
DOI: 10.1007/s10766-005-6468-8
International Journal of Parallel Programming, Vol. 33, No. 4, August 2005 (© 2005)

Efficient Broadcast in Heterogeneous
Networks of Workstations Using Two
Sub-Networks

Chao Lin1,2 and Jang-Ping Sheu1

Received June 11, 2004; revised January 8, 2005; accepted January 21, 2005

This paper presents efficient algorithms for broadcasting on heterogeneous
switch-based networks of workstations (HNOW) by two partitioned sub-net-
works. In an HNOW, many multiple speed types of workstations have differ-
ent send and receive overheads. Previous research has found that routing by
two sub-networks in a NOW can significantly increase system’s performance
(Proc. 10th International Conference on Computer Communications and Net-
works, pp. 68–73, 2001). Similarly, EBS and VBBS (Proc. 8th IEEE Interna-
tional Symposium on Computer and Communication, pp. 1277–1284, (2003)),
designed by applying the concept of fastest nodes first, can be executed
in O(nlog(n)) time, where n is the number of workstations. This paper
proposes two schemes TWO-EBS and TWO-VBBS for broadcasting in an
HNOW. These two schemes divide an HNOW into two sub-networks that
are routed concurrently and combine EBS and VBBS to broadcast in an
HNOW. Based on simulation results, TWO-VBBS outperforms EBS, VBBS,
VBBSWF (Proc. 8th IEEE International Symposium on Computer and Com-
munication, pp. 1277–1284, (2003)), the postorder recursive doubling (Proc.
Merged IPPS/SPDP Conference, pp. 358–364, (1998)), and the optimal sched-
uling tree (Proc. Parallel and Distributed Processing Symposium, Proc. 15th
International (2001)) generated by dynamic programming in an HNOW.

KEY WORDS: Wormhole routing; myrinet; heterogeneous networks of work-
station; network partitioning; up*/down* routing; unicast-based broadcast;
postorder recursive doubling algorithm.

1Department of Computer Science and Information Engineering, National Central Univer-
sity, Chung-Li, 320, Taiwan. E-mail: {chaolin, sheujp}@axp1.csie.ncu.edu.tw

2To whom correspondence should be addressed.

351

0885-7458/05/0800-0351/0 © 2005 Springer Science+Business Media, Inc.

352 Lin and Sheu

1. INTRODUCTION

This paper considers to design an efficient broadcast routing algorithm
for wormhole routed heterogeneous switch-based network of workstations
(HNOWs). These networks consist of a collection of routing switches and
workstations interconnected in some arbitrary topology.

Efficient broadcasting in an HNOW has been presented.(1) In this
paper, two schemes referred to as SPOC and FNF are proposed. The
SPOC first constructs a binomial scheduling tree, then chooses faster
workstations to nodes in the binomial tree which have to send more mes-
sages. The FNF uses the idea of Fastest-Node First. Although FNF is
a near optimal scheme, it can not guarantee that it is a contention-free
routing. If contention occurs, the system should be delayed. The optimal
solution is an NP-complete problem.(1) The running time for finding the
optimal solution is O(n222n).(1) Singhal et al.14 used the optimal schedul-
ing tree in a NOW to design a broadcast algorithm in an HNOW with
two speed types.(8) The optimal tree algorithm that is generated by the
dynamic programming has time complexity O(n3), but it can not pro-
vide a routing with more than two speed types. Libeskind-Hadas and
Hartline(7) proposed that solutions within a bounded ratio of the receive
overhead to the send overhead can be found in time O(n log(n)), when
the ratio among nodes is bounded by constants. If the number of dis-
tinct types of workstations is fixed then optimal solutions can be found in
polynomial time. Banikazemi et al.(2) proposed a new model, henceforth
referred to as the heterogeneous receive–send model, which associates both
a send and a receive overhead with each workstation. They also verified
that this model is suitable for a heterogeneous NOW test-bed.

Chao presented three contention-free routing algorithms with the
complexity of O(n log(n)) in an HNOW with multiple send and receive
speeds.(9) These algorithms are contention-free and very efficient for rout-
ing in an HNOW. They can outperform the optimal scheduling tree pre-
sented by Singhal et al. with two speed types in an HNOW. In this
paper, we present two schemes which combine network partitioning(10)

with VBBS and EBS(9) to broadcast in an HNOW. From simulation
results, TWO-VBBS outperforms all other previous schemes.

The receive and send model as presented by Banikazemi et al.(2) is
also used here. The system model is modified by adding the wormhole
routing to perform our experiments. Any two workstations can have differ-
ent speeds as illustrated from Tables I to IV. Our proposed new model
involves wormhole routing, which differs from the previous model.(2)

The rest of this paper is organized as follows: Section 2 presents
preliminary. Section 3 proposes previous broadcasting strategies. Section

Efficient Broadcast in Heterogeneous Networks 353

Table I. Send and Receive Parameters (slow speed)

Type Sc(µs) Sm(µs) Rc(µs) Rm(µs)

1 60 0.05 110 0.03
2 90 0.40 140 0.06
3 120 0.80 170 0.48
4 150 1.6 200 0.96
5 180 2.40 230 1.92
6 300 3.2 360 2.2
7 400 3.8 500 2.8
8 500 4.2 600 3.2

Table II. Send and Receive Parameters (fast speed)

Type Sc(µs) Sm(µs) Rc(µs) Rm(µs)

1 60 0.05 110 0.03
2 90 0.20 140 0.12

Table III. Send and Receive Parameters (slow speed)

Type Sc(µs) Sm(µs) Rc(µs) Rm(µs)

1 60 0.05 110 0.03
2 360 0.50 440 0.3

Table IV. Send and Receive Parameters (slow speed)

Type Sc(µs) Sm(µs) Rc(µs) Rm(µs)

1 60 0.05 110 0.03
2 90 0.40 140 0.32
3 120 1.6 170 1.28
4 150 6.4 200 4.8

4 proposes Two-Sub-networks broadcasting scheme. Section 5 presents
broadcasting on an HNOW using TWO-VBBS. Broadcasting on a par-
tially connected NOW is in Section 6. Section 7 analyzes performance.
Section 8 presents the simulation results and comparison. Section 9
presents conclusions.

354 Lin and Sheu

2. PRELIMINARIES AND RELATED WORKS

2.1. Preliminaries

2.1.1. Switch-Based Network of Workstations

Workstations in the HNOWs have different receive and send latency.
An HNOW can be represented as G(V, E), where V=V1 ∪ V2, V1 repre-
sents the set of all the switches; V2 is the set of all workstations, E is the
set of all the links. Each switch has many workstations and includes mul-
tiple ports connected by workstations. The links are of three types. The
first type is a link from one workstation to another workstation within
a single switch. The second is a link from one switch to another switch,
and the third is a link from a workstation to a switch. For each directed
edge (u, v) ∈ E, the opposite edge is (v, u), and both edges are bi-direc-
tional edges. In Autonet and Myrinet, these two opposite edges (u, v) and
(v, u) can be used simultaneously without contention. Following above,
the graph G(V, E) is said to be symmetric if vertex u is connected to ver-
tex v and they have two opposite edges between them. If any vertex in
V2 is connected to a single vertex in V1, then a workstation in V2 is con-
nected to a switch in V1. If two vertexes u, v in the V1 are connected, then
the two switches are said to be connected. Figure 1 illustrates this system
model. For example, Fig. 1(a) depicts a heterogeneous switch-based net-
work. Figure 1(b) shows its graph representation. Figure 1(c) represents a
spanning tree. The small symbols such as the circle and the square indicate
distinct workstations with different speeds. Worms can pass through many
switches, but can not be absorbed by them. First, we should construct a
BFS spanning tree as in Fig. 1(c), which is used for routing. Furthermore,
the density is defined as the ratio of the number of workstation to the
number of switch; it is used in our experiments. The higher the density,
the better performance should be.

(a) (b) (c)

Fig. 1. (a) an HNOW example, (b) its graph representation, and (c) its spanning tree. The
dotted lines in (c) are cross edges. S1, S2, . . . , and S5 are switches.

Efficient Broadcast in Heterogeneous Networks 355

2.1.2. Unicast-Based Broadcast

Suppose that G(V, E) is an HNOW, V is the set of all workstations
and switches, and E is the set of all edges, a directed trail in the network is
an alternating sequences of vertices and edges v0, e0, v1, e1, . . . , vk−1, ek−1,
vk, such that ei = (vi, vi+1) ∈ E, 0 � i � k − 1, and all edges are
distinct. P(v0, vk), which is {v0, v1, . . . , vk−1, vk}, is called a path. A uni-
cast is defined as an ordered quadruple (u, v, P (u, v), t), where u, v are the
source and destination nodes, P(u, v) is a directed path from u to v, and
t is the positive integer communication step in which the unicast begins.
In this paper, a broadcast can be divided into many unicasts. This kind
of broadcast is called unicast-based broadcast, as previous described.(8,11)

These unicasts are utilized to construct an ordered scheduling tree. Every
edge which is a unicast in the tree is assigned a step number which repre-
sents a routing order in a broadcast as shown in Fig. 3.

