
The Journal of Supercomputing, 22, 197–219, 2002
© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Reducing Cache Conflicts by Multi-Level Cache
Partitioning and Array Elements Mapping
CHIH-YUNG CHANG changcy@email.au.edu.tw

Department of Computer and Information Science, Aletheia University,
32 Chen-Li St., Tamsui, Tapiei, Taiwan

JANG-PING SHEU AND HSI-CHIUEN CHEN �sheu, camus�@axp1.csie.ncu.edu.tw

Department of Computer Science and Information Engineering,
National Central University, Chung-Li 32054, Taiwan

Abstract. This article presents an algorithm to reduce cache conflicts and improve cache localities. The
proposed algorithm analyzes locality reference space for each reference pattern, partitions the multi-level
cache into several parts with different sizes, and then maps array data onto the scheduled cache positions
to eliminate cache conflicts. A greedy method for rearranging array variables in declared statement is
also developed, to reduce the memory overhead for mapping arrays onto a partitioned cache. Besides,
loop tiling and the proposed schemes are combined to exploit opportunities for both temporal and spatial
reuse. Atom is used as a tool to develop a simulation of the behavior of the direct-mapping cache to
demonstrate that our approach is effective at reducing number of cache conflicts and exploiting cache
localities. Experimental results reveal that applying the cache partitioning scheme can greatly reduce the
cache conflicts and thus save program execution time in both single-level cache and multi-level cache
hierarchies.

Keywords: cache conflict, array padding, cache partitioning, multi-level cache, direct mapping, loop
tiling

1. Introduction

The growing speed gap between memory and processor demands that the memory
systems are designed to follow a sophisticated memory hierarchy. Current high-
performance computers rely on an efficient cache organization that consists of many
levels of cache to reduce the speed discrepancy between processor and memory. For
uniformity of reference, both cache and main memory are divided into equal-sized
units, called block in main memory and cache line in the cache [4]. The placement
policy specifies the mapping function from the main memory address to the cache
location. Basically, three placement policies existed: direct, fully associative, and set
associative. The direct mapping scheme maps blocks of main memory to a cache in
a round robin fashion. That is, block i of the memory maps onto cache line i mod l
where l is the number of cache lines in the cache. The direct mapping scheme has
the advantage that no associative comparison is required and, hence, the cost of the
process is reduced [4]. However, a disadvantage of the direct-mapping cache is that
the cache hit ratio drops sharply when two or more blocks, accessed alternately,
happen to map onto the same cache line in the cache.

198 CHANG ET AL.

Cache conflicts while executing nested loops in a scientific program cause data to
be swapped out from the cache, causing cache misses and degrading performance.
A high-performance compiler must pay great attention to preventing such conflicts.
Much work has focused on inserting some padded arrays [8, 10, 12, 14, 18]. Padding
arrays are inserted into arrays accessed in turn and mapped onto the same cache
line under direct mapping policy, to ensure that such arrays map to different cache
lines such that conflicts can be reduced. However, in the following two cases of loop
programs, adding a small amount, say, the size of a cache line, of padding arrays
can not prevent cache conflicts. Firstly, when the coefficients of the index variables
of the reference pattern are unequal, accessing elements of a pair of two different
arrays may induce cache conflict, even though a cache line amount of padding
array has been inserted between these two arrays. Secondly, for loop programs that
involve localities over many iterations, a padding array scheme can prevent conflicts
but can not exploit the opportunities for reuse even if loop tiling is applied.
Manjikian et al. [10] presented an algorithm to partition a cache into equal-sized

regions and to allocate each to a single array variable. During loop execution, access
to elements with spatial locality or temporal locality yields good cache performance
since each array has a region and will not be replaced by another array. However,
treating the cache as a system resource, it is reasonable that cache size should be
scheduled according to the working set of arrays accessed during loop execution.
Another critical problem of the equal-sized cache partitioning technique is that it
causes much memory fragmentation. To achieve cache partitioning, many padding
arrays must be introduced to establish cache partitioning under a cache policy of
direct mapping.
This work presents a cache partitioning technique to reduce the number of cache

conflicts. The proposed scheme partitions the cache into many regions, generally
with different sizes, and maps the array elements of the main memory onto the
allocated region without requiring hardware support. The locality reference space is
derived for each variable, and is defined by the set of elements that are accessed
during the execution of some inner loops. The algorithm partitions the cache into
many regions according to the locality reference space of reference patterns. It
then automatically inserts padding arrays to map the array elements onto scheduled
regions. The array variables are rearranged and the loop programs are reorganized
to greatly reduce the memory fragmentation caused by applying padding scheme.
An algorithm is proposed for a multi-level cache memory system, to determine

the size of the padding array for each user-declared array such that all the user-
declared arrays can be scheduled on the partitioned cache regions in each cache
level. To minimize the memory overhead caused by applying padding array scheme,
a greedy method is developed to redeclare the arrays in a different order to min-
imize the memory overhead caused by applying the padding array scheme. The
well-known loop tiling technique [3, 5, 12, 16, 17] and the cache partitioning and
mapping scheme presented here are combined for the case in which the arrays in
real applications are much larger than the partitioned cache region and in which
data is reused after many iterations. Atom is employed as a tool to develop a simu-
lation of the behavior of the direct-mapped cache to demonstrate that the approach
presented here effectively reduces the number of cache conflicts and exploits cache

REDUCING CACHE CONFLICTS 199

localities. Experimental results show that applying the cache partitioning scheme
can greatly reduce cache conflicts and thus save program execution time in both
single-level cache and multi-level cache hierarchies.
The rest of this study is organized as follows. Section 2 discusses the background

and basic concept, with examples. Section 3 shows the loop model, cache model,
preliminaries, and algorithms for cache partitioning and array element mapping.
Section 4 describes related work in cache conflict prevention. Section 5 addresses
the performance study of the partitioning algorithm. Conclusions are finally given
in Section 6.

2. Basic concepts

This section uses examples to illustrate the basic concepts and the key idea behind
the proposed techniques. Section 3 will presents the preliminaries and the general
algorithm of cache partitioning and array element mapping.
The cache is a small high speed buffer memory which holds data that is likely to be

accessed in the near future. In most modern computer systems, both cache and main
memory are divided into equal-sized units, called blocks in the main memory and
cache lines in the cache. During program execution, accessing an element involves
transferring a section of data from the main memory to the cache. Clearly accessing
these extra elements is desirable as no further main memory access will be needed
for them. Data brought into cache should be reused as often as possible before they
are replaced.
Most executions of loop programs present opportunities to reuse data. The regu-

larity of array references and operations collected in loops typically gives temporal
and spatial localities to the execution of loop nests. The reuse of data that remains
in the cache is called temporal locality, and the use of the nearby data in a cache
line is called spatial locality. Exploiting locality is essential to achieving high perfor-
mance in most loop applications.
Conflict misses may occur when too many data items map to the same set of cache

locations, causing cache lines to be flushed from the cache before they are reused.
Conflict misses have been found to be a significant source of poor performance
in scientific programs, particularly within loop nests. Consider, for example, the
following loop program.

