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Ahslraet. In this paper, we propose parallel algorithms for breadth-first search and depth-fn'st search on the 
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1. Introduction 

The parallel algorithms for graph search techniques such as breadth-first search (BFS) and 
depth-first search (DFS) have been studied by several researchers [2,3,5,7]. In this paper, two 
parallel search algorithms, one for BFS and the other for DFS, based on the hypercube network 
model are proposed. In addition, we devise a parallel algorithm to find the maximum matching 
in bipartite graphs. Both search technique~ have the lower bound of time complexity f~(n 2) for 
sequential algorithms in the worst case, and the fast known sequential maximum bipartite 
matching algorithm needs O(n 2"5) time [4], where n is the number of vertices in the graph. Our 
parallel algorithms take O(n log n) time for the two graph search techniques and O(n 1"S log n) 
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for the maximum bipartite matching problem. Since the number of processors used is only 
n/log n, all our algorithms achieve the optimal speedup. 

In this paper, processors in hypercubes operate asynchronously, the only means of com- 
munication and synchronization is message passing. In our algorithm~ some of the processors 
perform just a few simple computations in parallel after receiving a message sent from anyone 
of their neighbors. Thus, it is sufficient to account only for the number of messages passed 
between near neighbors as the measure of time complexity. 

2. Parallel BFS and DFS algorithms 

In this section, we consider the search problems of a connected undirected graph G - (V, E)  
on the hypercube network model. By adopting the 'near neighbor' method of the Prim-Dijkstra 
algorithm for finding the minimum spanning tree [1,6], we develop a parallel BFS algorithm 
and a parallel DFS one. 

2.1. Breadth.first search algorithm 

Given a root r, say vertex 0 for simplicity, we want to find a BFS tree rooted at r and 
determine the order, denoted as BFS~, in which vertex i is visited by BFS. Without loss of 
generality, let node (processor) i store a vertex labelled i. Additionally, the adjacent vector 
ADJACElqCY~ of vertex i is also stored in node i. If (i, j )  is an edge in E, ADJACENCY~[j] 
- 1 ;  otherwise, ADJACENCY~[j]-  0o. Associated with each vertex i are two labels, DIST~ 
and NEAR~, which hold the length of the shortest path from the root vertex to vertex i and the 
nearest neighbor of vertex i which has been brought in the BFS tree, respectively. 

For the sake of convenience, vertex 0 is selected as the first vertex of the partial-formed 
spanning tree 7'. Within each iteration, an isolated vertex v is found and sent to node 0 if its 
DISTo has the minimum value. Ties are resolved in favor of the vertex with the smallest vertex 
number. After receiving such vertex v, node 0 joins the edge (v, NEARo) to T, and sends not 
only the vertex number and DIST o value of vertex v but also the current BFS order to all other 
nodes to adjust their DIST,, BFS~, and NEAR~ values if required, where i @ v. Only when the 
first one of its neighbors, say vertex j,  is selected to be included in T, an isolated vertex i 
changes the values of its DIST~ and NEARi, to DISTj + 1 and j ,  respectively. After being 
joined to T, the BFS order of vertex i is the 'current BFS order' receiving from node 0. Repeat 
this process n -  1 times, and we finish the BFS algorithm. The formal algorithm is given in 
algorithm PBFS_CUBE. 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

AI~riflm PBFS_CUBE 
/ ,  For each hypercube node i do in parallel. • /  
Step 1" Initially, node 0 set NEAR o ---oo, DISTo--0, BFS tree T - - ~ ,  and BFS o r d e r -  I, 

