threshold values to distinguish the status of each cell. Threshold values, however, are fixed
and cannot indicate the degree of the load. Since load status may exhibit a sharp distinction
state level, the channel borrowing or lending action will be made frequently around the
threshold, possibly resulting in ping-pong series fluctuation. This results in wasting a significant
amount of efforts in transferring channels back and forth. In this paper, the performance of a
DCA strategy will depend on how the state information has been decided at the BSs.

An efficient channel-assignment strategy should consider not only the present load, but also
the load distributed in the recent past. Based on this information, the load distribution for the
near future should also be projected. To be able to get a good decision, the dependencies
between the decision and objective must be calculated. Achieving this estimation, however, is
difficult and time consuming. The relationship between the communication resources is too
complex to define a good rule for estimating the cell load. Borrowing of channels in cellular
networks may increase the served cells of the system significantly. When the load of a cell
increases, some of the channels may have to borrow from a cold cell.

3. NEURAL-FUZZY CONTROLLER WIRELESS CELLULAR SYSTEM

Some of the techniques used to load balancing in heuristic techniques, are usually a threshold
used to determine where the load is cold or hot. This binary state makes the system load state to
fluctuate between hot and cold loads when the cell load is near the threshold value. It will cause
channel reallocation frequently because of the load change. Simulation techniques have widely
been used by the researchers. Although it provides more flexibility and freedom, it has its own
limitations and drawbacks. For example, the load is usually artificial and predetermined. Some
methods use a simple queuing model of a mobile cellular system [8–11, 13, 15, 19, 20]. Those
proposed schemes completely ignore other resources than traffic load. Therefore, while it may be
reasonable to detect the performance of purely available channels, the utility of this is
questionable for channels that use the other resources of contention. We recognize that it is
difficult, perhaps impossible, to find the cell load information that satisfies all of the above
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requirements. Moreover, they may be contradictory. But the cell load information may be
judged by the degree to which it meets the above criteria. The problem with such methods is that
many unrealistic assumptions must be made to make the study feasible. For example, most
models use exponential distributions for arrival and service times. NFDCBS, based on a fusion
of ideas from fuzzy control and neural networks, possesses the advantages of both neural
networks such as learning abilities, optimization abilities, and fuzzy control systems such as
human-like IF–THEN rule thinking and ease of incorporating expert knowledge. In this way,
we can bring the low-level learning and computational power of neural networks to fuzzy
control systems and also provide the high level, human-like IF–THEN rule thinking and
reasoning of fuzzy control systems to neural network. Neural networks can improve their
transparency, making it closer to fuzzy logic control, while fuzzy logic controls can self-adapt,
making them closer to neural networks.

3.1. Structure and operation of neural-fuzzy controllers

The typical architecture of fuzzy logic control includes four principal components: fuzzifier,
fuzzy rule base, inference engine and defuzzifier. The fuzzifier has the effect of transforming
crisp measured data into suitable linguistic values. The fuzzy rule base stores the empirical
knowledge of the operation of the process of the domain experts. The inference engine is the
kernel of fuzzy logic control: it also has the capability of simulating human decision-making by
performing approximated reasoning to achieve a desired control strategy. Finally, the
defuzzifier is utilized to yield a non-fuzzy decision of control action from an inferred fuzzy
control action by the inference engine [15].

3.1.1. Fuzzifier. A fuzzifier performs the function of fuzzification, which is a subjective
valuation to transform measurement data into valuation of a subjective value. Hence, it can be
defined as a mapping from an observed input space to labels of fuzzy sets in a specified input
universe of discourse. Since the data manipulation in a fuzzy logic control is based on fuzzy set
theory, fuzzification is necessary and desirable at an early stage. In fuzzy control applications,
the observed data are usually crisp. These membership grades are represented by real-number
values ranging between 0 and 1 through an action and the value 1 is the largest possible support.
The grades of membership basically reflect an ordering of the objects in fuzzy set A: another way
of representing a fuzzy set is through the use of the support of a fuzzy set. The support of a fuzzy
set A is the crisp set of all x 2 U such that uxðxÞ > 0: That is, SuppðAÞ ¼ fx 2 U juAðxÞ > 0g: The
definitions of complementation, intersection, and union proposed by Zadeh [21] are as follows:

1. The complementation of a fuzzy set A is denoted by %A and the membership function of %A is
given by %AðxÞ ¼ 1� uAðxÞ 8x 2 X :