Example 1:
float A�128��128�, B�128��128�, C�128��128�;
for
I = 0; I < 128; I++

for
J = 0; J < 128; J++
S1 � C�I��J � = A�I��J �+ B�I��J �;
L1

Assume that the row-major main memory employs 8 bytes to store a floating point
number and each cache line has a capacity of four floating point elements (32 bytes).
Thus, the memory space for storing array A is 128∗128∗8 = 128 KB. Cache conflicts
occur at each reference during execution of loop L1 when the size of the direct-
mapping cache is 16K, 32K, 64K, or 128K bytes, because that the cache size is a

200 CHANG ET AL.

Figure 1. Cache conflict occurs when starting elements of arrays A, B, and C are mapped to a single
cache line and are accessed during a single iteration.

factor of the size of arrays A, B, and C. The directly mapped cache maps array
elements A�I��J �, B�I��J �, and C�I��J � onto a single cache line, for specific values
of I and J , as shown in Figure 1.
For instance, when executing index variables I = 0 and J = 0, statement S1 firstly

accesses element A�0��0�. The four elements A�0��0�, A�0��1�, A�0��2�, A�0��3�
are transferred from main memory to a cache line, as shown in Figure 2(a). The
extra elements, A�0��1�, A�0��2�, and A�0��3� are automatically transferred and are
expected to be accessed during the execution of iterations
I� J =
0� 1�
0� 2,
and (0, 3), respectively.
However, the reference of array element B�0��0� causes four elements B�0��0�,

B�0��1�, B�0��2�, and B�0��3� to move from the main memory to the same cache
line to which the element A�0��0� was mapped. As shown in Figure 2(b), elements
A�0��1�, A�0��2�, A�0��3� are replaced before they are used. Similarly, statement
S1 accesses element A�0��1� while executing index variables I = 0 and J = 1. The
four elements, A�0��0�, A�0��1�, A�0��2�, and A�0��3� are again transferred from the
main memory to a cache line. The array elements B�0��1�, B�0��2�, and B�0��3� are
replaced before they are used. The same array elements are repeatedly swapped
between the cache and the main memory. The repeated swapping follows mainly
from the fact that, for specific values I and J , array elements A�I��J �, B�I��J �, and
C�I��J �, are mapped onto the same cache line and are accessed while executing a
single loop iteration.

Figure 2. The contents of the first cache line in execution of loop L1. (a) Reference of array element
A�0��0�. (b) Reference of array element B�0��0�.

REDUCING CACHE CONFLICTS 201

Figure 3. The mapping of arrays A, B, and C onto partitioned cache by applying equal-sized partitioning
technique.

Manjikian et al. [10] offered a partitioning algorithm to divide the cache into
many equal-sized regions and apply the padding technique [8][10][12][14][18] to map
array data onto the partitioned regions. Assume that a direct mapped cache includes
n cache lines. Manjikian’s cache partitioning approach partitions the cache into
three equal-sized regions for arrays A, B, and C. Figure 3 shows the mapping of
arrays A, B, and C onto the cache, given by applying the equal-sized partitioning
scheme to Example 1.
Partitioning cache into many regions and allocating one region to one array can

prevent cache conflicts in Example 1. However, treating the cache as a resource
of the system, the compiler should partition cache into regions according to the
working set of each array. The cache must be partitioned into many regions with
different sizes because the working set of reference patterns are possibly unequal.
The following example illustrates this situation.

Example 2:
S1:float A�504�, B�504�;
for
I = 0; I < 100; I++

for
J = 0; J < 100; J++
S2:A�I + 4 ∗ J � = B�I + 2 ∗ J �;
L2

For simplicity, single-level cache with 12 cache lines is assumed; each line has a
capacity for two array elements. The corresponding elements of arrays A and B
are mapped to a single cache line, since the cache size is a factor of size of array
A. Iterations
I� J =
0� 0 and
I� J =
1� 0 will respectively access elements
B�0� and B�1� which are located in a single cache line. The reference of element
B�0� in iteration
I� J =
0� 0 causes elements B�0� and B�1� to move from the
memory to the cache. Loop tiling technique is applied to loop L2 to exploit the
spatial locality. Loop L2 is then modified as the following loop L2′, if the innermost
loop, J , is tiled with blocks each with a size of four iterations.

S1:float A�504�, B�504�;
for
J ′ = 0; J ′ < 100; J ′ = J ′ + 4

for
I = 0; I < 100; I++
for
J = J ′; J < J ′ + 4; J++

S2�A�I + 4 ∗ J � = B�I + 2 ∗ J �;
L2′

202 CHANG ET AL.

Applying the equal-sized cache partitioning technique proposed in [10], the com-
piler inserts a padding array P�12� between arrays A and B and redeclares S1 as

float A�504�� P�12�� B�504�

such that arrays A and B can be mapped onto the equal-sized cache regions.
Figure 4 shows the equal-sized cache partition. The cache is partitioned into two
parts and arrays A and B are allocated one to each part. Each partitioned cache is
comprised of six cache lines and has a capacity for 12 array elements. In Figure 4,
the first and the second columns display the running iteration. The third and the
fourth columns show the accessed element and the cache contents, respectively, for
a particular iteration.
For example, statement S2 accesses array element B�0� during the execution of

I� J =
0� 0. The cache memory management system transfers elements B�0� and
B�1� from the main memory to the 7th line of the cache. However, the reference of
array element A�12� causes elements A�12� and A�13� to be moved from the main
memory to the 7th cache line during the execution of
I� J =
0� 3. The array
element B�1�, which is expected to be reused in iteration
I� J =
1� 0, is replaced
by A�13�, primarily because the space of accessed elements in array A is larger than
that in array B, during the execution of the innermost loop. The space of accessed
elements in array A is A�0 � 12� (A�0 � 12� is accessed during the execution of
I = 0, 0 ≤ J ≤ 3) whereas the space of accessed elements of array B is B�0 � 6�.
Notably, in the third and fifth columns of Figure 4, a ‘∗’ symbol indicates that the
reference of the element can be obtained from the cache before the element is
replaced. That is, the reuse opportunity due to spatial locality is exploited. During
the execution of the innermost loop, only six reuse opportunities are exploited by
applying equal-sized cache partitioning technique.

Figure 4. The equal-sized cache partitioning and mapping of arrays A and B for Loop L2′.