2.1.3. Point to Point Message Transfer in an HNOW

When worms are routed on such HNOWS, the communication latency
is the sum of cost components. These cost components are the send over-
head, transmission cost and the receive overhead. These components con-
sist of a message size dependent factor and a constant factor. Thus, the
one-way time for a single point-to-point message transfer between two
adjacent workstations,(2) can be expressed as

Tptp = Osend + Otrans + Oreceive, (1)

Osend = Ssend
c + Ssender

m × m, (2)

Otrans = Xc + Xm × m, (3)

Oreceive = Rreceive
c + Rreceive

m × m, (4)

where m is the message size, Sm the sending latency per byte and Sc is
the initiation of sending. Xc is the initiation of transmitting message and
Xm is the transmitting latency per byte. In addition Rc is the latency
of initiation of receiving message and Rm is the receiving latency per
byte. For example, a Pentium Pro 200 MHz PC with 128 MB memory and
16 KB/256 KB L1/L2 cache reveals the speed parameters Sc, Sm, Rc, and
Rm are 90, 0.18, 140, and 0.08 µs. A Pentium II 300 MHz PC with 128 MB
memory and 32 KB/256 KB L1/L2 cache shows that Sc, Sm, Rc, and Rm

are 60, 0.05, 110, and 0.03 µs.(2) Tables I–IV, they illustrate these speed
parameters for simulation.

356 Lin and Sheu

2.1.4. Wormhole Routed Model in an HNOW

The wormhole switching technology(4,12) has low communication
latency and is applied in Myrient,(3) Server-Net,(5) and Auto-net.(13) In
a wormhole routed heterogeneous network of workstations, the system
model is a little different.(12) Suppose a path from nodes v1 to v2 has a
path length of d, and this unicast will transmit m bytes from v1 to v2, then
this model can be demonstrated as

Tptp = Osend + Otrans + Oreceive, (5)

Osend = Ssend
c + Ssender

m × m, (6)

Otrans = Xc + Xm × (m + d), (7)

Oreceive = Rreceive
c + Rreceive

m × m. (8)

These modified formulas model the latency of transmitting a m-byte
message from a source node to a destination node in a contention-free sit-
uation. In a wormhole routing, if the path length is d, the speed of any
switch is 1µs and m bytes are transmitted, then the latency is (m + d)µs.

2.1.5. Fully Connected and Partially Connected HNOW

In an HNOW, a switch can have no workstation to be connected.
Therefore, this paper considers two types of HNOW. In One, every switch
is connected to one or more than one workstation. Such a HNOW
is called a Fully Connected HNOW. The other HNOW in which some
switches are connected to no workstation. This HNOW is called a Par-
tially Connected HNOW. A spanning tree is generated from a Fully Con-
nected HNOW, this spanning tree is called a Fully Connected Spanning
Tree, while a spanning tree is obtained from a partially connected HNOW
is called a Partially Connected Spanning Tree. Our proposed schemes are
applied to both fully connected and partially connected HNOWs.

2.2. Related Works

2.2.1. Up*/Down* Routing

In a NOW such as Myrinet or Autonet, the up*/down* routing is
most frequently used as base routing.(6,8) This paper adopts the unicast-
based routing as a basic step,(8,11) so this scheme is reviewed below. First,
a rooted breadth-first search (BFS) spanning tree is constructed. For each
communication step above, the paper suggests two ways to route worms.(8)

Efficient Broadcast in Heterogeneous Networks 357

First, an edge (u, v) is classified as an up link if the level of u exceeds the
level of v, or if u and v are at the same level and the postorder num-
ber of u exceeds that of v. A link which is not an up link is a down link.
Based on such classification, a strict up-first routing is one in which each
path must go through up tree links before down tree links (only links of
the BFS tree are called tree links), the rest are cross edges. An alternative
and more flexible way is relaxed up-first routing, where both tree and cross
edges can be used.(8) However, each path must still pass through up links
before down links.

2.2.2. The Postorder Recursive Doubling Algorithm

Libeskind-Hadas et al.(8) presented a tree-based broadcasting algo-
rithm. This routing algorithm which uses the minimal number of steps and
offers the depth-contention contention-free routing is called the postorder
recursive doubling algorithm.(8) When a scheduling tree is constructed by
this algorithm, it can not perform well and provide an optimal routing in
an HNOW because fastest nodes can not be easily arranged in the internal
nodes of the scheduling tree. This scheduling tree is used for the unicast-
based broadcast. Let M denote a multicast request with a source s and d

destination nodes. The set M − s is partitioned into two sets, M1 and M2
such that M1 contains the destination in M whose postorder ID’s are greater
than the postorder ID of s and M2 contains the destinations in M whose
postorder ID’s are less than the postorder ID of s. A list L is constructed
in which s is the first element, followed by the elements in M1 sorted by
increasing postorder ID’s, followed by the elements in M2 sorted by increas-
ing postorder ID’s. Let L = v0, v1, v2, . . . , vd where s = v0. In the first
communication step, v0 sends messages to the node at the midpoint of the
list, V�(d+1)/2�, using up*/down* path with cross-edges. Now, v0 is response
for delivering the message to the first half of the nodes in L. Each of these
two nodes recursively applies the algorithm by sending the message to the
midpoint of each of their respective sublists using up*/down* routing path
with cross-edges. This process continues until after �log2(d + 1)� iterations
that every destination has received the message. This algorithm is referred
to henceforth as the postorder recursive doubling algorithm. The list S ∪
M1 ∪ M2 is called a rotation list.

For example, in Fig. 1(c) the postorder list is {8, 9, 7, 2, 1, 3, 5, 6, 4,
10, 11, 12, 16, 15, 14, 13}. Suppose the source is 10, then M1 is {11, 12, 16,
15, 14, 13}, and M2 is {8, 9, 7, 2, 1, 3, 5, 6, 4}. Let L be {10, 11, 12, 16, 15, 14,
13, 8, 9, 7, 2, 1, 3, 5, 6, 4}. The list L is utilized to construct a scheduling
tree in which the source is 10. L is also called a rotation list.

358 Lin and Sheu

3. PREVIOUS BROADCASTING STRATEGIES FOR AN HNOW

3.1. Exchange Broadcasting Scheme, EBS

3.1.1. Basic Concept

In a switch-based HNOW, a spanning tree T is built first, and the
rotation list headed by a source s from T is obtained. From this post-
order scheme, a scheduling tree which is a binomial tree or similar to a
binomial tree is constructed. The FNF is basic principle to decrease rout-
ing latency in an HNOW. The basic idea behind EBS(9) is that the fastest
nodes in every switch must move to the internal nodes of the upper lev-
els in the scheduling tree to decrease the latency as much as possible. This
policy can be explained as follows.

Suppose in a scheduling tree z is the parent of x; y is a child of x,
and x and y are in the same switch, thus this routing order is z → x → y.
Since x and y are in the same switch and y is faster than x, the routing
order can be changed into z → y → x in the scheduling tree. This change
can not cause contention because x and y are routed in the same switch.
The structure of the original scheduling tree can not be changed, and the
minimal routing steps like the scheduling tree constructed by the postorder
recursive doubling algorithm are maintained. Figure 2(a) obtained from
Fig. 1(c) is a rotation list led by source 8. Figure 2(b) shows that nodes
9 and 7 are in the same switch, and can be exchanged for each other to
increase performance. Similarly, node y continues this same process until
it is a leaf in the scheduling tree constructed by EBS.

(a)

(b)

Fig. 2. The rotation list led by the source 6 with distinct speed types is generated from the
postorder list in Fig. 1(c). (a) This list includes various speed types. The numbers at the top
of the line represent speed types. This HNOW has three speed types. (b) Nodes 9 and 7 are
in the same switch in the postorder list, they can be exchanged for building a scheduling tree.
Nodes 14 and 15 are in the same situation.

Efficient Broadcast in Heterogeneous Networks 359

3.1.2. EBS Algorithm

Algorithm 1 shows that x and y represent node pointers in a sched-
uling tree. The EBS uses a binomial-like scheduling tree for routing. The
EBS is a contention-free routing and has O(n log(n)) time complexity.(9)

Algorithm 1

(1) Suppose T is a spanning tree of an HNOW, and M is a rotation
list led by a source S. Construct a scheduling tree from M using
the postorder recursive doubling algorithm.