2. The intersection of fuzzy sets A and B is denoted by A\ B and the membership function of
A\ B is given by A\ BðxÞ ¼ minfuAðxÞ; uBðxÞg 8x 2 X :

3. The union of fuzzy sets A and B is denoted by A[ B and membership function of A[ B is
given by A[ BðxÞ ¼ maxfuAðxÞ; uBðxÞg 8x 2 X :

3.1.2. Fuzzy rule base. Fuzzy rule base is characterized as collection of fuzzy IF–THEN rules in
which the preconditions and consequent involve linguistic variables. This collection of fuzzy
control rules characterizes the simple input–output relation of the system. The general form of
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the fuzzy control rules in case of multi-input–single-output systems (MISO) is

Ri : IF X is Ai AND Y is Bi; THEN Z is Ci i ¼ 1; 2; . . . ; n

where x, y, and z are linguistic variables representing the control variable, respectively, and Ai,
Bi, and Ci are the linguistic values of the linguistic variables x, y, and z, respectively.

3.1.3. Inference engine. In an inference engine the knowledge pertaining to the given control
problem is formulated in terms of a set of fuzzy inference rules. There are two principal ways in
which relevant inference rules can be determined. In the above rules, the connectives AND and
ALSO may be interpreted as either intersection \ or union [ for different definition of fuzzy
implication. Denote the maxð_Þ2minð^Þ composition operators. Then we have the following
theorem governing the connective AND with one fuzzy control rule to obtain the conclusion.
Let us assume that there is one rule Ri with fuzzy implication Rc, the conclusion C 0 can be
expressed as the intersection of the individual conclusions of input linguistic state variables.

uc0 ðwÞ ¼
[
u;v

f½uA0 ðuÞ ^ uB0 ðvÞ� ^ ½uAiðuÞ ^ uBiðvÞ ^ uciðwÞ�g

¼
[
u

½uA0 ðuÞ ^ uAiðuÞ ^ uciðwÞ� ^
[
v

fuB0 ðvÞ ^ uBiðvÞ ^ uciðwÞg

" #( )

¼
[
u

fuA0 ðuÞ ^ uAiðuÞ ^ uciðwÞuB08RcðBi ;CiÞðwÞg

where RcðAi;Bi;CiÞ ¼ ðAi AND BiÞ ! Ci:
That is,

C0 ¼ ðA0;B0Þ8RcðAi;Bi;CiÞ ¼ ½A08RcðAi;CiÞ� \ ½B08RcðBi;CiÞ�

If the system inputs are fuzzy singletons, A0 ¼ u0 and B0 ¼ v0 then the results C0derived
employing minimum operation rule Rc and product operation rule Rp, respectively, may be
expressed simply as

Rc : uc0 ðwÞ ¼
[n
i¼1

ai^ uciðwÞ ¼
[n
i¼1

½uAiðu0Þ ^ uBiðv0Þ� ^ uciðwÞ

Rp : uc0 ðwÞ ¼
[n
i¼1

ai^ uciðwÞ ¼
[n
i¼1

½uAiðu0Þ ^ uBiðv0Þ� � uciðwÞ

where ai denotes the weighting factor of the ith rule, which is a measure of the contribution of
the ith rule to the fuzzy control action. If the max-product compositions operator (*) is
considered, then the corresponding Rc and Rp are the same.

3.1.4. Defuzzifier. Defuzzification is a mapping form a space of fuzzy control actions defined
over an output universe of discourse into a space of non-fuzzy (crisp) control actions. This
process is necessary because in many practical applications crisp control action is required for
actual control. A defuzzification strategy is aimed at producing a non-fuzzy control action that
best represents the possibility distribution of an inferred fuzzy control action. Unfortunately,
there is no systematic procedure for choosing a defuzzification strategy. Two commonly used
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methods of defuzzification are the centre of area (COA) method and the mean of maximum
(MOM) method [16, 17, 21].

3.1.5. Hybrid structure parameter learning. We discussed system models of neural-fuzzy
controllers that can be built from a set of input–output training pairs through hybrid
structure-parameter learning. In parameter learning, we mean the tuning of membership
functions and other parameters in a neural-fuzzy control wireless cellular network. The network
architecture has been fixed or determined previously by expert knowledge or some structural-
learning techniques.

