
The Journal of Supercomputing, 20, 217–241, 2001
© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Circuit-Switched Broadcasting in Multi-Port
Multi-Dimensional Torus Networks*
SAN-YUAN WANG sywang@isu.edu.tw

Department of Information Engineering, I-Shou University,
Kaohsiung, 84008, Taiwan

YU-CHEE TSENG yctseng@csie.nctu.edu.tw

Department of Computer Science and Information Engineering,
National Chiao-Tung University, Hsin-Chu, 30050, Taiwan

SZE-YAO NI AND JANG-PING SHEU �nee, sheujp�@csie.ncu.edu.tw

Department of Computer Science and Information Engineering,
National Central University, Chung-Li, 32054, Taiwan

Abstract. The one-to-all broadcast is the most primary collective communication pattern in a multi-
computer network. This paper studies this problem in a circuit-switched torus with α-port capability,
where a node can simultaneously send and receive α messages at one time. This is a generalization of
the one-port and all-port models. We show how to efficiently perform broadcast in tori of any dimen-
sion, any size, square or nonsquare, using near optimal numbers of steps. The main techniques used
are: (i) a “span-by-dimension” approach, which makes our solution scalable to torus dimensions, and
(ii) a “squeeze-then-expand” approach, which makes possible solving the difficult cases where tori are
non-square. Existing results, as compared to ours, can only solve very restricted sizes or dimensions of
tori, or use more numbers of steps.

Keywords: broadcast, circuit switching, collective communication, interconnection network, parallel
processing, torus

1. Introduction

Efficient inter-processor communication is critical for a multicomputer network to
deliver high performance. One primary communication is the one-to-all broadcast,
where a source node needs to send a message to all other nodes in the net-
work. Broadcast has applications in algebraic problems, parallel graph and matrix
algorithms, cache coherence in distributed-shared-memory systems, and data
re-distribution in HPF. In addition to one-to-all broadcast, many collective commu-
nication patterns, such as all-to-all broadcast, complete exchange, scatter, gather, and
reduction, have received intensive attention recently [2, 5, 6, 15, 16].
In circuit switching, a routing header, containing the destination address and some

routing control information, is injected into the network to build a physical path

*This work is supported by the National Science Council of the Republic of China under Grant
NSC88-2213-E-008-027. A preliminary version of this paper has appeared in the EURO-PAR99
conference.

218 wang et al.

from the source to the destination. This can be done by connecting the input and
output ports of intermediate nodes and preserving the links as the header progresses
toward the destination. When the header reaches the destination, an acknowledge-
ment is sent back to the source. The message contents are then sent in a pipeline
fashion on the reserved path. The path can be released by the destination or by the
last few bits of the message. For instance, the latter approach is adopted by Intel
iPSC/2 [8] to release the path.
In this paper, we study the scheduling of one-to-all broadcast in a circuit-switched

kD torus. The network is assumed to use the α-port communication model, in which
a node can send up to α messages and simultaneously receive up to α messages at a
time, where 1 ≤ α ≤ 2k. This is a generalization of the one-port model (α = 1) and
the all-port model (α = 2k). Following the formulation in many works [3, 9, 10, 11,
14, 17], this is achieved by constructing a sequence of steps, where a step consists of
a set of congestion-free communication paths each indicating a message delivery.
The goal is to minimize the total number of steps used.
One-to-all broadcast has been studied for meshes and torus based on different

port models and switching models [4, 9, 10, 11, 14, 15, 18]. Based on all-port circuit
switching, the scheme in [11] uses optimal numbers of steps for any 2D torus of size
5p × 5p or �2 × 5p� × �2 × 5p�, where p is any integer. Likewise, the schemes of
[9, 10] remain optimal, but can be applied to any square kD torus with �2k+ 1�p
nodes on each side. Generalization to square 2D/3D tori/meshes supporting multi-
port capability is shown in [4]. Drawbacks of these works include limitations on
torus dimension, size, or that the networks must be square. Another direction is to
assume the wormhole-routing model with dimension-ordered routing. For instance,
based on the all-port model, [14] solves the cases of 2D and 3D torus of sizes
2p × 2p and 2p × 2p × z, respectively (z is an integer); [15] solves the case of 2D
tori of any size, square or non-square; and [18] further extends [15] to square kD
tori. With circuit switching, routing has less restrictions; routing does not have to
conform to dimension ordering. In Table 1, we compare these solutions against the
yet-to-be-presented results in this paper. As can be seen, our results can improve
over existing results in either the numbers of communication steps required or the
network dimension/size restrictions.
The difficulty of this problem lies in how we disseminate the broadcast message