REDUCING CACHE CONFLICTS 203

The replacement of the cache region of array B by elements of array A can be
prevented in two ways. First, the size of the tiling block can be reduced. Second,
a larger cache region can be scheduled for array A. Array A does not occupy the
cache region of array B if the first method is employed to tile loop L2 with a smaller
block size, say 3 iterations, during the execution of one tiling block. However, three
cache lines of the region scheduled for array B are not used. Partitioning the cache
into regions of different sizes is a feasible means of fully exploiting the utilization
of cache resources and prevent missing cache, due to the replacement of array A.
Partitioning the cache into regions, possibly of different sizes, according to the space
accessed by each array variable, is thus encouraged.
The array variables that are mapped to the same cache line are firstly identified.

The cache is partitioned into many regions with various sizes, according to the space
accessed by these array variables. Each partitioned region is assigned to an array
variable to prevent replacing the preloading elements before they are accessed.
The tiling size is determined according to the cache space partitioned for each
array variable and the loop tiling is applied to exploit the reuse opportunities. For
example, consider loop L2 in Example 2. Corresponding elements of arrays A and
B will be mapped to the same cache line since the cache size is a factor of the size
of arrays A and B. The cache is partitioned into two regions for arrays A and B.
The space accessed by array A for the innermost loop J is

A�4 ∗ J �� 0 ≤ J ≤ 99�

equal to the working set A�0 � 396�. Similarly, the space accessed by array B for
the innermost loop, J , is B�0 � 198�. The ratio of the reference space of array A to
that of array B is 2:1. Thus, the cache is partitioned into two regions according to
the ratio of the reference spaces. That is,
2/3 ∗ 12 = 8 cache lines are allocated
to array A and
1/3 ∗ 12 = 4 cache lines are allocated to array B. A padding array
must be inserted and statement S1 should be redeclared to map arrays A and B
onto allocated cache regions under direct mapping policy. Two possible declarations
are as follows.

S1 � float A�504�� P�16�� B�504� or

S1 � float B�504�� P�8��A�504��

The second declaration is chosen as it reduces the size of memory fragmentation
caused by applying padding array technique. Figure 5 depicts the partitioned cache
and the mapping of arrays A and B.
The well-known tiling technique is further employed to cooperate with the cache

partitioning technique to exploit the reuse opportunities of executing the outer loop.
The tiling size is set to four to guarantee that no cache data is replaced by ele-
ments of array A during the execution of the innermost loop since the size of the
region allocated to array B is four cache lines containing eight floating elements.
The reuse opportunities in executing successive outer loop iterations can thus be

204 CHANG ET AL.

Figure 5. The nonequal-sized cache partitioning and mapping of arrays A and B for loop L2.

exploited. Applying the cache partitioning technique to Example 2 yields the fol-
lowing program.

S1: float B�504�, P�8�, A�504�;

for
J ′ = 0; J ′ < 100; J ′ = J ′ + 4

for
I = 0; I < 100; I++

for
J = J ′; J < J ′ + 4; J++

S2:A�I + 4 ∗ J � = B�I + 2 ∗ J �;
L2′′

The unequal-sized partitioning scheme has two advantages over the equal-sized
cache partitioning. First, two cache lines of memory fragmentation are saved. That
is, the size of padding arrays is reduced from P�12� to P�8�. Second, all the preload-
ing elements can be accessed before they are replaced. Figure 5 presents this sit-
uation. For example, during the execution of
I� J =
0� 0, the reference of B�0�
causes elements B�0� and B�1� to move from the main memory to the first cache
line. The preloading element B�1� is accessed in iteration
I� J =
1� 0, because a
larger cache region is allocated to array A such that the accessed elements of array
A do not replace the preloading element of array B during execution of iterations
of the innermost loop. As shown in Figure 5, eight preloading elements (with a
‘∗’ symbol) are accessed before they are replaced. The spatial locality of two more
elements are exploited than in equal-sized partitioning.
This section uses an artificial example to depict the fundamental idea of cache

partitioning to reduce the number of cache conflicts and exploit the cache localities.
The following section presents preliminaries and the multi-level cache partitioning
algorithm.

REDUCING CACHE CONFLICTS 205

3. Preliminaries and the algorithms

This section proposes a cache partitioning and array mapping algorithm for single-
level and multi-level cache hierarchies. First, the cache is partitioned into many
regions according to the accessed space of each array reference pattern. Then the
order of array variables is resorted, padding arrays are inserted in their proper posi-
tions, and array variables are redeclared such that array elements can be mapped to
the partitioned regions and the memory overhead can be minimized. Finally, cache
partitioning and loop blocking (or tiling) are combined to exploit localities in loop
execution.
Assume that the data mapping from main memory to cache uses direct-mapping

as a cache placement strategy. The strategy is fast and simple but tends to causes
cache conflicts. The loop program inputs to the partitioning algorithm can be nested
loops. The reference patterns within the body of a loop can be multi-dimensional
array variables with an affine function. The program model, L, considered here is
expressed as follows.

Program Model:
declaration of array variables Ai� 1 ≤ i ≤ k and array variables Bj� 1 ≤ j ≤ m
for
I1 = l1; I1 ≤ u1; I1++

for
I2 = l2; I2 ≤ u2; I2++
� � �

for
In = ln; In ≤ un; In++
� statements Ai�f
I1� I2� � � � � In�, for 1 ≤ i ≤ k; �
L

where f is the affine function of q-dimensional array Ai and could be defined by

f =
a1
i1I1 + · · · + a1

inIn� a
2
i1I1 + · · · + a2

inIn� � � � � a
q
i1I1 + · · · + a

q
inIn�

Array variables are said to be in a dependent set if their first elements are mapped
to the same cache line and their reference patterns access the same cache line
while executing the innermost loop or tiling loop. Variables not belonging to any
dependent set are said to be in an independent set. In program model L, k arrays are
assumed to be in dependent sets and m arrays are assumed to be in independent
sets. This paper considers an n-nested loop program, as shown in loop L. Most
applications fall in this loop model. For a row-major memory system, the spatial and
temporal localities are evident in successive accessing of the rightmost dimension
of an array variable. Without loss of generality, and for simplicity, all arrays Ai are
assumed to be one-dimensional. For real applications that access multi-dimensional
arrays, the algorithm presented here only exploits localities of array references in
the rightmost dimension. Therefore, the reference pattern Ai�f � in program model
L can be simplified as

Ai�f � = A�ai1I1 + ai2I2 + · · · + ainIn��

206 CHANG ET AL.

The number of array variables in a loop body is assumed to be m + k, where k
and m denote the number of arrays in dependent sets and in independent sets,
respectively. Notably, the body of the loop may contain many statements.
The following artificial example is used to illustrate the algorithm in detail. In the

next section, the proposed cache partitioning technique is applied to evaluate real
programs. Consider the following loop program.