The parameter learning problems considered in this section are considered supervised learning
problems, and we are given a set of input–output training data and neural-fuzzy network
architecture such as fuzzy rules from which proper network parameters are to be determined.
Figure 3 shows the hybrid structure parameter learning of the NFDCBS. The system has a total
of four layers. The nodes in layer1 are linguistic nodes that represent input linguistic variables;
layer 4 is the output layer. There are two linguistic nodes for each output variable. One is for
desired output to feed into the network; the other is for actual output to be pumped out of the
network. Nodes in layers 2 and 3 are term nodes, which act as membership functions

... ...
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Rule 1 Rule n ith rule

Y o
coa Yd

wmw1

wj

Rule i

Hot Moderate Cold ModerateHotVery Hot Cold Very Cold

Traffic loadLayer 1
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e *
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e

Figure 3. Hybrid structure parameter learning of the NFDCBS.
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representing the terms of the respective linguistic variables. Actually, layer 2 nodes can be either a
single node that performs a triangle-shaped membership function or one that performs a complex
membership function. Each node in layer 3 is a rule node that represents one fuzzy rule. Addi-
tionally, the links between the rule nodes and the output term nodes are initially fully connected.
Only a suitable term in each output linguistic variable’s term set will be chosen after the learning
process, where Y0

coa represents the number of migrate channels, and yd is our desired output.

3.2. Cell load decision-making

This section addresses our strategy of estimating of load status in a wireless cellular network.
This measure is vital for us to determine the most suitable site for migrating channels in order to
share the load in the system. This information shall indicate not only the amount of information
about the system, but also the information-gathering rules used in making the load-redistribution
decisions. We recognize that it is difficult, perhaps impossible, to find an information policy that
satisfies all of the above requirements. Moreover, they may be contradictory. But information
may be judged by the degree to which it meets the above criteria. This decision indicates the
various load informations regarding the cellular system. In the initial stage, we can construct
different available channels membership function, traffic load membership function, and centre
value for linguistic labels around through fuzzy c-means clustering algorithm [22] according to
various cells’ characteristics of system-behaviour data. The distributed channel-assignment
schemes have received considerable attention because of their reliability and solvability. The
decision-making indicates the significance of various loading, which is regarded with the cellular
system. Many researchers use available channel as the single load index for BS in the cellular
system [9, 12]. Although the number of available channels is the obvious factor having an impact
on the system load, other factors are also influential, including system load, call-arrival rate and
call duration. For the accuracy of evaluating the load state of a cell, we employ the used available
channel and traffic load as the input variables for the fuzzy sets.

The fuzzification function is introduced for each input variable to express the associated
measurement uncertainty. We consider an interval of real number and the notation en ¼R
u ueðaiÞ=ai and e ¼

R
u ueðbiÞ=bi; where e is denoted as available channel and en is denoted as

traffic load, ai and bi are actual input values, respectively. Let ai present the centre value for
linguistic labels of available channel membership function for 04i42; and let bi present the
centre value for linguistic labels of traffic load membership function for 04i44: The status of
en may be very cold (VC), cold (C), moderate (M), hot (H) or very hot (VH) for different value
of traffic load and the status of emay be low (L), moderate (M) or high (H) for different value of
available channels. The fuzzified information is then passed on to the fuzzy inference engine.
Figure 4 shows membership function for the number of available channels and the system
parameter traffic load. These functions are defined on the interval ½a0; a4�; ½b0; b2�:

3.3. Cell-involved negotiation

After the cell load level of each BS has been decided by the load information, the objective of the
cell negotiation is to select the cell to or from which channels will be borrowed when the cell load
reallocation event takes place. The traditional channel-allocation algorithm in negotiation can
be classified into update and search methods [15]. In the search approach, a cell does not inform
its neighbours of its channel acquisitions or releases. When a cell needs a channel, it searches all
neighbouring cells to compute the set of currently available channels, and then acquires one
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according to the underlying DCA strategy. In the update approach, a cell always informs its
neighbours whenever it acquires/releases a channel so that each cell knows the set of channel
available for its use and underlying DCA strategy. Both approaches have advantages and
disadvantages.

The update approach has short acquisition delay and good channel reuse, and it also has a
higher message complexity. In other words, the search approach not only has lower message
complexity, but also has longer acquisition delay and ineffective channel reuse [15]. The
fundamental idea of the basic schemes is that a cell must consult co-channel cells, and its cluster
cells, before it can acquire channels. When a new call arrives at a hot cell, the NFDCBS
algorithm is activated requesting its cluster for help, and attempts to borrow sufficient free
channels to satisfy its demand.