(2) Let L be the postorder list from the scheduling tree.
(3) For each node x obtained sequentially from L, Do

While x is not a leaf in the scheduling tree Do
(i) Find a node y in the children of x, in which y has

faster speed than that of x, and x and y are in the same
switch.

(ii) Exchange x and y.
(iii) x = y.
(iv) x becomes a current processing node.

end-while
end for

Step 3(i) shows that any internal node x of the scheduling tree must
exchange with its child y whose speed is faster than that of x, if node y and
node x are in the same switch. Steps 3(iii) and (iv) explain that node x contin-
ues the same swapping procedure until x is a leaf in the scheduling tree. The
while loop will be terminated when x is a leaf in the scheduling tree.

3.1.3. EBS Example

For example, Fig. 2 is rotation list led by the node 6. Figure 3(a) shows
an original scheduling tree constructed by EBS. The number in the mid-
dle of square is the speed type. The rotation list headed by the source 6
from Fig. 1(c) is {6, 4, 10, 11, 12, 16, 15, 14, 13, 8, 9, 7, 2, 1, 3, 5}. Their speed
types are {1, 2, 1, 3, 2, 3, 3, 1, 2, 1, 3, 2, 1, 3, 2, 3}. A smaller number corre-
sponds to a faster speed; speed type 1 is faster than speed type 2. The EBS
is a contention-free routing and also has minimal routing steps. Suppose
an HNOW has n workstation, then it takes �log2(n)� steps to complete a
broadcast from a source s.(9)

In Fig. 3(b), because nodes 9 and 7 are in the same switch, and the
speed of node 9 is greater than that of node 7, these two nodes can change

360 Lin and Sheu

(a) (b)

Fig. 3. (a) is an original scheduling tree. (b) is the scheduling tree rearranged by EBS.
Nodes 7 and 9 are exchanged; they are in the same switch. The speed of node 7 is faster
than that of node 9. Nodes 14 and 15 are in the same situation. The number in the middle
of square is the speed type.

places with each other. Similarly, nodes 14 and 15 can be exchanged to
improve the performance. Rearrangement yields a new scheduling tree and
the new unicast-based scheduling tree improves performance.

3.1.4. The Aim of the Sorted Rotation List

Let the source be node 8. The rotation list that is headed by node 8
is {8, 9, 7, 2, 1, 3, 5, 6, 4, 10, 11, 12, 16, 15, 14, 13} in Fig. 1(c). If this rota-
tion list is sorted on all workstations within each switch in order of
ascending speed type, we shall obtain the newly sorted list L1, which is
{8, 7, 9, 2, 3, 1, 6, 4, 5, 10, 12, 11, 14, 13, 15, 16}. Their respective speed types
are {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 3}. The aim of the sorted list is to
distribute the equal number of speed types into two sub-networks. Such
a sorting can decrease the routing latency using TWO-VBBS and TWO-
EBS as shown in later section. Figure 4 shows that it is a scheduling tree
obtained from the list L1.

3.2. Variable Bucket-Based Broadcasting Scheme, VBBS

3.2.1. Definition of a Bucket

This section uses the idea of buckets to design a new algorithm.(9)

The postorder list is obtained from a spanning tree T , and the rotation list
M led by a source s, can be divided by all the fastest nodes. The idea of a
bucket is naturally generated. The bucket, which is always located in some
local area of an HNOW, is used to multicast from the head. When broad-
casting, the messages are first sent to the heads of these buckets, then
many buckets can be routed concurrently from their heads. Fortunately,
this broadcasting by using these buckets are all contention-free, if they are

Efficient Broadcast in Heterogeneous Networks 361

Fig. 4. It is the scheduling tree obtained from the list L{8, 7, 9, 2, 3, 1, 6, 4, 5, 10, 12, 11,

14, 13, 15, 16}. L is sorted from the original rotation list on all workstations in each switch,
respectively, according to speed type.

routed from heads. This feature is very useful and efficient for broadcast-
ing, and can reduce contention. The VBBS uses buckets for routing. The
definition of a bucket is defined as follows.

Definition 1. Suppose an HNOW G(V, E), T is a spanning tree
with n nodes of G and a known source s is known. M is a rotation list
led by the source s. A bucket is represented as B which is a subset of the
rotation list M. All elements in B are followed by the continual ascending
order in M. If a bucket has only one node, then it is called a single bucket.

3.2.2. The VBBS Algorithm

Different workstations can have distinct speed types. The fastest
nodes in M are divided into many buckets. Each of these buckets is
headed by the fastest node at the head. If two buckets from its head
(source) are routed by the postorder recursive doubling, they should be
contention-free. A proper bucket length l = �log2(Length)�, where Length
is chosen as the length of the biggest bucket in M, is to preserve the
minimal step as much as possible. The next step is to combine all nearby
small buckets whose length is less than or equal to 2l . All fastest heads of
these new buckets are used to construct a scheduling tree Thead by using
the postorder recursive doubling. For every bucket, EBS is applied to con-
struct another scheduling tree Tx . The tree Tx is connected to Thead by the

362 Lin and Sheu

root of Tx . The root is also a node in Thead. The VBBS, which uses the
idea of bucket for broadcasting, is as follows.

Algorithm 2

(1) A source S is known. Obtain a rotation list M, headed by the
source S from a spanning tree T with n nodes. M is a broadcast
request. Assign M to B.

(2) Find all the fastest nodes in B and use them to divide B into k

buckets B1,B2,. . . ,Bk. Each bucket is headed by a fastest node.
Let l = �log2(Length)�, where Length is the length of the longest
bucket.

(3) (i) h = 1
(ii) i = 1

(iii) Bbuffer = φ

(iv) d = �log2(k)�
(v) z = �log2(|B|)�

(vi) if (d + l > z)
For each bucket Bi Do, i � k

if (length[Bi ∪ Bbuffer] � 2s) then
Bbuffer = Bbuffer ∪ Bi

else
Bh = Bbuffer
Bbuffer = Bi

h = h + 1
endif

end for
Bh = Bbuffer

endif
(4) Obtain a list Lhead of the heads of these new buckets.
(5) Construct a scheduling tree Thead from Lhead using postorder

recursive doubling.
(6) For every new bucket Do

Construct a scheduling tree Tx using EBS and connect
it to Thead by the head of this new bucket.

end for

Step 3 shows that if (d + s) > z then the nearby small buckets are
combined into a large bucket. The aim of compression is to decrease rout-
ing steps. Step 5 constructs the scheduling tree composed of all heads in
new compressed buckets. Step 6 builds its own scheduling tree in every
new bucket and this scheduling sub-tree is connected to the scheduling tree

Efficient Broadcast in Heterogeneous Networks 363

constituted by heads. If �log2(Length)� is equal to�log2(n)�, it is a special
case. The original bucket B is divided into only two buckets. The number
of steps in the scheduling tree is �log2(|B|)� + 1.

3.2.3. VBBS Example

For example, Fig. 5 shows a scheduling tree using VBBS. The
sorted rotation list headed by source 8 is {8, 7, 9, 2, 3, 1, 6, 4, 5, 10, 12, 11,

14, 13, 15, 16}. Their speed types are {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 3}.
The VBBS first uses the fastest node with speed type 1 to divide the rota-
tion list into five buckets, which are B1 = {8, 7, 9}, B2 = {2, 3, 1, 5}, B3 =
{6, 4}, B4 = {10, 12, 11}, and B5 = {14, 13, 15, 16}. Now, the largest bucket
B5 whose length is 4 is found. The length of 4 is chosen as the standard
length for compressing buckets. These buckets are led by five fastest nodes,
which are nodes 8, 2, 6, 10, and 14. Third, nodes 8, 2, 6, 10, and 14 are
used to build the first level scheduling tree. Then the second level span-
ning tree is constructed from the above five new buckets. Figure 5 shows

Fig. 5. The scheduling tree is constructed by VBBS.