while other nodes set NEAR i - vertex 0, DIST~ - ADJACENC¥i[0], and BF$~ -- 0. 
Find a vertex v with the minimum DIST o value (@ oo) among all remaining isolated 
vertices; transmit it to node 0. 
/ .  For node 0 only. • / 
Join (v, NEARv) to 7', increase BFS order by 1, and send v, current BFS order, and 
DISTo to all other nodes. 
/ *  Action executed in node 1 to node n -  1. • /  
If resident vertex i - v, then set BFSi - current BFS order else if ADJACENCY:iv] - 1 
and DIST: -  oo, then set NEAR~-  v and DIST~- DIST o + 1. 
If IT] ~ n - 1 goto Step 2. 
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In Algorithm PBFS_CUBE, the most time consuming operations are Step 2 and Step 3 
within one iteration. At Step 2, all processors cooperate in finding an extremum among n 
values each of which is stored in a different processor. This step can be implemented by 
applying the recursive operations for finding extrema of Saad's algorithm [8], which takes 
O(log n) time. On the other hand, the operation of broadcasting a message at Step 3 is done by 
using Saad's Hypercube Broadcast algorithm in O(log n) time [9]. There are n -  1 iterations. 
Thus, the P T -  _ CUBE algorithm requires O(n log n) time. 

Let us consider the situation when there are only p < n processors available. In such a 
situation, n/p vertices with their adjacent vectors are assigned to a single processor and each 
processor simulates the processes of n/p processors in the original algorithm PBFS_ CUBE. To 
find out a vertex i with the minimum DIST~ value per iteration, each processor requires 
O(n/p) time to locally compute the minimal value in its resident n/p vertices in parallel, and 
then it takes O(log p) time to find the minimum value among these p minimal values. A 
broadcasting operation also needs O(log p) time on a p-processor hypercube. Thus, the total 
time complexity T(n) becomes 

T(n) f f i (n-  1)O(n/p+ log p +  log p)  

ffi o (  na/p + n log p). 

If p -  n/ log n, then 

r (n)  ffi O(n log n). 

We see that the time complexity of PBFS_ CUBE remains O(n log n) even when using n/log n 
processors. 

2.2. Depth-first search algorithm 

In the following, a parallel algorithm for determining the DFS tree of G -  (V, E) and 
deciding the order, denoted as DFS~, in which we scan vertex i by DFS is presented. The DFS 
tree is a spanning tree in which the vertices are visited on a last-reached first-scanned basis. 
That is, we always scan the most recently reached vertex i by searching for an unvisited vertex 
j adjacent to i. It" no such j is available, the search returns to vertex u, from which i is reached. 
Because of the 'last-reached first-scanned' property of the DFS problem, a work stack named 
WSTACK is used in every node to hold the vertices during the searching process. Whenever a 
vertex is visited, it is pushed into WSTACK of every node. A vertex which has not been 
searched yet can be searched if it is adjacent to the top vertex in WSTACK. There may be 
many isolated vertices satisfying this condition, but the one with the smallest vertex number is 
selected. Every node pops its WSTACK when it can find no vertex to be search next. Node 0 
will broadcast a 'POP' message to all other nodes if it does not receive a vertex to be joined to 
the partial-formed DFS tree after it waited O(log n) time. Otherwise, it broadcasts the selected 
vertex and the current DFS order. The formal algorithm is shown in algorithm PDFS_ CUBE. 

Algorithm PDFS_CUBE 
/ ,  For each hypercube node i do in parallel. • /  
Step 1: Initially, node 0 set NEARo ffi co, DFS tree T ffi ~, and DFS order = 1. While other 

nodes set DFS~ ffi 0 and if ADJACENCY~[0] ffi 1, then set NEAR~ ffi 0 else set NEAR~ 
- co. All nodes push 0 into the working stack WSTACK. 

Step 2: Find a vertex v adjacent to the top element in WSTACK, i.e., NEAR~.-  ID number of 
the top vertex in WSTACK, among all isolated vertices and transmit it to node 0. 
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St~.p 3 : / .  For node 0 only. • / 
3.1 A vertex v is not received after waiting O(log n) time: Pop top element off 

WSTACK and broadcast ("POP"). 
3.2 A vertex v is received in time: Push v into WSTACK, joint (v, NEAR,)  to T, 

increase DFS order by 1, and broadcast message (v, current DFS order, ]T I)- 
Step 4: After receiving the broadcast message, each node i ¢ 0 executes one of the following 

operations: 
4.1 If receive ("POP"), then pop top element off WSTACK. 
4.2 Otherwise, push v into WSTACK, and if i - v, then set DFS~ - current DFS order 

else if ADJACENCY~[v]- 1 and DFS~- 0, then set N E A R ~ -  v. 
Step 5: If I TI ~ n -  1, then goto step 2. 