Our research took advantage of fuzzy logic control and presented an enhanced version of the
negotiation scheme, called cell-involved negotiation. When the load state is hot, it plays the role
of the borrowing channel action; in contrast, it plays the role of the lending channel action when
its load state is cold. The moderate cells are not allowed to borrow any channels from any other
cells nor lend any channels to any other cells. It is observed that a fuzzy enhanced algorithm can
enhance the overall system performance effectively. At each BS, an augmented load-state table is
maintained. The entries of the table are the current load status of every cluster cells as well as the
co-channel cells. The cell operation types of load-state information exchanges among cells, and
each BSs keeps the state information of the cells and runs the channel-borrowing algorithm to
update load state.

Membership degree
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: Migrate channels output status center value
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ModerateVery Cold Cold Very HotHot

NL AZNM NS PLPMPS

a0 a1 a2 a3 a4

: Available channels membership function center values

: Traffic load  membership function center value

0
coaY

*e

e

0
coaY

*e

e

Figure 4. Membership functions of the fuzzy input and output.
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The knowledge pertaining to the given control problem is formulated in terms of a set of fuzzy
inference rules. We use five load actions; very cold, cold, moderate (stabilized state), hot, and
very hot. The BS keeps the load-state information of the cells and runs the fuzzy-based channel-
borrowing algorithm to borrow free channels from the very cold or cold cells for the very hot or
hot cells whenever it finds any very hot or hot cells. The moderate cells are neither allowed
reallocation any channels from or to any other cells nor updated interfering neighbourhood
cells. To conclude this section, let us introduce a special notation that is often used in the
literature for defining fuzzy sets with a finite support. Assume further that the following
seven linguistic states are selected for migrating channels of the variables: negative large
(NL), negative medium (NM), negative small (NS:), approximately zero (AZ), positive large
(PL:), positive medium (PM), and positive small (PS). This paper has 15 rules as shown in
Figure 5.

3.4. Multi-channels migration. Multi-channel migration, the new channel borrowing with multi-
channel transferring, can reallocate channels well, especially in an unpredictable variation of cell
load. Our mechanism for multi-channel transfer calculates the amount of transferred channels
by these two values. The number of available channels and traffic load are the values, which
represent the average during the recent minutes. The NFDCBS, we have discussed in the last
section, has a common property; when a requesting cell and a probed cell are decided, the
number of reallocated channels is just one channel in each iteration. It is very inefficient if the
cell load of these two cells differ greatly. The idea we propose is as follows: why not borrow
several channels instead of only one between two cells whose BS load differ greatly.
Furthermore, we propose borrowing several channels between two cells whose serviced load
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Figure 5. Fuzzy rules for channel borrowing/lending control.
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differs greatly. For example, a cell in handoff needs a new channel in the new cell within a very
short period. If the new channel is not acquired in time, the call is dropped. The difference is that
we reallocate several channels instead of only one channel borrowed while making load
balancing in each iteration. For example, in the next generation multimedia mobile network, a
call may need multiple channels at a time. Under our proposal, the cell load between two cells
could be made more balanced. Let us return to the beginning of the problem, that is, after the
requested and selected cells are decided. According to our observation the number of available
channels is the main factor affecting the computing time; it can be divided into two aspects: the
available channel and traffic load. Our borrowing mechanism for multi-channel transfers
calculates the amount of transferred channels by these two values.

The multi-channel allocation pertains to handle the allocation of channels from one cell to
another. To accomplish this, we use five load values, which are very hot, hot, moderate, cold and
very cold; to distinguish the difference of cell load on two cells. If one cell is in the ‘very hot’
state (PL), it will borrow several channels from the cell with ‘very cold’ state (NL). If there
are no ‘very cold’ cells, then it would choose several cells with ‘cold’ (NM/NS). The numbers
of available channels and the traffic load are the values, which represent the average
during the recent minutes. The purpose of defuzzification is to convert each result obtained
from the inference engine, which is expressed in terms of fuzzy sets, to a single real
number. Defuzzification is a mapping from a space of fuzzy control actions defined over
an output universe of discourse into a space of non-fuzzy (crisp) control actions. This process
is necessary because in many practical applications crisp controls action is required for the
actual control. Figure 4 shows the membership function for channel borrowing/lending a
quantity control number of the channels range ½�c;þc� of the fuzzy output. The function is
defined on the interval [0,+c] for borrowing action, and on the interval [0,�c] for lending
action.