364 Lin and Sheu

a scheduling tree constructed by VBBS. The VBBS performs better than
EBS. The VBBS requires �log2(n)� +1 steps to broadcast.(9)

3.2.4. The VBBSWF Algorithm

VBBSWF is an extension of VBBS. The VBBSWF utilizes the con-
cept of variable bucket led by the fastest node or some fast nodes to per-
form broadcast. If a bucket, headed by some fastest nodes, means that the
head in a bucket may have continual fastest nodes or some fast nodes, and
of course, this bucket is led by some fast nodes. All nodes are supposed
to have m multiple speed types. The VBBSWF separates these nodes into
new buckets and combines all nearby small buckets into a longest bucket
by recursion until every bucket contains the same speed types except the
head or the process has been performed around m − 1 times. Then, EBS
is applied to the final bucket.(9)

4. TWO SUB-NETWORKS BROADCASTING ALGORITHM

This section considers that the proposed scheme broadcasts on a
Fully Connected HNOW using two sub-networks. Fist, we introduce the
Switch-Reduced HNOW, which is used to divide the original HNOW into
two sub-networks, when broadcasting. The partitioning algorithm used
here is called the Odd-Even Partitioning Algorithm.

4.1. Switch-Reduced HNOW

Switches are not workstations in an HNOW. We define a Switch-
Reduced HNOW as a rearranged HNOW, in which every switch should be
replaced by the last workstation connected to itself. These two nodes, switch
and the last workstation, are merged into a single node as illustrated in
Fig. 6(b). The reason to select the last workstation in an HNOW is that we
can keep the postorder sequence similar to the original HNOW. The merged
graph is called Switch-Reduced Graph. The switched-reduced HNOW is used
to construct two sub-networks and DCNs for exchanging messages.

4.2. A General Broadcasting Model in Two Partitioned Networks

In order to efficiently broadcast a message, all workstations should
be sorted according to ascending speed types, the aim of sorting is to
distribute as equal as possible the number of speed types into two sub-
networks. The two-partition scheme(10,15) works in three phases. First, two
Data Distributed Networks (DDN) are constructed. These two DDN are

Efficient Broadcast in Heterogeneous Networks 365

(a)

(c)

(b)

Fig. 6. (a) The spanning tree is sorted on all workstations in each switch in Fig. 1 by
ascending speed types. (b) The switch-reduced HNOW, the switch node is replaced by the last
workstation in each switch. (c) The rearranged switch-reduced HNOW, the spanning tree is
reordered only by putting the even number of sub-trees on the left and the odd numnber of
sub-trees on the right by Algorithm 3, and preserves even-numbered of sub-trees and odd-
numbered of sub-trees sequences as shown in (a). This rearranged switch-reduced HNOW
makes any DCN require one step to exchange message.

simply obtained from two-subnetworks divided by Odd–Even partitioning
algorithm. Then, the broadcast message is evenly divided into two sub-
messages, each being sent to one representative node called the source
in a DDN. Second, each sub-message is independently distributed in its
DDN. Finally, through a sub-message combination step by Data Collect-
ing Networks (DCNs), each node will obtain the whole broadcast message.

366 Lin and Sheu

The nodes in a DCN are in distinct DDNs. They are used to exchange
messages in different DDNs. Given any network G, a general broadcast-
ing model is here proposed. First, the spanning tree must be constructed
by BFS. The node of maximal degree is chosen as the root of the span-
ning tree. Then two kinds of sub-networks DDN and DCN are con-
structed.(15) Any DCN contains nodes of which one belongs to a DDN,
and DCNs are used to exchange message. The network is divided into
two sub-networks, which are DDN0, DDN1, similarly k DCNs which are
DCN0, . . . , DCNk−1 are also constructed. These networks have the follow-
ing properties in proposed model. Furthermore, channels means that all
edges in a spanning tree, which is used for routing.

P1: DDN0 and DDN1 are two data-distributed networks. Let V1 rep-
resent all nodes in DDN0. Let V2 represent all nodes in DDN1, C1 is the
set of all channels in DDN0, C2 is the set of all channels in DDN1, V1 ∩
V2 = φ, C1 ∩C2 = φ or C1 ∩C2 �= φ. If C1 ∩C2 = φ, they are independent
sub-networks.

P2: DCN0, . . . , DCNk−1 are divided into two sets DC1 and DC2. The
DC1 and DC2 are the set whose element is one of DCNi , 0 � i � k − 1.
If DCNi ∈ DC1, it takes one step to exchange messages. If DCNi ∈ DC2,
it requires two steps to exchange messages.

P3: DDNi and DCNj intersect one node, for all 0 � i � 1, 0 � j �
k − 1. Theses channels are not all mutually independent, sometimes they
will be overlapped when two sub-networks are routed in an HNOW. Most
sub-networks are dependent.

4.2.1. Three Phases of the General Broadcasting Scheme

In an HNOW, when messages are broadcast on a NOW , if the
source S1 is known, another source S2 must be chosen from different
sub-network. The source S2 must be selected carefully to avoid contention.
Our broadcasting schemes work in three phases. Phases are synchronous
and they should be executed consecutively. The following are three phases
of the general broadcasting scheme.

Phase 1: Use the partitioning algorithm to divide the spanning tree
into two partitions (sub-networks), and then two data distributed networks
DDN0, DDN1 are constructed. The DCNs are also constructed by DCN
constructive algorithm. A source in one partition is known as S1, and
another source S2 is selected from the other partition. The message is
divided into two parts, one of which is sent from the source S1 to another
source S2. Then, VBBS or EBS(9) is used to establish two ordered sched-
uling trees.

Efficient Broadcast in Heterogeneous Networks 367

Phase 2: Broadcast one half of the message from the source S1 to all
nodes in one sub-network and simultaneously from the source S2 broad-
cast the other half of the message from the source S2 to all nodes in the
other sub-network.

Phase 3: On each DCN , all nodes exchange messages until the sub-
messages are concurrently recollected and combined into the original mes-
sage in each node.

4.3. How to Divide an HNOW into Two Sub-Networks

This section presents the Odd–Even Partition Algorithm. Odd–even
partition is a simple scheme that uses the odd or even IDs to divide an
HNOW into two partitions or sub-networks. First, a postorder list must
be constructed in a spanning tree in a Switch-Reduced HNOW. One sub-
network (DDN) contains all workstations with even postorder in a span-
ning tree. The other sub-network (DDN) contains all workstations with
odd postorder. Two DDNs are routed concurrently and use DCNs to
exchange messages by Algorithm 3. Figure 6(a–c) shows that the even sub-
network and the odd sub-network are determined naturally according to
even nodes and odd nodes. Two sub-networks are {8, 9, 4, 10, 11, 13, 15, 3}
and {7, 6, 5, 12, 14, 16, 2, 1} in Fig. 6.

4.4. DCN Construction Algorithm

When two sub-networks complete their routing concurrently, con-
tention is not so much as we predicted. Two sub-networks use DCNs
to exchange messages. Algorithm 3 shows how to build DCNs using a
Switch-Reduced HNOW. Initially, Algorithm 3 requires counting the num-
ber of sub-trees using the postorder of a spanning tree at every level.
Notably, the spanning tree should be rearranged by putting the sub-trees
with old number of nodes on the left and the sub-trees with the odd
number of nodes on the right. This rearrangement preserve the sub-tree
sequence as the original spanning tree. This new spanning tree is called a
Rearranged Switch-Reduced HNOW as shown in Fig. 6(c). It can be eas-
ily used to construct DCNs, not for routing. To count the number of any
sub-tree, the code can be easily written by a recursive procedure. Further-
more, this algorithm also traverses the postorder in a spanning tree. When
a node is traversed, then it is marked. The marked node can not be used
again to combine with un-marked node as a DCN. The DCNs that are
constructed by Algorithm 3 take one or two steps to exchange messages.
Algorithm 3 demonstrates how to construct DCNs.

368 Lin and Sheu

Algorithm 3

(1) For i = 1 to h, where h is the number of levels in T , Do
For each node in level i, if it has sub-tree then

(i) Count the number of nodes in its sub-tree.
(ii) Reorder all sub-trees with the even number of nodes on

the left, which preserve the sub-tree sequence of the orig-
inal spanning tree.

(iii) Reorder all sub-trees with the odd number of nodes on
the right, which also preserve the sub-tree sequence of
the original spanning tree.

endfor
endfor

(2) Let P = R, where R is the root of the spanning tree.
(3) DCN-construction(P)

(i) If P has children then let y1, y2, . . . , yk be the children of
node P .

(ii) If (P is a leaf) then
If (P is unmarked) then

If (P has a right sibling Sib and they belong to
distinct partitions) then group Sib and P as a
DCN and mark P and Sib.
else if (P and its parent belongs to distinct parti-
tions) and (its parent is unmarked) then group P

and its parent as a DCN, mark P and its parent.
endif

endif
Return.

endif
(iii) If (P is not a leaf)then

For each node yi , 1 � i � k, Do
Let P = yi , DCN-construction(P).

endfor
endif

(iv) if (P is unmarked) then
If (P is the root) then group P and yk as a DCN
else if (P has a right sibling Sib and they belong to
distinct partitions) then group Sib and P as a DCN
and mark Sib and P .