in a congestion-free manner. In order for a solution to be optimal, it typically relies
on recursively partitioning the torus into α + 1 smaller subnetworks. For instance,
when the number of ports α = 1 (resp., α = 3), a recursively doubling (quadrupling)
approach [13] can easily achieve optimality. Unfortunately, there is no known sys-
tematic solution based on this approach, especially when α is even (say, α = 2 or
4 in a 3D torus). One readily sees additional difficulties when tori are non-square
and of more dimensions.
We first show how to efficiently perform broadcast in 2D and 3D tori of any size,

square or non-square, using near optimal numbers of steps. We then generalize the
result to higher-dimensional tori. The main techniques used here are: (i) a “span-
by-dimension” approach, and (ii) a “squeeze-then-expand” approach similar to [15]
(here we extend the technique in [15] from 2D to kD). For instance, given a non-
square 3D torus, we first “squeeze” the torus into a square one using (ii). Then, we

circuit-switched broadcasting 219

Ta
bl
e
1.

C
om

pa
ri
so
n
of

br
oa
dc
as
t
al
go
ri
th
m
s
on

th
e
so
lv
ab
le

ne
tw
or
k
di
m
en
si
on

s/
si
ze
s
an
d
re
qu

ir
ed

nu
m
be
rs

of
st
ep
s,
as
su
m
in
g
a
ne
tw
or
k
si
ze

of
n
1
×
n
2
×

··
·×

n
k

A
lg
or
ith

m
O
ur
s

L
ee
-L
ee

[4
]

Pa
rk
-C
ho

i[
9]

Pe
te
rs
-S
ys
ka

[1
1]

W
an
g-
T
se
ng

[1
4]

T
sa
i-M

cK
in
le
y
[1
4]

Sw
itc
hi
ng

C
S

C
S

C
S

C
S

W
H

&
D
O

W
H

&
D
O

Te
ch
ni
qu

e
Po

rt
α
-p
or
t

α
-p
or
t

al
l-p

or
t

al
l-p

or
t

al
l-p

or
t

al
l-p

or
t

M
od

el
2D
Si
ze

n
1
×
n
2

n
1
=
n
2

n
1
=
n
2
=
5p

n
1
=
n
2
=
5p

n
1
=
n
2

n
1
=
n
2
=
2p

or
2
×
5p

St
ep
s

{ LB
�2
� α

+
1

if
n
1
=
n
2
,

L
B
�2
� α

+
4

ot
he
rw
is
e

L
B
�2
� α

+
2

L
B
�2
� 4

L
B
�2
� 4

L
B
�2
� α

+
2

lo
g 4
5
×
L
B
�2
� 4

3D
Si
ze

n
1
×
n
2
×
n
3

n
1
=
n
2
=
n
3

n
1
=
n
2
=
n
3

N
/A

n
1
=
n
2
=
n
3

n
1
=
n
2
=
2p

=
7p

St
ep
s

{ LB
�3
� α

+
2

if
n
1
=
n
2
=
n
3,

L
B
�3
� α

+
6

ot
he
rw
is
e

L
B
�3
� α

+
2

L
B
�3
� 6

N
/A

L
B
�3
� α

+
4

lo
g 4
7
×
L
B
�3
� 6

k
D Si

ze
∏ k i=

1
n

N
/A

∏ k i=
1�2
k
+
1�
p

N
/A

∏ k i=
1
n

N
/A

St
ep
s

{ LB
�k

� α
if
n
=

�α
+
1�
p
,

L
B
�k

� α
+
k
−
1

ot
he
rw
is
e

N
/A

L
B
�k

� 2k
N
/A

L
B
�k

� 2k
+
2�
k
−
1�

N
/A

k
=

di
m
en
si
on

;
C
S
=

ci
rc
ui
t
sw
itc
hi
ng
;
W
H

=
w
or
m
ho

le
ro
ut
in
g;

D
O

=
di
m
en
si
on

-o
rd
er
ed

ro
ut
in
g;
L
B
�k

� α
=

th
e
lo
w
er

bo
un

d
fo
r
α
-p
or
t
k
D

to
ri
in

L
em

m
a
1.

220 wang et al.

use (i) to “span” the nodes receiving the broadcast message from the source node
to a line of nodes, to a plane of nodes, and then to a cube of nodes. Finally, the
torus is “expanded” back to the original (non-square) torus. Technique (i) makes
our results scalable to torus dimensions, while technique (ii) makes possible solving
the difficult cases where tori are non-square.
The rest of this paper is organized as follows. Preliminaries are given in Section 2.