We have used the COA method because it supports software real-time fuzzy
controls to distinguish the difference of load on two cells. This value is calculated by the
formula

Y0
coa ¼

Pn
i¼1 wi � BiPn

i¼1 wi

� �� �
� INðcÞ

where Y0
coa represent the number of migrate channels, Wi is the antecedent degree of ith control

rule and Bi is the consequent centre value of ith control rule.
Consequently, the defuzzified value Y0

coa obtained by the formula can be interpreted as an
expected value of variable. Finally, we obtain

Migrate channels ¼Min½Borrowing cell ðY0
coaÞ; Lending cell ðY0

coaÞ�

After multi-channels are reallocated, we use hybrid neural network to tune the fuzzy
membership function. We define the isosceles triangular membership function of load status
as shown in Figure 6, and the antecedent degree of ith control rule is dependent upon the
membership function centre value ai, the membership function width bi.

UiðxÞ ¼
1� 2jXi � ai j

bi

Assume Yd is our desired output, the objective error function E can be defined by

E ¼ 1
2
½Y0

coa � Yd�2
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According to the number of migrate channels Y0
coa and the objective error function E, we have

E ¼
1

2

Pn
i¼1 wi � BiPn

i¼1 wi

� �� �
� Yd

� �2

Since the shape of the membership function UiðxÞ is defined by the centre value ai and the width
bi, the objective error function E consists of the tuning parameter ai, bi, wi, and Z is the learning
rate, for i ¼ 1; . . . ; n: Hence, the learning rules can be derived as follows:

aiðtþ 1Þ ¼ aiðtÞ � Za dE=dai

biðtþ 1Þ ¼ biðtÞ � Zb dE=dbi

wiðtþ 1Þ ¼ wiðtÞ � Zw dE=dwi

4. EXPERIMENTAL RESULTS

The problem domain naturally lends itself to simulate using multiple threads since there are a lot
of concurrences and global resource management issues in the system. The simulated model
consists of 14 clusters with 7 homogeneous cells each. This experiment has used the number of
channels CH ¼ 30 in a cell, total of N ¼ 98 cells in the system. The amount of requested channel
specified of minimum basic channel units (CU) is 30 kbps of multi-channels migration. We
assume lo ¼ 100–2000 calls/h be the call originating rate per cell and lh ¼ ðlo� 0:01� lo� 1Þ
is the handoff traffic density per cell, and d ¼ 1 s communication delay between cells, and each

Figure 6. Isosceles triangular membership functions of load status.
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handoff and new calls request delay constraint ðDCÞ ¼ 5 s: So, from the simulation result,
the value of traffic load is chosen randomly and non-linearly. The maximum numbers of
handoff calls are queued 10 for the first-class priority and new calls 10 for the second-class
priority. Let the density of simulation be 500 people/cell. We define that the time of the sample
interval is 3min and the sampling time does influence previous one. The channel acquires
messages transmitted between hot cell i and cold cell j, which are classified into four categories
as follows.

* Request message, request (i): message sent by the hot cell i to cluster cells to request the free
channels.

* Reply message, reply ðj;Vj ;UjÞ: message from cold cell j, j 2 cluster cells responding to
borrow cell i. The message also includes the information on the reserved channels in cell j.

* Inform message, inform ði;BijÞ: message sent by borrowing cell i to the lending and the
other cells in the cluster to inform them about its channel-acquisition decision, where Bij is
set of channels borrowed by hot cell i from cold cell j .The message also includes the
requests of the reserved channels if any.

* Confirm message, confirm ðj;LijÞ: message sent by cold cell j to borrow hot cell i to inform
it the availability of the requested channels that have been reserved at lend cold cell j. Here
Lij is the set of confirmed channels lent from cold cell j to hot cell i, and cold cell j can still
assign the reserved channels to new-arrival calls before sending the confirm message back
to hot cell i.

In order to represent various multimedia services, three different types of traffic services are
assumed based on the channel requirement and QoS. In our simulation, three types of traffic
services are assumed: voice service, videophone and video on demand. These types are defined
on the channel requirement 30 kbps, 256 kbps and interval 1–3Mbps, respectively. The
assumptions of four performance metrics for our simulation study are as follows.

1. Blocking calls: If all the servers are busy, the cell does not succeed to borrow a channel
from its cluster cells and its waiting time (delay constraint) is over, then the calls must be
blocked, otherwise they get service.

2. Dropping calls: When an MS moves into a neighbouring cell, the call must be transferred
to the neighbouring BS. This procedure is a handoff. If a channel cannot be assigned at the
new BS and the particular cell does not borrow a channel from its cluster cells, then the call
generated at this particular cell are stored in the queue, and its waiting time (delay
constraint) is over, then the calls must be dropped, otherwise they get service.