The most time-consuming operations in Algorithm PDFS_CUBE are Step 2 and Step 3 
within one iteration. Step 2 takes O(log n) time to find the isolated vertex which is adjacent to 
the top element of WSTACK. At Step 3, an "POP" message occurs when there is a need for 
backtracking. Therefore, the complexity of Algorithm PDFS_CUBE is also O(n log n) time 
using n/log n processors. 

3. Parallel maximum bipartite matching algorithm 

Let G - ( X  u Y, E)  be a bipartite graph, where X, Y are two disjoint vertex set and E is the 
set of edges, each of which has one end in X and the other in Y. The number of vertices in G is 
n. That is I X I + I Y I -- n. We refer to the vertices in X as boys and those in Y as girls in the 
following discussion. A matching M in G is a subset of E such that no two edges in M share a 
common vertex. A matching with the maximum cardinafity is called maximum matching. A 
vertex v is matched relative to a matching M if it is incident to one edge in M and is 
unmatched otherwise. An alternating path with respect to M is a simple path whose edges are 
alternatively in M and E -  M, and an augmenting path is defined as an alternating path 
between two unmatched vertices. An augmenting path P is called a shortest path relative to M 
if P has the smallest length among all the augmenting paths relative to M. Whenever we find 
an augmenting path P relative to M, then by interchanging matched edges with unmatched 
ones, we can get a new matching M '  with one more edge than M. Hopcroft and Karp [4] 
showed that if the matching-augmentation is done through a maximal set of vertex-disjoint 
shortest augmenting paths, a maximum bipartite matching can be obtained in O(n 2"5) time. 
Their algorithm is outlined as follows. 

Algoritlun Maximum _ Matching 
Initial: Start with a null matching M. 
Phase 1: Construct a layered graph G* relative to M. 
Phase 2: Find a maximal set of paths S = { 1 ' ! , / '2 , . - . ,  Pt } in G* with the following two 

properties: 
1. Paths/'~, 1 ~< i ~< t, are all the shortest augmenting paths relative to M. 
2. Any two paths P~ and Pj, i C j,  are vertex-disjoint. If S ~ ~, then set M = M • / ' 1  

P2 ~ " '"  $ Pt and go to Phase 1; otherwise, halt. 

Hopcroft and Karp claimed that the shortest augmenting paths in G relative to M were in 
one-to-one correspondence with the directed paths in G*, which started from unmatched boys 
and ended at unmatched girls. In the following, we show how to implement algorithm 
Maximum_Matching on the hypercube network model. 
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With each vertex, there exist two adjacent vectors, R_ADJACENCY and L_ADJACENCY. 
Consider an edge (b i, gi) in E, where b~ ¢ X and gj ¢ Y. If this edge is matched, then 
L_ADJACENCY[j] of bi and R_ADJACENCY[i] of gj are set to be 1; otherwise, R_AD- 
JACENCY[j] of b~ and L_ADJACENCY[/] of gj are set to be 1. All other entries of both 
vectors of b~ and gj are set to 0. The sizes of the two adjacc~lt vectors of b~ ¢ X are equal to the 
number of vertices in Y, and those of gj ¢ Y are equal to the number of vertices in X. Assume 
that each vertex with its own adjacent vectors is initially assigned to a different processor. 
Every node stores the vertex number of the assigned vertex in VERTEX, and there exists an 
extra indication bit in VERTEX to point out whether the resident vertex is matched or not. 