Efficient Broadcast in Heterogeneous Networks 369

else group P and its parent as a DCN, and mark P

and its parent.
endif

Step 3(ii) demonstrates how to construct a DCN when the node is a
leaf. The leaf with its siblings or its parent can be grouped as a DCN.
Step 3(iii) is a recursive call. Step 3(iv) shows how to construct a DCN
in the internal node of a spanning tree. If k �= 0 then node P is not a
leaf. The advantage of rearrangement is to reduce the number of steps to
exchange message. After rearrangement, any node together with its sibling
are in distinct partitions, and the node also will be in different partitions
from its parent. The rearranged switch-reduced graph is used only to con-
struct DCNs, not for routing.

4.5. Example of the DCN Construction Algorithm

We use Switch-Reduced HNOW to construct DCNs and obtain two
subnetworks. When odd–even partition algorithm is used to broadcast, all
workstations in each switch will be individually sorted by ascending speed
types. In Fig. 1(c), all workstations in each switch are individually sorted by
ascending speed type. The sorted list is {8, 7, 9, 6, 4, 5, 10, 12, 11, 14, 13, 16,

15, 2, 3, 1} in order of postorder in Fig. 6. The corresponding speed types are
{1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 3, 1, 2, 3}. This sorting can distribute the equal
number of speed types into two sub-networks and make two distinct rout-
ing times on two respective sub-networks be the same as close as possible.
Two sub-networks are {8, 9, 4, 10, 11, 13, 15, 3} and {7, 6, 5, 12, 14, 16, 2, 1}
by odd–even partitioning. We select the two nodes 8 and 6 as two sources
in different sub-networks. Then, EBS and VBBS are applied to these two
partitions. Figure 7 shows two scheduling trees are built by EBS. Figure 8
shows two scheduling trees are constructed by VBBS.

Figure 6(a) shows that all workstations are sorted in each switch. Fig-
ure 6(b) shows that each switch is replaced with the last workstation con-
nected with this switch. Figure 6(c) the spanning tree is rearranged by
putting the even numbered of sub-trees on the left and the odd numbered
sub-tree on the right. The set of DCNs is {(6, 4), (5, 10), (12, 11), (14, 13),

(16, 15), (8, 7), (9, 2), (3, 1)}. The maximal swap latency is the DCN (16,15).
The speed type of node 16 is 3, and the speed type of node 15 is 3. The
speed parameters are taken from Table IV. The latency of exchanging mes-
sages by nodes 16 and 15 is 120+1024×1.6+1024×0.125+170+1024×
1.28+16 = 3382. The latency of transmitting through a switch is 0.125 µs.

370 Lin and Sheu

(a) (b)

Fig. 7. Two scheduling trees in distinct two partitions are constructed by EBS.

(a) (b)

Fig. 8. Two scheduling trees in distinct two partitions are constructed by VBBS.

4.6. Effect and Characteristics of Sub-Trees Rearrangement

Algorithm 3 shows that the rearranged tree is not a real spanning
tree, but it is used to construct DCNs. Step 1(i) of Algorithm 3 shows that
this special kind of sorting only by putting the even-numbered of sub-trees
on the left and the sub-trees with the old number of nodes on the right,
and maintains the same sub-trees sequence as the original spanning tree.
After rearrangement, the spanning tree is changed. Fortunately, however,
we only uses the new tree for DCNs construction, not for routing. The
newly rearranged tree has the following properties.

Efficient Broadcast in Heterogeneous Networks 371

• When DCNs are used to exchange messages, they can not cause
contention.

• All the number of nodes in odd-numbered sub-trees of the original
spanning tree are arranged in such a sequence by having the odd
ID follow even ID or vice versa. After rearrangement, the sequence
of odd-numbered sub-trees in a rearranged switch-reduced HNOW
also remain unchanged by Algorithm 3.

4.6.1. Why DCNs Have No Contention in the Time of Exchanging
Messages

Although this rearrangement changes positions of workstations at the
same level, exchanging messages via DCNs causes no contention. This can
be explained as follows:

• Two workstations in a DCN are connected by a single switch, for
instance, Fig. 6(c) shows that nodes 14, and 13 are connected to a
single switch.

• Two workstations in a DCN are connected by two linked switches,
for instance, Fig. 6(c) shows that nodes 10, and 5 are connected to
two linked switches.

• Two workstations in a DCN are connected by three linked switches,
for example, Fig. 6(c) shows that nodes 15, and 11 can be con-
nected to three linked switches.

Of course, when messages are transmitted through switches, DCNs have
no contention in the time of exchanging messages.

4.6.2. Postorder ID in Roots of Odd-Numbered of Sub-Trees

In any spanning tree, the following lemma shows that the postorder
IDs of odd-numbered sub-trees are arranged by having the even ID fol-
low odd ID or vice versa. This characteristic benefits DCN construction
as in Fig. 6.

Lemma 1. Given a spanning tree T , the root R of T , the sub-
trees of the root R with even-numbered nodes in T are Te1 , . . . , Tez , the
sub-trees with odd-numbered nodes are To1 , . . . , Toh

, and these sub-trees
preserve the original sub-tree sequence in T . Suppose that the roots of
odd-numbered sub-trees are roi

, roi+1 , . . . , and roh
, then the postorder ID

of the roots in these odd-numbered sub-trees are shown by having the even
ID follow the odd ID or vise versa in T . Similarly, for any sub-tree having
children in T , this lemma also holds.

372 Lin and Sheu

Proof. For any two odd-numbered sub-trees, Toi
and Toi+1 , where 1

� i � h − 1, their roots are roi
and roi+1 , and they contains zero or at

least one even-numbered sub-trees between them. Suppose that the post-
order ID of roi

is even, then the ID of roi+1 is odd since we add the even
number obtained from even-numbered nodes of sub-trees between Toi

and
Toi+1 and the odd-numbered nodes of sub-tree Toi+1 to the ID of roi+1 .
Thus the ID of roi+1 is odd. Similarly, the ID of the next sub-tree will be
even. We conclude that the ID of roots of odd-numbered sub-trees are in
order of odd–even or even–odd periodically. Clearly, any sub-tree in T has
the same property.

4.7. Number of Steps to Exchange Messages in DCNs

The below, two theorems show DCNs require one step or two steps to
exchange messages in DCNs in an HNOW. Algorithm 3 uses the postorder
sequence to construct DCNs since it traverses the postorder of a spanning
tree. To understand the following theorems, we refer to Fig. 6(b) and (c).

Algorithm 3 puts the odd-numbered sub-trees on the left and pre-
serves their sequence as the original spanning tree. Therefore, they also
have the same property like Lemma 1 in odd-numbered sub-trees.

Theorem 1. Given a spanning tree T , suppose that the number of
nodes m in T is even, then Algorithm 3 can construct m/2 DCNs. Mes-
sages can be exchanged in a single step in these DCNs.

Proof.

(1) Suppose that the root of T is r and the number of nodes m in T

is 2. Clearly, DCN = {1, 2}. Thus, a message can be exchanged in
one step. Now we prove it by induction. Suppose m = 2k; k ∈ N

holds, we want to prove that m = 2(k + 1) is true.
(2) Suppose that the sub-trees of T are Te1 , . . . , Tez , To1 , . . . , Toh

and
the sub-trees are rearranged by putting the even numbers of
sub-trees on the left and the odd numbers of sub-trees on
the right, then the number of nodes in these sub-trees are
e1, e2, . . . , ez, o1, . . . , oh−1, and oh, where h ∈ odd, ei ∈ even, 0 �
i � z, oi ∈ odd, and 1 � j � h. Furthermore, their roots are
re1 , . . . , and rez in those even number of sub-trees, and ro1 , . . . ,
and roh

in odd number of sub-trees.
(3) For each sub-tree with an even number of nodes n, n � 2m, there

can be constructed n/2 DCNs. Consider two adjacent sub-trees

Efficient Broadcast in Heterogeneous Networks 373

whose roots are roi
, and roj

, 1 � i, j � h. If the postorder of roi

is even, then the postorder of roj
is odd, and vice versa, as shown

in Lemma 1 and in the rearranged switch-reduced HNOW. There-
fore, ro1 combines with ro2 as a DCN, and we continue the same
grouping for the next two roots until the last two roots roh−2 and
roh−1 can generate a DCN. Finally, the rest is the root r and the
root of last sub-tree roh

are grouped as a DCN. All DCNs require
one step to exchange a message.

Theorem 2. Given a spanning tree T, suppose the number of nodes
m in T is odd, then �m/2� DCNs can be constructed by algorithm 3. Two
steps are required to exchange messages in these DCNs.