Example 3:
float A�128000�, B�128000�;
float C�140800�, D�128000�, E�128000�;
for
I = 0; I < 25600; I++

for
J = 0; J < 25600; J++
S1: A�I + J � = B�J �;
L3

� � �
for
I = 0; I < 128000; I++ �

S2: D�I� = C�I�+D�I�;
L4
S3: E�I� = C�I�+ E�I�; �

Assume that the cache size is 64000 words. Two reference patterns A�I + J � and
B�J � exist in loop L3. The terms A1 and A2 in program model L, denote arrays A
and B, respectively, and coefficients a11� a12� a21, and a22 take the values 1, 1, 0, and
1, respectively. Array elements A�0�, B�0�, and C�0� are mapped to the same cache
line and array elements D�0� and E�0� are mapped to the same cache line, since the
size of array variables A, B, D, and E are multiples of cache size, as presented in
Figure 6. In Example 3, two dependent sets �A�B� and �D�E� respectively belong
to loops L3 and L4. Similarly, the independent set of Example 3 is �C�. Thus, for
loop L3 of Example 3, the number of arrays in the dependent set is k = 2. For loop
L4, k = 2 and m = 1.
A few terms, used throughout this study are defined for clarity.

Ci: the ith level cache.
Ci

s : the size of the ith level cache measured by number of words.
Ai: the array variables in the dependent set.

12800 Words 51200 Words

B[0]

B[1]

C[0]

C[1]

E[0]

E[1]

D[0]

D[1]

A[0]

A[1]

Figure 6. Cache mapping of arrays A, B, C, D, and E for loop L3.

REDUCING CACHE CONFLICTS 207

Bj : the array variables in the independent set.
SAi

: the size of array Ai measured by number of words.
C

j
Ai
: the size of region allocated to array Ai in the jth level cache.

PAi
: the required size of padding array to allocate a region for array Ai.

RAi
: the reference space of array Ai.

�RAi
�: the size of reference space RAi

.
N : the number of cache levels in a cache system.
m: the number of arrays in the independent set.
n: the depth of loop nests.
k: the number of arrays in a dependent set.
Ii: the index variable of the ith depth loop counting from outermost loop,

1 ≤ i ≤ n.
aij : coefficient of index variable Ij in reference pattern Ai.
r : the number of inner loops that temporal and spatial reuses should be

exploited during the execution of index variables In−r+1� In−r+2� � � � � In.
d: the number of dependent sets.

Gi: the ith dependent set.
PGi

: the size of padding arrays required for aligning arrays in set Gi.

Note that we have

PGi
=

�Gi �∑
x=1

�PAx
�� ∀Ax ∈ PGi

�

These terms are used in discussing single-level cache and multi-level caches below.

3.1. Single-level cache hierarchy

This section describes how a single-level cache is partitioned into k regions and k
arrays are mapped onto these regions, where k is the number of dependent arrays
for a specific loop body.
Assume that r is the number of inner loops that are required to exploit the spa-

tial and temporal localities during execution. The locality reference space of array
Ai is defined by the set of elements that are accessed during the execution of r
inner loops. The locality reference space is determined by the loop index vari-
ables In−r+1� � � � � In−1� In. In the program model, L, the locality reference space RAi

of array Ai can be derived since the coefficients of r inner loop index variables
In−r+1� � � � � In−1� In are ai
n−r+1� � � � � ai
n−1� ain, respectively:

RAi
= {

Ai
x�x = ai
n−r+1In−r+1 + · · · + ainIn�

lj ≤ Ij ≤ uj� n− r + 1 ≤ j ≤ n
}
�

The size of the locality reference space of array Ai is represented by �RAi
�. The

partitioned region for array Ai is

�RAi
�
/ k∑

x=1
�RAx

��

208 CHANG ET AL.

where k is the number of arrays in the dependent set. If all aij are positive integers
for n− r + 1 ≤ j ≤ n, the block sizes up − lp + 1 of index variables Ip are equal for
all n− r + 1 ≤ p ≤ n. Cache partition region for array Ai can be simplified by

n∑
x=n−r+1

aix

/ k∑
i=1

n∑
x=n−r+1

aix�

The following loop program is transformed by applying tiling technique to
loop L3.

int A�128000�� B�128000�;
for
I ′ = 0; I ′ < 25600, I ′ = I ′ + 166

for
J ′ = 0; J ′ < 25600, J ′ = J ′ + 166
for
I = I ′; I < 166+ I ′; I++

for
J = J ′; J < 166+ J ′, J++
A�I + J � = B�J �;
L5

In this example, loops I and J are tiled with a block size 166 ∗ 166. Assume that the
cache level N = 1. The number of dependent arrays is k = 2 and the depth of the
loops is n = 4. The index variables I3 and I4 in loop model L respectively represent
I and J in L5. Array variables A1 and A2 respectively stand for variables A and B.
The coefficients of array variables A and B are a11 = 0, a12 = 0, a13 = 1, a14 = 1,
a21 = 0, a22 = 0, a23 = 0, and a24 = 1. Assume that the localities are exploited
during the execution of loops I and J . Accordingly, the locality reference space of
array A is A�0 � 330� which can be derived as

A�I + J �� 0 ≤ I ≤ 165� 0 ≤ J ≤ 165�

Similarly, the locality reference space of array B is B[0:165]. Hence, the ratio of
the locality reference space of array A to that of B is 2:1. Assume the size of the
single-level cache is C1

s . The cache is divided into 3 partitions. Array A is assigned
to a region of two partitions, and array B is assigned to a region of the remaining
partition. Thus, the sizes of the cache regions for A and B are C1

A = 2Cs
1/3 and C1

B =
Cs

1/3, respectively. The first statement of loop L5 is rewritten to reduce memory
fragmentation:

int B�128000�� PB�C
s
1/3��A�128000��

Loop L5′ is the transformed loop.

int B�128000�� PB�C
s
1/3�, A�128000�;

for
I ′ = 0; I ′ < 25600, I ′ = I ′ + 166
for
J ′ = 0; J ′ < 25600, J ′ = J ′ + 166

for
I = I ′; I < 166+ I ′; I++
for
J = J ′; J < 166+ J ′, J++

A�I + J � = B�J �;
L5′

REDUCING CACHE CONFLICTS 209

3.2. Multi-level cache hierarchy

This section considers multi-level cache architecture. The size of the partitioned
cache region of the ith-level cache maybe a multiple of the size of the
i− 1th-level
cache which has faster access. Consider a memory hierarchy with two-level caches.
Partitioning the second level cache into several regions and allocating them to array
variables does not guarantee that data mapped from the region of the second level
cache to that of the first level cache will be placed in the region scheduled for
the first level cache. This section proposes criteria for partitioning the lower level
cache such that data swapped from a lower level cache to a higher level cache is
guaranteed to be mapped to the correct region.
Consider loop L5. Let the cache memory hierarchy be composed of two-level

cache, as is the cache hierarchical design in the most modern computer. Assume
that the size of the first level cache is C1

s = 100 words and that of the second level
cache is C2

s = 500 words. As presented in loop L5, the sizes of arrays A and B are
a multiples of 500 words. Figure 7(a) shows the address mapping of arrays A and
B. The two-level cache is partitioned for the execution of loop L5.
The ratio of the reference space of pattern A�I + J � to that of B�J � can be easily

determined by considering the coefficients, since both the index variables I and J
are varying from 0 to 165. That is, the ratio of locality reference space of arrays
A to that of array B is 2:1. The cache partitioning method partitions the first level
cache into two regions. The first region has size C1