3. Update-message complexity: Each cell needs to communicate with co-channel and cluster
cells in order to exchange the set of load-state information.

4. Channel-acquisition delays: The values are acquired before the selected channels, the cell
must ensure that the selected channels will not be acquired by any of its cluster cells and
interference cells, simultaneously. When a cell receives a channel request from an MS, it
assigns a free channel, if any, to the request. Otherwise, the cell will need to acquire a new
channel from its cluster cells and then assign channels to the request.

The performance of our NFDCBS is compared with the FCA (Fixed), simple borrowing (SB),
and existing strategies like channel borrowing directed retry (DR), CBWL, and LBSB. The
experimental results reveal that the proposed channel-borrowing scheme yields have better
performance than others. The number of hot cells vs blocked calls have been observed in our
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scheme. Figure 7 compares the blocking probability and traffic-arrival rate. Blocking proba-
bility is defined as the percentage of calls generated that can be successfully allocated to a
channel. It is a key measure of the channel-assignment performance. At the base load, all the
schemes have low percentage of blocked channel requests, although FCA algorithms blocks
more than the other methods. When the traffic load increases, the number of blocked channel
request also increases. For FCA, it increases at faster blocking rate than by using other
methods. The reason for this is that a BS can only its nominal channels. When traffic load
becomes hot, nominal channels are used up in many BSs. In cell cluster, while FCA algorithms
reject all the new channel requests, the other schemes can handle the imbalance and satisfy the
new channel requests by borrowing channels from BSs with cold traffic load. The handoff
call-dropping probabilities for NFDCBS and other methods are plotted in Figure 8 against the
handoff dropping probability at different traffic loads. In every case, when the handoff dropping
probability is fixed, the NFDCBS has a lower handoff call-dropping probability than other
methods. The improvement in the performance of the NFDCBS over other methods, however,
decreases as the traffic load goes up.

In short, the NFDCBS is more capable of achieving the goal of channel borrowing from the
time when a handoff actually occurs to the time when a reservation request is sent for a possible
handoff to happen. Figure 9 compares the channel-assignment algorithms according to the new
call-blocking probability of channel request for the multimedia services. When the traffic load
increases, the call-blocking rate of channel requests increases at a slower rate than the other
schemes. Figure 10 shows the handoff call-dropping probability for various schemes at various
multimedia services. The number of multimedia requirements on the horizontal axis has
different meanings for voice service, videophone and video on demand. The NFDCBS scheme
always has lower handoff dropping rate than the existing channel-assignment schemes with the
same number of channels required. It also indicates that the NFDCBS scheme can improve
performance over the other methods with the number of reserved channels by further reducing
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the handoff dropping probability. Figure 11 shows the blocked calls of the six channel-
assignment algorithms with the number of hot cells. We find that when there are a few hot cells
in the system, our proposed scheme performs better than other schemes. In our NFDCBS, when
traffic load is hot there will be a lot of channel borrowing at a time for multimedia services,
although not as severe as channel-borrowing scheme. Figure 12, which depicts the messages of
different channel-borrowing schemes, shows that our proposed DCA scheme has the fewest
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updated messages. Our proposed scheme performs especially well when the numbers of hot cells
are large. The channel-acquisition delays are also discussed in our experiment. Figure 13 shows
that our proposed scheme has the shortest channel-acquisition delays. This results in a channel-
allocation scheme with efficient channel use in all traffic conditions.
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5. CONCLUSION

Fuzzy logic control and neural networks are complementary technologies in the design of
intelligent wireless cellular network. Neural networks are essentially low-level computational
structures and algorithms that offer good performance in dealing with sensory non-linear input
data, while fuzzy logic techniques deal with reasoning on a higher level than networks. This is
the first attempt in formulating the dynamic channel-borrowing problem with neural-fuzzy
controller and with simulation for various traffic loads and a number of hot-cell nodes. The
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present paper has highlighted the role of the neural-fuzzy controller and its application
in wireless cellular networks. In addition, the NFDCBS has often shown a faster and
smoother response than conventional systems. Based on these parameters, a set of fuzzy
inference rule is established. Since fuzzy logic control rules are constructed by using linguistic
variables, intuitive knowledge is easily integrated into the control system. We believe that a
neural-fuzzy controller for the control and management of cellular networks is more
appropriate than the conventional probabilistic models. It can also efficiently determine the
suitable cell for borrowing channels. The performance of the proposed scheme is better than
that of conventional schemes on the blocking rate, dropping rate, messages complexity and
channel-acquisition delays.
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