Proof

(1) Suppose that the root of T is r, let m = 2k + 1, the sub-trees
of T are Te1 , . . . , Tez , To1 , . . . Toh

, and the sub-trees are sorted
by putting the even numbers of sub-trees on the left and the odd
numbers of sub-trees on the right, then T has sub-trees in which
the number of nodes are e1, e2, . . . , ez, o1, . . . , oh1 ,oh−1, and
oh, where h ∈ even, ei ∈ even, 0 � i � z, oj ∈ odd, and 1 � j � h.

(2) For each sub-tree with an even number of nodes oh, where oh �
2k, thus h/2 DCNs can be constructed. Consider two adjacent
sub-trees whose roots are roi

, and roj
, 1 � i � h. If the post-

order of roi
is even then the postorder of roj

is odd, and vice
versa, as shown in Lemma 1 in the rearranged switch-reduced
HNOW. Therefore, ro1 can be combined with ro2 as a DCN, we
continue the same grouping for the next two roots until the last
two roots roh−1 and roh

are grouped accordingly. Finally, the root
r is a single node, which can connect with its child yk as a DCN ,
as shown in Algorithm 3. These new DCNs require two steps to
exchange messages. The total number of DCNs is �m/2�.

5. BROADCASTING ON AN HNOW USING TWO-VBBS

All workstations in each switch must be sorted individually accord-
ing to their speed types. Suppose that two-subnetworks are constructed by
odd–even partition. TWO-EBS means any of two scheduling trees is con-
structed by all nodes of its subnetworks using EBS algorithm. Figure 7
shows that two scheduling trees are obtained from two-subnetworks using
EBS. Similarly, TWO-VBBS means any of two scheduling tree is also

374 Lin and Sheu

(a) (b)

Fig. 9. (a) Step 2 in the scheduling tree of Fig. 8 by TWO-VBBS. (b) Step 3 in the sched
uling tree of Fig. 8 by TWO-VBBS.

(c) (d)

Fig. 10. (c) Step 4 in the scheduling tree of by Fig. 8 TWO-VBBS. (d) Step 5 in the sched
uling tree of Fig. 8 by TWO-VBBS.

constructed by all nodes of its subnetworks using VBBS algorithm. Fig-
ure 8 shows that two scheduling trees are obtained from two-subnetworks
using VBBS. Figures 9 and 10 shows how to use TWO-VBBS to broad-
cast in an HNOW. This routing is contention-free. TWO-VBBS can cause
a contention-free routing.

Efficient Broadcast in Heterogeneous Networks 375

5.1. An Example of TWO-VBBS Comparing to EBS, VBBS,

and TWO-EBS

This section computes the latency of EBS, VBBS, TWO-EBS, and
TWO-VBBS. We compare the longest latency of TWO-VBBS, TWO-EBS,
EBS, VBBS, and VBBSWF.(9) The first three parameters are taken from
Table IV to determine the longest latency in EBS, VBBS, TWO-EBS and
TWO-VBBS. The size of flits is 2048.

The longest latency obtained by EBS in Fig. 4 is (8 → 5), (5 →
14), (5 → 12), (12 → 11). Xm is 0.125 µs. Xc is 16 µs. Table V shows the
longest routing latency.

The longest latency obtained by VBBS in Fig. 5 is (8 → 6), (6 →
10), (10 → 14), (14 → 15), (15 → 16). Xm is 0.125 µs. Table VI shows the
longest routing latency.

The longest latency obtained by TWO-EBS in Fig. 7(b) is (8 →
11), (11 → 15), (15 → 3). Xm is 0.125 µs. Two sources 8 and 2 are selected.
First, the half message of 1024 flits must be transmitted from sources 8 to 6.
Then two sub-networks {8, 9, 4, 10, 11, 13, 15, 3} and {6, 5, 12, 14, 16, 2, 1, 7},
are routed concurrently. Two distinct sub-networks exchange messages in one
step. Table VII shows the longest routing latency. The DCN between nodes 16

Table V. Computing the Longest Latency by EBS

Type Source to destination Path Latency

1 8 → 5 8 → s2 → s5 → 5 3225
2 5 → 14 5 → s5 → s3 → s4 → 14 3840
3 5 → 12 5 → s5 → s3 → 12 4464
4 12 → 11 12 → s3 → 11 3972

Total 15501 µs

Table VI. Computing the Longest Latency by VBBS

Type Source to destination Path Latency

1 8 → 6 8 → s2 → s5 → 6 605
2 6 → 10 6 → s5 → s3 → 10 605
3 10 → 14 6 → s3 → s4 → 14 605
4 14 → 15 14 → s4 → 15 3225
5 15 → 16 15 → s4 → 16 6460

Total 11500 µs

376 Lin and Sheu

Table VII. Computing the Longest Latency by TWO-EBS

Type Source to destination Path Latency

1 8 → 6 8 → s2 → s5 → 6 396
2 8 → 11 8 → s2 → s3 → 11 1736
3 11 → 15 11 → s3 → s4 → 15 3382
4 15 → 3 15 → s4 → s1 → 3 2370
5 Message swap time 3382

Total 11266 µs

Table VIII. Computing the Longest Latency by TWO-VBBS

Type Source to destination Path Latency

1 8 → 6 8 → s2 → s5 → 6 396
2 8 → 10 8 → s2 → s3 → 10 396
3 10 → 13 10 → s3 → s4 → 13 753
4 13 → 15 10 → s4 → 15 2124
5 15 → 3 15 → s4 → 3 2370
6 Message swap time 3382

Total 9421 µs

and 15 has the maximal latency. The swap latency is 3382 µs. The latency of
transmitting through a switch is 0.125µs per byte. xc is 16 µs.

The longest latency obtained by TWO-VBBS in Fig. 8 (b) is (8 →
10), (10 → 13), (13 → 15), (15 → 3). Xm is 0.125 µs. Two sources are 8 and
6. First, the half message of 1024 flits must be transmitted from sources 8 to 6
through switches. Then, two sub-networks which are {8, 9, 4, 10, 11, 13, 15, 3}
and {7, 6, 5, 12, 14, 16, 2, 1} are routed concurrently. Finally, two distinct sub-
networks exchange messages in one step. Table VIII shows the longest routing
latency. The DCN between nodes 16 and 15 has the maximal latency. The swap
latency is 3382 µs.

6. BROADCASTING ON A PARTIALLY CONNECTED HNOW

6.1. Compact Spanning Tree

Compact Spanning Tree is only used to divide an HNOW into two
sub-networks and construct DCNs to exchange messages. It is not used for
routing since it is not a real spanning tree in an HNOW. A Compact Span-

Efficient Broadcast in Heterogeneous Networks 377

ning Tree is obtained from the real spanning tree by deleting some empty
switches.

In an HNOW, not all switches are connected to workstations. As
so far presented, TWO-VBBS and TWO-EBS cannot be applied to a
partially connected HNOW. Therefore, we propose a Compact Spanning
Tree to solve the above issue, and define an empty switch, which has no
workstation to be connected, while a non-empty switch has some worksta-
tions to be connected. The basic idea is as follows. Suppose that worksta-
tions x and y are connected through empty switches, we claim they are
also adjacent. Therefore, two nodes are also adjacent after deleting empty
switches between them via the postorder sequence. How to construct a
compact spanning tree is described as follows:

• Suppose that an empty switch x in internal nodes of the spanning
tree is found, then a non-empty switch y is selected with the maxi-
mal postorder in its sub-tree, whose root is switch x.

• Move switch y and its sub-tree containing all switches and worksta-
tions to this empty switch x.

• All the links of switch x connected to other switches are reserved.
• All empty switches between x and y in the postorder list L should

be deleted from the spanning tree.
• If the empty switch is a leaf, i.e. without child switch, remove it

from the spanning tree.

6.2. Algorithm to Obtain a Compact Spanning Tree

A fully connected spanning tree can be obtained from a partially con-
nected spanning tree using Algorithm 4.

Algorithm 4

(1) Suppose T is a spanning tree constructed from an HNOW, L con-
tains all switches ordered by the postorder in T .

(2) For every switch x in L, Do

If x is an empty switch and has a sub-tree including other
non-empty switches in T then

(i) Find the non-empty switch y having the maximal
postorder in the sub-tree of switch x.

(ii) Move y and its own sub-tree with their connected
switches and workstations to the switch x and all
links that connected to x are left.