A = 67 words, and is allocated
to array A; the second region has size C1

B = 33 words and is allocated to array B.
If cache memory system contains only a single-level cache, the positions of arrays
A and B in the declaration statement are exchanged and a padding array PB�33� is
inserted between arrays B and A. Figure 7(b) gives the address mapping of arrays
A and B.
If the cache system is organized as a two-level cache, the second level cache is

partitioned into two regions. The first region has size C2
A = 334 for array A and the

second region has size C2
B = 166. Figure 8 depicts the partitioning of two regions of

Figure 7. Single-level cache partition for address mapping of arrays A and B. (a) Address mapping of
arrays A and B before executing the cache partitioning. (b) Address mapping of arrays A and B after
executing the cache partitioning.

210 CHANG ET AL.

Figure 8. Partitioning of the second level cache can not map the right element onto the correct position
of the first level region.

both the first and the second level caches. The cache is partitioned into two regions,
according to the ratio of reference space of arrays A and B, one-third of the cache
is allocated to array B and the remainder is allocated to array A. However, using
this ratio to partition the second level cache raises the problem that the first cache
line of the region allocated to array A in the second level cache, is not directly
mapped onto the first cache line of the cache region allocated to array A in the
first level cache. As Figure 8 shows, the first element of array A is scheduled in
the 166th cache word of the second level cache. This element is directly mapped to
the 66th cache word in the first level cache. However, according to the scheduling
described here, the first element of array A in the first level cache is mapped to
the 34th cache word. The size of the region allocated to array B in the second level
cache should be reduced to the partition of the second level cache to satisfy the
scheduling of the first level cache. Hence, the cache size allocated to array B in the
second level cache should be

�C2
B/C

1
s � × C1

s + C1
B = �166/100� × 100+ 33 = 133�

This result implies that the padding array for the two-level cache is P�133� rather
than P�166�.
When the cache memory hierarchy is organized as a multi-level cache, the parti-

tion for the lower level cache must address not only the ratio of locality reference
spaces of dependent array variables, but also the mapping from the lower level
cache to the higher level cache. The partitioning of the ith-level cache should also
guarantee that, for a specific array variable Ak, the direct mapping of the starting
address of Ak in the region of the ith-level cache to the starting address of Ak in
the region of the
i − 1th-level cache, should be consistent with the partition for
the
i− 1th-level cache. Let a loop contains k dependent array variables A1 � � � Ak,
whose locality reference spaces are RA1

� � � RAk
, respectively. The first level cache is

partitioned into k regions where the ith-region has size

C1
Ai

=
⌊(

�RAi
�
/ k∑

i=1
�RAi

�
)
× C1

s

⌋
�

REDUCING CACHE CONFLICTS 211

and is allocated to array Ai. Similarly, for the second level cache, cache size C2
Ai

is
allocated to array Ai, where

C2
Ai

=
⌊(

�RAi
�
/ k∑

i=1
�RAi

�
)
× C2

s

⌋
�

However, the value of C2
Ai

should be adjusted to ensure that the first element of
the region of C2

Ai
maps to the starting location of C1

Ai
:

C2
Ai

= �C2
Ai

/C1
s � × C1

s + C1
Ai

�

The size of the padding array required to allocate C2
Ai

to array Ai is thus,

PAi
= C2

Ai
−
SAi

mod C1
s �

These two expressions are substituted into the previous example, for verification.
A1 and A2 are taken to be arrays B and A, respectively. The sizes of the first level
and the second level caches are C1

s = 100 and C2
s = 500, respectively. The locality

reference spaces of arrays B and A are,

Rs
B = �J �0 ≤ J ≤ uJ − 1�� Rs

A = �I + J �0 ≤ J ≤ uJ − 1� 0 ≤ I ≤ uI − 1��

where uJ = uI specifies the upper bound of loop index variables I and J in loop
L5. Therefore, the size of the first level cache allocated to array B is

C1
B = �
�RB�/
�RA� + �RB�× C1

s � = �1/3 ∗ 100� = 33�

Similarly, the size of the first level cache allocated to array A is �C1
A� = 67. For the

second level cache, the size allocated to array B is

C2
B = �C2

B/C
1
s � × C1

s + C1
B = �166/100� × 100+ 33 = 133�

Similarly, the size of the second level cache allocated to array A is 367. Therefore,
the size of the padding array is

PB = C2
B −
SB mod C1

s = 133− 0 = 133�

The array statement is then redeclared as,

float B�128000�� P�133��A�128000�

rather than the original statement,

float A�128000�� B�128000��

The following subsection proposes the multi-level cache partitioning and array
element mapping algorithm.

212 CHANG ET AL.

3.3. The algorithm

This section combines techniques proposed in the previous subsections and pro-
poses the new partitioning algorithm.

Algorithm: Multi-Level Cache Partitioning and Array Element Mapping
Algorithm.

Input : The number of cache level N , size Ci
s of the ith level cache,

for 1 ≤ i ≤ N , and a loop nests program L.
Output : A restructured program with redeclaration of array variables
Step 1 : Let temporal variables P ′

Ai
= 0, for 1 ≤ i ≤ k.

/∗ processing k arrays ∗/
Step 2 : for
i = 1(i ≤ k(i++

�
/∗ processing N levels of cache ∗/
for
j = 1(j ≤ N(j++

� (2.1) Compute the size of region allocated to Ai

in the jth level cache:
C

j
Ai

= C
j
s × �RAi

�/∑k
i=1 �RAi

�;
/∗ multi-level caches consideration ∗/
(2.2) if
j > 1

C
j
Ai

= �Cj
Ai

/C
j−1
s � × C

j−1
s + C

j−1
Ai

;
� /∗ end of for j ∗/
(2.3) Compute the size of padding array PAi

:
PAi

= C
j
Ai

−
SAi
mod C

j
s � 1 ≤ i ≤ k − 1(

if
PAi
< 0

PAi
= PAi

+ C
j
s ;

�
Step 3 : /∗ reducing the size of padding array by moving ∗/

/∗ array with maximal padding size to the last position ∗/
Let CN

Amax
= Max
CN

Ai
� 1 ≤ i ≤ k.