Phase 1 can be parallelized by applying the parallel BFS algorithm in Section 2. At the 
beginning, any vertex i is put in the first layer of G* and initialized with DIST~- 1 and 
BFS~--0 if it is an unmatched boy; otherwise, it is set with DIST~- oo and BFS~- 0. During 
the construction of G*, vertex i is said tobe in layer j of G* if '.'is DIST, - j .  E~,¢h node i tans 
in cooperation with other nodes to find the DIST~ value of its resident vertex i by applying the 
BFS method. Note that the adjacent vector used in this phase is the L_ADJACENCY of every 
vertex. An extra flag FIND is used in node 0 to denote whether an unmatched girl is reached. 
If an unmatched girl is traversed and sent to node 0, node 0 set its flag FIND to be TRUE and 
sends the relative BFS order to the unmatched girl node. But any other nodes do not alter the 
states of their labels. When no vertex is available to be traversed during the execution of 
PBFS_CUBE, node 0 issues a message to all other nodes to inform them of entering Phase 2 in 
case that its flag FIND is TRUE. It means that the layered graph G* is already constructed. 
However, if FIND is still FALSE, node 0 halts all processors. Since there is no unmatched girl 
or unmatched boy, we cannot augment the matching M. Algorithm G'Constructing is to 
implement this phase. 

Algorithm G*eons tng t ing /*  Applying BFS method to generate a layered graph G*. * /  
/ .  For each processor i do in parallel. • /  
Step 1" If resident ver tex-  unmatched boy, then set DIST~ ffi 1 and BFS~- 0; otherwise, set 

DIST~- oo and BFS~- 0. 
Step 2: Find a vertex v with the minimum DIST v value among all isolated vertices, and 

transmit vertex v to node 0. 
Step 3 : / *  Action for node 0 only. • / 

Node 0 executes one of the following operations: 
3.1 A vertex v is not received after waiting O(log n) time: 

If FIND ffi TRUE, then broadcast message ("enter Phase 2") else halt all processors. 
3.2 A vertex v is received in time: If v is an unmatched girl, then set FIND ffi TRUE, 

send BFS order increased by 1 to node v, and goto Step 2. Otherwise, increase BFS 
order by 1, broadcast message (v, v's corresponding DISTv value, BFS order), and 
goto Step 2. 

Step 4 : / .  Action executed in node 1 to node n -  1. • /  
After receiving message from node 0, each node i ~ 0 executes one of the following 
operations: 
4.1 If receive message ("enter Phase 2"), then enter Phase 2. 
4.2 If resident vertex i - v, then BFS~ - current BFS order and goto Step 2. 
4.3 If resident vertex / ~ v and L_ADJACENCY~[v]- 1 and DIST~ - oo, then DIST~ 

- DISTo + 1 and goto Step 2. 

The time needed to parallelize Phase I is dependent on the parallel BFS algorithm used, so it 
requires O(n log n) time using n/log n processors. As for Phase 2, using the parallel DFS 
algorithm described in the last section, we build a maximal set of vertex-disjoint augmenting 
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paths from G* in parallel. After finding such set of paths, we go to augment M. The formal 
algorithm to implement Phase 2 is shown in Algorithm Max_Path_Set. Assume that there 
exists a pseudo.vertex named S with an vertex number of n + 1. Initially, every node put 
number n + 1 into its WSTACK. If its resident vertex is an unmatched girl in the last layer of 
G*, then node i set its NEARi to the vertex number of vertex S; otherwise, set its NEAR~ 
equal to oo. All nodes whose BFS order values are not 0 r u n  A l g o r i t ~  Max_Path_Set 
concurrently and cooperatively. In Algorithm Max_Path_Set, the R_ADJACENCY of each 
vertex is used at its adjacent vector. Assume that all the final results are recorded in node 0 to 
augment the matching M. When a vertex v is found and sent to node 0, node 0 adds it to an 
array ~ according to the following rules: 