378 Lin and Sheu

(iii) Delete all empty switches in the spanning tree
between y and x by the postorder.

else if all the switches in the sub-tree of x are empty then
delete all the sub-tree.

end for
(3) For every switch x in L, Do

if x is the empty switch without any child switch in T then
eliminate this switch.

end for

After Algorithm 4 generates a fully connected spanning tree, we can
apply DCN construction algorithm to exchange messages in an HNOW.
Figure 11 shows how to build a compact spanning tree. Switch S5 and its
connected sub-tree is moved to switch S3. Switch S3 disappears.

Lemma 2. Given a spanning tree T , T is obtained from an HNOW
and T is a partially connected spanning tree. Algorithm 4 can generate a
fully connected spanning tree from T .

Proof. Algorithm 4 is executed from bottom to top and from left
to right according to the postorder in T . Observe all sub-trees which are
composed by switches and each has more than one child. Notably, a lin-
ear array is also a kind of sub-tree. If the root of this sub-tree R is

(a) (b)

Fig. 11. Compact spanning tree, (a) a partially connected HNOW, and switch S3 connects
to no workstation. (b) The compact spanning tree is reconstructed by Algorithm 4. Switch S3

disappears. The tree is a fully connected HNOW, that is easily partitioned.

Efficient Broadcast in Heterogeneous Networks 379

empty, then the non-empty switch with maximal postorder in the sub-tree
is selected as the root to substitute R and all the links that connected
to other switches are unchanged. After step (2) is executed, all switches
has workstations to be connected except the leaf (the switch without child
switch). Finally, if the empty switch is a leaf, then it also should be deleted
from the spanning tree. The re-processed spanning tree is concluded to be
fully connected.

The concept of compact spanning tree can be used to multicast in an
HNOW because workstations in some switches do not require to receive the
messages. This is the same as broadcasting on a partially connected HNOW.
In such a situation, compact spanning tree can be used for multicasting.

7. PERFORMANCE ANALYSIS

The performance of an HNOW is determined by the enumeration
of two important factors in this paper. The first is that the number of
steps in routing is decreased as much as possible; the second factor is that
in a wormhole routing every fastest node is walked on first, hence it is
called FNF. An algorithm that guarantees taking minimal steps and routes
through the fastest nodes first is an optimal routing in HNOW. Unfortu-
nately, such an algorithm is difficult to obtain.

The recursive doubling is not flexible and it can not arrange the
fastest nodes in the internal nodes of a scheduling tree by exchanging
workstations in the same switch, the recursive doubling has the worst
performance of all other schemes. Presented algorithms for routing in
Section 3, EBS has the minimal step but it can not guarantee that all fast-
est nodes are routed first and easily influenced by density. The EBS usually
performs worse than VBBS and VBBSWF.(9) The reason is that EBS has
few opportunities to exchange all slow nodes in the upper level (height)
with fastest nodes in lower level in a scheduling tree. When an HNOW
is partitioned into two sub-networks and TWO-EBS and TWO-VBBS are
applied, TWO-VBBS performs the best due to several reasons.

• TWO-VBBS uses two-level routing. The fastest nodes in two sub-
networks are used for concurrent routing in the first level. This
routing causes less contention and is likely to be contention-free if
two sources are chosen by adjacent sub-trees.

• TWO-VBBS uses buckets for routing in the second level. All work-
stations in a bucket are occupied in some local areas and easily
cause a contention-free routing.

• If two unicasts are routed in a single bucket, they usually have
different time steps in the scheduling tree or two unicasts will be
contention-free in a single switch.

380 Lin and Sheu

• The network partitioning is proven to be effective and parallel rout-
ing improves performance in a NOW.(10)

• TWO-VBBS uses two sub-networks to broadcast concurrently. Two
sources send one half of the original message to two sub-networks,
respectively. The latency in any unicast can be reduced one half of
total routing time.

Furthermore, TWO-EBS performs worse than TWO-VBBS because TWO-
EBS has few opportunities to exchange all slow nodes in the upper level
(height) with fastest nodes in lower level of a scheduling tree, the num-
ber of contentions is increased when two sub-networks are routed concur-
rently.

8. SIMULATION RESULTS AND COMPARISONS

The topology of any HNOW that composed of switch and worksta-
tion in our experiments is randomly generated. The network sizes are 16,
32, 64, 128, 256, and 512 nodes. The densities are 2, 4, 8, and 16. The
number of workstation in a high density HNOW is usually more than that
of workstations in a low density HNOW. Each broadcasting message with
a length of 2048 flits is a small message, while the message with 10240 flits
is a large message.

Tables I–IV, they show timing parameters. Table I shows fast speed
parameters. There are at most eight distinct speed types in these HNOWs
as shown in Table I. Table II shows two types of speed parameters in a
fast speed HNOW. Table III also has two types of speed parameters for
a slow speed HNOW. Table IV shows four speed types with slow speed
parameters. The parameter Xm is 0.125 µs. Xm is the speed for message to
pass through a switch. Here, Xm is a constant. xc is 16 µs.

8.1. Network Size

In Fig. 12, Tables II and III are used for simulation. Network sizes
are 16, 32, 64, 128, and 256 workstations in an HNOW. The Flit size is
10240. The density in Fig. 12(a) is 4. The density in Fig. 12(b) is 8. The
types of workstations are generated randomly. In Fig 12(a), TWO-VBBS
outperforms the postorder by about 50%. In Fig. 12(b), TWO-VBBS out-
performs the postorder around 78%. The VBBSWF and VBBS performs
at the same level since they have only two speed types. As the network
size is enlarged, the performance increases significantly. TWO-VBBS out-
performs TWO-EBS, VBBS, EBS, and VBBSWF.

Efficient Broadcast in Heterogeneous Networks 381

(a)

(b)

Fig. 12. Latency versus network size, (a) Two types obtained from Table II, with a message
size of 10240 flits. The types of workstations are generated randomly. The density is 4. (b)
Two types are obtained from Table III, with a message size of 10240 flits. The types of work-
stations are generated randomly. The density is 8.

382 Lin and Sheu

(a)

(b)

Fig. 13. Latency versus network size, (a) four types obtained from Table I, with a message
size of 2048 flits. (b) The first six speed types are taken from Table I, with a message size of
2048 flits. The types of workstations are generated randomly. The density is 4.

8.2. Speed Types

This section compares the performance of eight distinct speed types in
Table I. The speed types of workstations are also generated randomly. The
density is 8. The filt size is 2048. The experiments are performed by two
types, four types, six types and eight types. Figure 13(a) with four speed

Efficient Broadcast in Heterogeneous Networks 383

Fig. 14. Latency vs. network size, 8 types obtained from Table I, with a message size of
2048 flits. The types of workstations are generated randomly. The density is 8.

types shows that TWO-VBBS outperforms the postorder around 74%.
Figure 14(b) with six speed types illustrates TWO-VBBS outperforms the
postorder around 81%. Figure 13 with eight speed types shows TWO-
VBBS outperforms the postorder around 81%. Thus, as the number of
speed types is increased. TWO-VBBS outperforms TWO-EBS, EBS, VBBS,
and VBBSWF.

8.3. Density

In the following experiments, the first three speed parameters are
selected from Table IV. The types of workstations are generated randomly.
The flit size is 2048 flits. The densities vary from 2 to 16. The performance
of EBS increases with high density. EBS performs poorly when the density
is low because there are few opportunities to exchange the slow node with
the fastest node in the same switch. Figure 15(a) and (b) demonstrate that
TWO-VBBS outperforms the postorder about 80% and 82% in networks
of 128 and 512 nodes, respectively. As the density increases, fast nodes can
be easily arranged in internal nodes of the scheduling tree by EBS, VBBS,
and VBBSWF. The performance is significantly increased accordingly.

8.4. Number of the Slowest Workstations

This sub-section considers the simulation results obtained by vary-
ing the number of the slowest workstations in an HNOW. The flit size

384 Lin and Sheu

(a)

(b)

Fig. 15. Latency versus density, (a) the network size is 128 nodes, and (b) the network size
is 512 nodes. The types of workstations are generated randomly. Three speed types, and 2048
flits.

Efficient Broadcast in Heterogeneous Networks 385

is 2048. The density is eight. The speed parameters with four types from
Table IV are used. The slowest nodes are randomly distributed in an
HNOW. The ratio of slowest workstations to all workstations is 0.2 in
Fig. 16(a). The ratio of slowest workstations to all workstations is 0.4 in
Fig. 16(b). From the simulation results, TWO-VBBS outperforms the post-
order around 73% in Fig. 16(a). TWO-VBBS outperforms the postorder
around 73% in Fig. 16(b). TWO-VBBS outperforms TWO-EBS, VBBS,
EBS, and VBBSWF.