Move Amax to the last position. That is, modify the
declaration statement A1� � � � �Amax� � � � �Ak

by A1� � � � �Ak�Amax.
Step 4 : Repeatedly perform steps 2 and 3 until all dependent group

Gi have been processed, 1 ≤ i ≤ d.
Step 5 : /∗ Reducing the size of padding array by moving ∗/

/∗ the independent arrays to the most profit position. ∗/
/∗ Process the d dependent groups ∗/
Let M = ⋃j=m

j=1 Bj , P = ⋃i=k−1
i=1 PGi

;
while M���
� Let Bbest and PGbest

be the pair of best values that satisfy:
PGbest

−
�Bbest� mod CN
s ≤ PGi

−
�Bj � mod CN
s , ∀Bj ∈ M ,

∀PGi
∈ P .

M = M − Bbest , P = P − PGbest
;

REDUCING CACHE CONFLICTS 213

Partition Bbest into several subarrays and insert these
subarrays into PGbest

such that the subarrays can be instead of PAj
,

for Aj ∈ PGbest
.

Step 6 : /∗ Cooperate with the loop tiling technique to exploit the reuse
opportunities ∗/

According to the size of region of the first level cache allocated to A1,
determine the tiling size and apply the loop tiling technique to L.

Step 1 of the algorithm initializes the temporal variables to calculate the size of
padding array, PAi

. Step 2.1 determines Cj
Ai
which is the size of each region allocated

to array Ai in the jth level of the cache. The size C
j
Ai

is obtained by the ratio of the
locality reference space of Ai to the summation of locality reference spaces of all
dependent arrays. A larger cache space is allocated to Ai if the locality reference
space of array Ai is larger than one of array Aj in the inner r loops. The cache size
is treated as a system resource and the resource is partitioned into many regions
according the size of the working set of array elements accessed in the inner r loops.
The region of Ai can thus be derived:

C
j
Ai

= Cj
s ×

(
�RAi

�
/ k∑

j=1
�RAj

�
)
�

Additional computation is required in Step 2.2 to guarantee that the partitioning of
the lower level cache can match that of the higher level cache. Step 2.3 determines
the size PAi

of the padding array to preserve the region for Ai and align the first
element of array Ai+1 to the starting location of the subsequent cache region.
Inserting the padding array increases the main memory overhead. Steps 3 and 5

are designed to reduce the size of the padding array. Step 3 first finds the array Amax

that requires the largest padding array to allocate region to Amax. A larger region
allocated to Amax demands a larger padding array. The array Amax is exchanged
with the last array variable in the declaration statement. This step ensures that the
size of padding array for Amax can be reduced. Step 5 further reduces the size of
the padding array by adjusting the position of arrays belonging to independent sets.
The greedy method is used to select an independent array Bbest that most profitably
reduce the size of the padding array for the dependent set, Gi. The independent
array Bbest is then partitioned and acts as many padding arrays to reduce memory
overhead. The position of arrays in a dependent set should be maintained to fix the
size of region allocated to each dependent array. A set of dependent array variables
in PGi

is then treated as a super array and the positions of the independent array
variables are changed among several super arrays.
Applying Steps 3 and 5 significantly reduces the size of padding arrays and pre-

vents cache conflicts. As soon as the partitioned cache region allocated for array
A1 in the first level cache is known, the size of a tile can be easily evaluated and
loop blocking technique can be applied to enhance the cache partitioning algorithm.
Localities in the execution of r inner loops can thus be exploited.

214 CHANG ET AL.

4. Related work

Array padding [1] is a data-reorganization technique that increases the size of the
array dimension aligned with the storage order, and most effectively reduces the
occurrence of self-conflicts when the array dimensions are powers of two. Array
padding is employed to align the array to the starting address of its region, and
thereby implement the proposed cache partitioning technique. Since the size of each
partitioned region is not equal, the padding arrays for each dependent array variable
are unequally sized. The use of array padding causes much memory fragmentation.
The method in Steps 3 and 5 of the algorithm are proposed to reduce memory
overhead.
Temam et al. [15] examine conflicts arising from array references in loop nests,

typical of scientific applications. The authors analyze specific instances of self- and
cross-conflicts, and suggest the use of padding and careful placement of arrays in
the memory. However, no detailed methodology is offered for resolving conflicts.
Bacon et al. [2] discuss a method to determine the amount of padding required
to avoid cache and TLB mapping conflicts among individual array references in
the innermost loop of a loop nest. However, their approach is inappropriate for
locality-enhancing loop transformations, as it does not address data reuse in outer
loops, and therefore cannot prevent cache conflicts for reusable data. The cache
partitioning algorithm described here can work with loop tiling such that localities
in inner loops can be exploited. Criteria are offered to guarantee valid mapping
from a lower level cache to a higher level cache and thus prevent cache conflict in
a multi-level cache system.
Lebeck and Wood [7] present a case study of improving performance through a

variety of techniques, including data transformations such as padding and memory
alignment. However, these transformations are discussed in the context of program-
mer tuning of application performance. There is no discussion of how such trans-
formations may be incorporated into a compiler. Systematic method is proposed
here, to apply padding to cache partitioning. The combination of the proposed
method and the tiling technique is also discussed. The nonequal-sized cache parti-
tioning technique provides a greedy algorithm to adjust the position of independent
arrays and thereby reduces the memory fragmentation caused by implementing the
padding array.
Manjikian et al. [10] present a cache partitioning algorithm to partition the cache

into equal-sized regions to prevent cache conflicts. However, the cache is treated
as a resource. The cache size is scheduled according to the locality reference space.
Compared to their equal-sized partition, memory fragmentation is greatly reduced
and the locality of the execution of multiple inner loops is exploited, providing
the cooperation between the technique presented here and the loop tiling tech-
nique. For programs with nonunit stride access patterns, unequally sized partitioning
markedly reduces cache conflicts.

REDUCING CACHE CONFLICTS 215

5. Performance study

Atom is used as a tool to develop a simulator to measure the performance improve-
ment. The environment of the multilevel direct-mapping cache is simulated. Cache
miss rates are compared for the following cache partitioning schemes.

(1) No padding array is applied. That is, the original cache direct mapping is
applied. The tables refer to this scheme as Original.

(2) Apply the equal-sized partitioning, proposed in [10]. The tables refer to this
scheme as EP .

(3) Apply the proposed cache partitioning and array element mapping technique.
The tables refer to this scheme as CP.

(4) Combine the proposed cache partitioning algorithm and the loop tiling tech-
nique. The tables refer to this scheme as Combination.