(1) v is an unmatched girl: add it to ~ initialized to be empty. 
(2) v is an unmatched boy: if ~ is empty, then discard it; otherwise, after adding it to ~ ,  

execute M ffi M $ ~ .  
(3) v is a matched boy or girl: if ~ is empty, then discard it; otherwise, add it to ~ .  
If the vertex traversed is an unmatched boy, node 0 applies the operations stated in rule (2), 

clears ~ to be empty to store another path, and then broadcasts a message to let all nodes 
whose resident vertices are not scanned yet return to their initial states. When node 0 does not 
accept a vertex available to be searched after waiting O(log n) time, it broadcasts a 'pop'  
message as did in Algorithm PDFS_CUBE. If the current top element of its WSTACK is 
n + 1, it knows that all augmenting paths have been found. It broadcasts all matched edges to 
every node to adjust its adjacent vectors and the state of its resident vertex as the matching M 
has been augmented. Then each node goes back to Phase 1, and repeats the process of 
augmenting M. However, if the matching M has not been changed, the whole process is 
stopped and M is the maximum matching we want. The formal algorithm is shown as follows. 

Algorithm Max _ P a t h  _ Set 
/ .  For all nodes whose resident vertices are in G*, i.e., those nodes whose BFS order values 
are not 0, do in parallel. • /  
Step 1: Push n + 1 into WSTACK. If resident vertex i - unmatched girl, then set NEARi ffi n 

+ 1; otherwise, set N E A R i -  ao. 
Step 2: Find a vertex v adjacent to top element in WSTACK of all isolated vertices and 

transmit it to node 0. 
Step 3 : / .  Action for node 0 only. • / 

Node 0 executes one of the two operations: 
3.1 A vertex v is not received after waiting O ( l o g  n )  time: Pop top vertex off 

WSTACK and broadcast ("POP") in case of WSTACK ~ n + 1. Otherwise, if M 
has been augmented, then broadcast (matched edges) else stop the whole process of 
finding maximum bipartite matching. 

3.2 A vertex v is received in time: Push v into WSTACK, add v to ~ according to the 
three rules stated above, increases DFS order by 1, and then broadcast (v, current 
DFS order). 

Step 4 : / .  Action executed in node 1 to node n - 1. • /  
After receiving the message from node 0, each node i ~ 0 does one of the following 
operations: 
4.1 If receive ("POP"), then pop the top element off WSTACK and goto Step 2. 
4.2 If receive the matched edges, then adjust its adjacent vectors and return to execute 

algorithm G_* Constructing. 
4.3 If v receive~4 is an unmatched boy and DFS~--0, then go to Step 1. 
4.4 Push v received into WSTACK, and if resident vertex i - v, then set DFS~ - current 

DFS order else if R_ADJACENCY~[v]- 1 and DFS~ = 0, then N E A R ~ -  v. And 
goto Step 2. 
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There are two main operations in Algorithm Max_Path_Set: DFS, in parallel, and the 
action of broadcasting all matched edges. We know that Algorithm PDFS_CUBE takes 
O(n log n) time using n/log n processors. On the other hand, there are at most n/2 matched 
edges in an n-vertex graph, so, in the worst case, the broadcasting action takes O(n log p) time 
on a p-processor hypercube. Thus, it needs O(n log n) time to perform Phase 2 while using 
n/log n processors. 

As we know, there are at most O(n °'s) iterations in Algorithm Maximum_Matching. Within 
each iteration, it contains two phases of operation. These two phases both take O(n log n) time 
using n/log n processors on the hypercube network model by applying the parallel search 
algorithms in Section 2. Thus, it takes O(n log n) time using n/log n processors per iteration. 
Therefore, the time complexity of Algorithm Maximum_ Matching on the hypercube network 
model is O(n t's log n) time using n/log n processors. Note that, we are not counting the time 
it would take to initially load the adjacent vectors of all vertices. It would need O(m) time, 
where m is the number of edges in a graph, to download the adjacent vectors to the processors 
in the hypercube. 
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