8.5. Distribution of the Slowest Workstations

This sub-section considers the variance of the distribution of the slow-
est workstations in an HNOW. Here, we only consider uniform and local
distribution of the slowest nodes. The density is eight, and the flit size is
2048 in Fig. 17(a) and (b). Figure 17(a) shows uniformly distributed slow-
est nodes. The total proportion of the slowest node is 20%. TWO-VBBS
outperforms TWO-EBS, VBBS, EBS, and VBBSWF. Figure 17(a) shows
TWO-VBBS outperforms the postorder around 83%. Figure 17(b) shows
locally distributed slow nodes. The performance is increased by around
84%. A large number of locally distributed slowest nodes do not bene-
fit broadcast. TWO-VBBS outperforms TWO-EBS, VBBS, EBS, and VBB-
SWF.

8.6. Partially Connected HNOWS

Figure 18(a) shows that only 60% of switches in an HNOW have
workstations to be connected. Figure 18(b) shows that only 80% of
switches in an HNOW have workstations to be connected. They all have
empty switches. Three parameters are taken from Table IV. The slowest
nodes are uniformly distributed. The flits size is 2048. These two HNOWs
have the same number of workstations. The density is increased when
these two HNOWs have 20% or 40% of empty switches. TWO-VBBS per-
forms the best and outperforms the postorder around 73% in Fig. 18(a).
TWO-VBBS performs the best and outperforms the postorder around 72%
in Fig. 18(b).

8.6.1. Comparison

Recently, Singhal et al.(14) presented a similar study in an HNOW.
Their algorithm, called CFOOT, used the postorder recursive doubling(8)

for routing. The CFOOT used dynamic programming to obtain the opti-
mal tree. In comparing our schemes to CFOOT, we mention first that

386 Lin and Sheu

(a)

(b)

Fig. 16. Latency versus network size, (a) the ratio of slow nodes is 0.2, four types from
Table IV, and the flits size 2048 flits and the density is eight. (b) the ratio of slowest work-
stations to all workstations is 0.4, four types are taken from Table IV , the message size 2048
flits, and the density is eight. The slowest nodes are generated randomly.

Efficient Broadcast in Heterogeneous Networks 387

(a)

(b)

Fig. 17. Latency versus network size, (a) the ratio of slow nodes 0.2, four types from Table
IV, 2048 flits, uniform distribution, and the density is eight. (b) The ratio of slow nodes 0.2,
four speed types from Table IV 2048 flits, local distribution, and the density is eight.

388 Lin and Sheu

(a)

(b)

Fig. 18. Latency versus network size, (a) the ratio of partially connected now is 0.6. Three
types taken from Table IV The HNOW has 2048 flits, uniform distribution, and the density
13. (b) The ratio of slow nodes 0.8. Three speed types are taken from Table IV. The HNOW
has 2048 flits, uniform distribution and the density 11.

Efficient Broadcast in Heterogeneous Networks 389

Fig. 19. The latency of TWO-VBBS, TWO-EBS, VBBSWF, and EBS compares with that
of CFOOT designed by the dynamic programming. TWO-VBBS outperformsed TWO-EBS,
VBBSWF, EBS and CFOOT. Notably, the density is 4, and speed parameters are obtained
from Table III.

CFOOT only uses two speed types, fast and slow, for routing, whereas
our new scheme uses multiple speed types for routing. Second, the model
presented here includes receive overhead latency, but CFOOT does not.
Third, our schemes is more flexible than CFOOT because workstations in
the same switch positions can be exchanged in a rotation list or a sched-
uling tree. The idea of exchanging positions can improve performance.
The CFOOT does not use this idea. Fourth, although CFOOT creates
an optimal tree by dynamic programming, its complexity is O(n3). This
scheme requires too much time to obtain the optimal scheduling tree.
Obtaining the optimal solution by dynamic programming involves great
complexity. Thus, VBBS, EBS, and VBBSWF can outperform CFOOT.
In Fig. 19, TWO-VBBS used two sub-networks to broadcast concurrently.
TWO-VBBS outperformed CFOOT with two speed types and TWO-VBBS
also outperformed CFOOT, VBBS, VBBSWF, and EBS with multiple send
and receive speeds.

9. CONCLUSION

This paper has presented network partitioning for routing in an
HNOW which demonstrates an improvement over.(8,10,14) Much latency
can be saved by using the TWO-VBBS schemes for broadcasting. Although
the optimal scheduling tree with two speed types can be obtained through
dynamic programming,(14) but this method is not flexible and is executed

390 Lin and Sheu

in O(n3). Finding the optimal solution with multiple speed types is very
difficult, and is also an NP-complete problem. TWO-VBBS uses two-level
routing. In the first level, two sub-networks are routed on the fastest
nodes and, the number of contentions is decreased. In the second level,
two sub-networks are passed in buckets. All workstations in a bucket
are occupied in some local areas. Routing via buckets also can reduce
contention. Based on the simulation results, TWO-VBBS outperforms
CFOOT, VBBS,VBBSWF, and EBS. Clearly, routing with network parti-
tioning is more efficient than routing without network partitioning in an
HNOW. Open issues to be investigated in the future include how to obtain
more than two sub-networks and determine the optimal number of sub-
networks in an HNOW.

REFERENCES

1. M. Banikazemi, V. Moorthy, and D. Panda. Efficient Collective Communication on
Heterogeneous Networks of Workstations, In International Conference on Parallel Pro-
cessing, p. 460–467 (1998).

2. M. Banikazemi, J. Sampathkumar, S. Prabhu, D. Panda, and P. Sadayappan. Commu-
nication Modeling of Heterogeneous Networks of Workstations for Performance Char-
acterization of Collective Operations, In Heterogeneous Computing Workshop, 1999.
(HCW ’99) Proceedings. Eighth, 1999, pp. 125–133 (1999).

3. N. J. Boden and D. C. Myrinet, et al., A Gigabit-Per-Second Local Area Network,
IEEE Micro, 15(1):62–76 (1995).

4. W. J. Dally and C. L. Seitz, The Torus Routing Chip. Journal of Parallel and Distrib-
uted Computing, 1(3):187–196 (1986).

5. R. Horst, Servernet Deadlock Avoidance and Fractahefral Topologies. In Proc. Int’l
Parallel Processing Symp, 1996 pp. 274–280.

6. R. Kesavan and D. K. Panda, Efficient Multicast on Irregular Switch-based Cut-
Through Networks With Up-Down Routing, IEEE Transaction on Parallel and Dis-
tributed Systems, pp. 808–828 (2001).

7. R. Libeskind-Hadas and J. Hartline, Efficient Multicast in Heterogeneous Networks of
Workstations, In Parallel Processing, 2000. Proceedings. 2000 International Workshops
on, 2000, pp. 403–410 (2000).

8. R. Libeskind-Hadas, D. Mazzoni, and R. Rajagopalan, Optimal Contension-Free
Unicast-Based Multicasting in Switched-Based Networks of Workstations, In Merged
IPPS/SPDP Conf., pp. 358–364 (1998).

9. C. Lin, Efficient Contention-Free Broadcast in Heterogeneous Network of Worstation
with Multiple Send and Recive Speeds. In Proc. 8th IEEE International Simposium on
Computer and communication, pp. 1277–1284 (2003).

10. C. Lin, Y.-C. Tseng, and J.-P. Sheu, Efficient Single Node Broadcast in Switched-Based
Network of Workstations with Network Partitioning, In Proc. 10th International Con-
ference on Computer Communications and Networks, pp. 68–73 (2001).

11. P. K. Mckinley, H. Xu, A.-H. Esfahanian, and L. Ni, Unicast-Based Multicast Com-
munication in Wormhole Routed Networks, IEEE Trans. on Parallel. and Distributed.
Syssten, 5(12):1252–1265 (1994).

Efficient Broadcast in Heterogeneous Networks 391

12. L. M. Ni and P. Mckinley, A Survey of Wormhole Routing Techiniques in Directed
Network, IEEE Computers, 26(2):62–76 (1993).

13. M. Schroeder et al., Autonet A high-speed, Self-Configuring Local Area Network
Using Point-to-Point Links, IEEE Journal on Selected Areas in Communications,
9(8):1318–1335 (1991).

14. A. Singhal, M. Banikazemi, P. Sadayappan, and D. Panda, Efficient Multicast Algo-
rithms for Switch-Based Irregular Heterogeneous Networks of Workstations, In Parallel
and Distributed Processing Symposium., Proceedings 15th International, 2001 8 pp.

15. Y.-C. Tseng, S.-Y. Wang, and C.-W. Ho, Efficient Single-Node Broadcasting in Worm-
hole-Routed Multicomputers: A Network-Partioning Approach, IEEE Trans. on Paral-
lel and Distributed System 10(1):44–61 (1999).