Some factors such as cache size, the number of the cache level, the number of
iterations of the innermost loop, and the array size are considered to be fixed, or are
changed to observe the cache behavior. Applications such as matrix multiplication,
subroutines of BLAS2 (Basic Linear Algebra Subprograms), and several numeri-
cal computation programs such as Fourier Least-Squares Approximation (FLSA),
Jacobi Method for Solution of Linear Equations (Jacobi), Barycentric Form of
Lagrange Interpolation (BFLI), Accumulating a Sum (ASum), Solving Linear Equa-
tion by Gaussian Elimination (SLEGE), Computing the Uniform Norm of Matrix
A and A Inverse (Uniform norm), Gauss-Seidel Iterations (CSNCI), and Comput-
ing The Value of A Filtered Discrete Fourier Transform (FDFT) are chosen as the
source of loop programs. The improvements in cache conflicts for these applications
are similar. Matrix Multiplication is used as a representation to compare different
approaches (1), (3), and (4), to illustrate and analyze the cache behavior. The ratio
of locality reference spaces is varied and the miss rate of two-level cache is mea-
sured to compare cache conflicts by applying cache partitioning techniques (2), (3),
and (4).
Matrix Multiplication, which is a basic operation of many scientific programs, is

used to illustrate the experimental results by applying the proposed cache partition-
ing technique. The arrays declared for Matrix Multiplication are set to multiples of
the size of the lowest-level cache.
Table 1 gives the cache miss rates of Original, CP, and Combination for execution

by varying the number of iterations in the innermost loop. The analysis is based on
the environment of the single-level cache. The size of the array is set to 2 Mbytes

Table 1. Comparing cache miss rates for Original, CP, and Combination. The sizes of array and cache
are fixed, and the number of iterations of the innermost loop is varied

Miss rates (%)

Iterations of the innermost loop 65536 32768 16384 8192 4096
Original 25.06 25.07 25.08 25.10 25.14
CP 12.68 0.31 0.32 0.34 0.360
Combination 0.32 0.31 0.32 0.34 0.36

216 CHANG ET AL.

and the size of the cache is set to 1 Mbytes. CP and Combination techniques exhibit
significant performance improvements over the Original technique, when the num-
ber of iterations of the innermost loop is small. These improvements are due to
avoiding many cache conflicts when arrays are mapped onto the scheduled regions.
The opportunities for reuse of data can thus be exploited as much as possible. The
improvement of CP decreases whereas that of Combination remains significant when
the number of iterations of the innermost loop increases. The result follows mainly
from the fact that the number of accessed elements exceeds the size of the sched-
uled cache region. This situation causes the array elements to replace elements in
the neighboring region, resulting cache conflicts.
The effect of cache size on cache performance for a single-level cache is deter-

mined by fixing other factors and varying the cache size from 128 K-bytes to 1 M-
byte. Table 2 gives the cache miss rates of Original, CP, and Combination to execute
matrix multiplication with various sizes of cache. The size of each array is set to
2 Mbytes, and the number of iterations of the innermost loop is set to 65536. As
shown in Table 2, the performance improvements are significant when CP and Com-
bination are applied and the cache size is enlarged, because the larger region main-
tains more array elements, and thus reduces cache conflicts. Under such condition,
data are more likely to be reused in the cache region.
Table 3 presents the cache miss rates of Original, CP, and Combination, obtained

by varying the number of the iterations of the innermost loop. The analysis is based
on the environment of the two-level cache. The size of the array is set to 2 Mbytes.
The sizes of the first level cache and the second level cache are set to 64 Kbytes
and 1 Mbytes, respectively. The miss rate is greatly reduced by applying CP and
Combination techniques.
When the number of iterations of the innermost loop increases, CP slightly

improves but Combination significantly improves the cache miss rate of the first
level cache. This result follows from the fact that a large set of iterations accesses
many elements, replacing the neighboring region and causing cache conflicts. How-
ever, combining loop tiling and the proposed cache partitioning can prevent such a
situation. CP and Combination both show significant improvements for the second
level cache.
Table 4 presents the cache miss rates of Original, CP, and Combination, found by

varying the size of the cache. The analysis is based on the environment of the two-
level cache. The size of the array is set to 2 Mbytes and the number of iterations of
the innermost loop is set to 4096. Applying CP and Combination greatly enhances
performance for a large cache. However, only Combination technique gives a stable
cache miss rate (approximately .36) when the cache of both two levels shrinks,

Table 2. Comparisons of Original, CP, and Combination. The size of the array and the number of itera-
tions of the innermost loop are fixed, and the size of the cache is varied

Miss rates (%)

The size of cache 1 M-bytes 512 K-bytes 256 K-bytes 128 K-bytes
Original 25�06 31�25 31�25 31�26
CP 12�68 31�24 31�25 31�26
Combination 0�325 7�731 15�17 15�17

REDUCING CACHE CONFLICTS 217

Table 3. Comparisons of Original, CP, and Combination. The size of the array and the size of the two-
level cache are fixed, and the number of iterations of the innermost loop is varied

Miss rates (%)

Iterations of the innermost loop 65536 32768 16384 8192 4096
C1 31�28 31�27 31�27 31�29 25�14

Original
C2 25�06 25�07 25�08 25�10 25�14
C1 31�28 31�27 31�27 31�22 12�71

CP
C2 12�68 0�319 0�326 0�34 0�364
C1 15�19 15�19 15�19 7�686 0�521

Combination
C2 0�316 0�319 0�326 0�340 0�364

because the proposed technique can tile the inner loops according to the size of each
region. For the second level cache, accessed data will not replace the neighboring
region since each region of the second level cache is larger than that of the first
level cache. The improvement is therefore significant.
The ratio of the locality reference space of reference patterns is varied ranging

from 1:1 to 1:4, to compare the effects on cache miss rate of various cache partition-
ing techniques, (2), (3), and (4). The ratio of the sizes of the two reference spaces
is set at 1:1, 1:2, 1:3, 1:4, 2:3, and 3:4. The size of the arrays is set at 8 MBytes. The
cache is taken as a two-level cache in which the first and the second level caches
have size, 256 KBytes and 1 MBytes, respectively. Table 5 presents the cache miss
rate of the simulation.
Applying the technique presented here partitions the cache into equal regions

when the ratio of reference spaces is 1:1. Thus, EP and CP have the same cache miss
rate. Combine has a lower cache miss rate since loop tiling prevents the referenced
elements from replacing the neighboring region. When the sizes of reference spaces
are unequal, CP and Combine show a smaller cache miss rate than EP. Notably, the
cache miss rate raises when the difference between the sizes of the reference spaces
becomes large. This result follows from the fact that a larger stride of memory access
yields poor cache performance since many elements move to the cache without a
reference and occupy the cache space. In such cases, Combine and CP exhibit lower
cache miss rates than EP.

Table 4. Comparisons of Original, CP, and Combination. The size of the array and the number of itera-
tions of the innermost loop are fixed, the size of the two-level cache is varied

Miss rates (%)

Size of the first level cache 64 K-bytes 32 K-bytes 16 K-bytes 8 K-bytes
Size of the second level cache 1 M-bytes 512 K-bytes 256 K-bytes 128 K-bytes

C1 25�14 31�33 31�33 31�47
Original

C2 25�14 25�14 25�14 25�14
C1 12�71 23�46 23�95 24�54

CP
C2 0�364 4�69 8�23 15�96
C1 0�521 7�635 15�32 15�45

Combination
C2 0�364 0�364 0�364 0�368

218 CHANG ET AL.

Table 5. Comparisons of EP, CP, and Combination for two-level cache. The size of the array and the
number of iterations of the innermost loop are fixed, the ratio of reference spaces is varied

Miss rates (%)

First level cache Second level cache
Ratio of

reference space EP CP Combine EP CP Combine

1:1 12�95 12�95 3�64 3�15 3�15 0�43
1:2 21�65 17�46 4�96 5�39 3�95 1�15
1:3 28�71 21�24 6�23 6�76 4�52 1�97
1:4 39�45 28�56 10�44 10�21 5�81 2�47
2:3 36�58 25�69 8�95 8�92 4�86 2�21
3:4 44�59 31�76 12�56 10�25 7�15 1�16

The proposed cache partitioning technique partitions a given cache into several
regions according to size of the locality reference space of each dependent array.
Applying the padding array scheme aligns each array to be mapped onto one region.
The proposed technique can be considered to be a generalization of the partitioning
technique proposed in [10]. As discussed in Section 2, the equal-sized partitioning
suffers from either poor cache utilization or a high cache miss rate, even though loop
tiling is applied. A greedy algorithm is proposed to reduce memory fragmentation.
Partitioning criteria are considered for a multi-level cache system, such that the
partitioning of the lower level cache is consistent with that of the higher level cache.
Another advantage is that, combining the tiling technique allows the block size to
be easily determined according to the partitioned region. Localities in inner-nested
loops can thus be exploited.

6. Conclusions

This study proposes an algorithm to partition a multi-level cache into regions, and to
schedule those regions for arrays such that both temporal and spatial localities can
be exploited and cache conflicts can be avoided. Each cache is treated as a system
resource and is scheduled into arrays according to the sizes of locality reference
spaces. For multi-level caches, the lower level cache should be carefully partitioned
so that its region scheduling is consistent with the cache region scheduling of a
higher level cache.
A greedy method is developed to reposition both the dependent and independent

arrays, reducing the size of the padding array, and also, therefore, the memory
overhead caused by applying the padding array technique. Atom is employed as
a tool to develop a multi-level cache environment and simulate cache behavior
under the direct mapping scheme, and thereby evaluate the performance of the
proposed cache partitioning algorithm. An investigation of performance shows that
the proposed cache partitioning scheme can greatly reduce the cache miss rate
caused by cache conflict, while exploiting the reuse opportunities.

REDUCING CACHE CONFLICTS 219

Acknowledgments

The authors would like to thank the National Science Council of the Republic of
China for financially supporting this research under Contract No. NSC-89-2213-E-
008-013 and NSC-89-2213-E-156-001.

References

1. D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for high-performance com-
puting. Technical report UCB/CSD-93-781. Computer Science Division, University of California,
Berkeley, 1993.

2. D. F. Bacon, J. H. Chow, D. C. R. Ju, K. Muthukumar, and V. Sarkar. A compiler framework
for restructuring data declarations to enhance cache and TLB effectiveness. In CASCON’94, pp.
270–282. Toronto, Canada, 1994.

3. F. Chen, T. W. O’Neil, and E. Sha. Machine architecture optimizing overall loop schedules using
prefetching and partitioning. IEEE Transactions on Parallel and Distributed Systems, 11(6):604–614,
2000.

4. K. Hwang and F. A. Briggs. Computer Architecture and Parallel Processing. McGraw-Hill, Inc. 1984.
5. M. Kandemir, J. Ramanujam, and A. Choudhary. Improving cache locality by a combination of loop

and data transformations. IEEE Transactions on Computers, 48(2):159–167, 1999.
6. M. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance of blocked algorithms. In Pro-

ceedings of the Fourth International Conference Architectural Support for Programming Languages and
Operating Systems, pp. 63–74, 1991.

7. A. R. Lebeck and D. A. Wood. Cache profiling and the SPEC benchmarks: A case study. IEEE
Computer, 27(10):15–26, 1994.

8. J. H. Lee, M. Y. Lee, S. U. Choi, and M. S. Park. Reducing cache conflicts in data cache prefetching.
Computer Architecture News, 22(4):71–77, 1994.

9. L. S. Liu, C. W. Ho, and J. P. Sheu. On the parallelism of nested for-loops using index shift method.
In Proceedings of the International Conference on Parallel Processing, vol. II, pp. 119–123, 1990.

10. N. Manjikian and T. S. Abdelrahman. Reduction of cache conflicts in loop nests. Technical report
CSRI-318. Computer Systems Research Institute, University of Toronto, March 1995.

11. T. Mowry. Tolerating latency through software-controlled data prefetching. Ph.D. dissertation. Dept.
of Electrical Engineering, Standford University, 1994.

12. P. R. Panda, H. Nakamura, N. D. Dutt, and A. Nicolau. Augmenting loop tiling with data alignment
for improved cache performance. IEEE Transactions on Computers, 48(2):142–149, 1999.

13. S. Przybylski, M. Horowitz, and J. L. Hennessy. Performance tradeoffs in cache design. In Proceedings
of the 15th Symposium Computer Architecture, pp. 290–298, 1988.

14. G. Rivera and C. W. Tesig. Data transformations for eliminating conflict misses. In Proceedings of
the 1998 ACM SIGPLAN Conference on Programming Language Design and Implementation, 1998.

15. O. Temam, C. Fricker, and W. Jalby. Impact of cache interferences on usual numerical dense loop
nests. Proceedings of the IEEE, 81(8):1103–1115, 1993.

16. M. J. Wolfe. Iteration space tiling for memory hierarchies. In Proceedings of the Third SIAM Confer-
ence Parallel Processing for Scientific Computing, pp. 357–361, 1987.

17. M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proceedings of ACM SIGPLAN’91
Conference on Programming Language Design and Implementation, pp. 30–44, 1991.

18. D. C. Wong, E. W. Davis, and J. O. Young. A software approach to avoiding spatial cache collisions
in parallel processor systems. IEEE Transactions on Parallel and Distributed Systems, 9(6):601–608,
1998.