Our solutions for 2D and 3D tori are in Section 3 and Section 4, respectively.
Section 5 briefly summaries how to extend our results to higher-dimensional tori.
Finally, conclusions are drawn in Section 6.

2. Preliminaries

A kD torus of size n1 × n2 × · · · × nk is an undirected graph denoted as Tn1×n2×···×nk .
Each node is denoted as px1�x2�����xk , 0 ≤ xi < ni, 1 ≤ i ≤ k. Each node is of degree
2k. Node px1�x2�����xk has an edge connecting to p�x1±1�mod n1�x2�����xk along dimension
one, an edge to px1��x2±1�mod n2�����xk along dimension two, and so on. (Hereafter, we
will omit using “mod” whenever the context is clear.)
In the one-to-all broadcast problem, a source node needs to send a message to

the rest of the network. To achieve this, we will construct a sequence of steps,
where a step consists of a number of link-disjoint paths each indicating one message
delivery; paths of different lengths can co-exist in one step, but the correspond-
ing communications are assumed to complete in about the same time due to the
distance-insensitive characteristic of circuit switching. Or, alternatively, a hardware
barrier synchronization such as that supported by CM5 [1, 12] can be used after
each step. An α-port model will be assumed, in which a node can send up to α mes-
sages, and simultaneously receive up to α messages, along any α of its 2k outgoing
and incoming channels, respectively. As in the best case one can multiply the num-
ber of nodes owning the broadcast message by α + 1 after each step, a lower as
follows can be derived.

Lemma 1 In a kD α-port torus Tn1×n2×···×nk , a lower bound on the number of steps
to perform one-to-all broadcast is �logα+1�n1n2� � � � � nk�
.

The following discussion is only concerned with a square Tn×n×···×n torus (exten-
sion to non-square tori, although possible, is unnecessary for the development of this
paper; this will become clear later). We will map Tn×n×···×n into a modulo Euclidean
integer space �k, where � = �0� 1� � � � � n − 1�. We may interchangeably represent
node px1�x2�����xk in Tn×n×···×n as a point �x1� x2� � � � � xk� in �k. A vector in �k is
a k-tuple �v = �v1� v2� � � � � vk�. The ith positive �resp., negative� elementary vector �ei
(resp., �e−i) of �k, i = 1� � � � � k, is the vector with all entries being 0, except the ith
entry being 1 (resp., −1). We may write �ei1 + �ei2 as �ei1� i2 , �ei1 + �e−i2 as �ei1�−i2 , and
similarly �ei1 + · · · + �eim as �ei1�����im . For instance, �e1� 3 = �e1 + �e3 and �e1�−3 = �e1 − �e3.
The linear combination of vectors (say a1�v1 + a2�v2, where a1 and a2 are integers)
follows the typical definitions in linear algebra, except that a “mod n” is implicitly
applied.

circuit-switched broadcasting 221

Definition 1 In �k, given a node x, an m-tuple of vectors B = ��b1� �b2� � � � � �bm�,
and an m-tuple of integers N = �n1� n2� � � � � nm�, we define the span of x by vectors
B and distances N as a set of nodes

SPAN�x�B�N� =
{
x+

m∑
i=1
ai �bi�0 ≤ ai < ni

}
�

Note that the above definition is different from the typical definition of SPAN
in linear algebra [7]. We aim at identifying a portion of the torus. Below are some
examples:

• The main diagonals of Tn×n and Tn×n×n can be written as SPAN�p0� 0� ��e1� 2�� �n��
and SPAN�p0� 0� 0� ��e1� 2� 3�� �n��, respectively.

• The XY -plane passing node p0� 0� i in Tn×n×n is SPAN�p0� 0� i� ��e1� �e2�� �n� n��.
• Tn×n×n can be written in several ways: SPAN�p0� 0� 0� ��e1� 3� �e2� �e1�� �n� n� n�� and
SPAN�p0� 0� 0� ��e1� 3� �e1� 2� �e3�� �n� n� n�� (refer to Figure 7(a) and Figure 8(a),
respectively, for illustrations).

3. Broadcasting in 2D tori

Reference [15] already shows a near-optimal broadcast scheme for wormhole-routed
all-port 2D tori. Below, we first modify the scheme for circuit-switched all-port tori
using even less numbers of steps. We then generalize to other port models. The
discussion is separated into two parts, depending on whether the torus is square or
non-square.

3.1. Square cases

3.1.1. When � = 4. Consider a square 2D Tn×n. Without loss of generality, let
the source node be p0� 0. We denote by M the message to be broadcast.

Stage 1. In this stage, M will be sent to the main diagonal L0 = SPAN�p0� 0,
��e1� 2�� �n��. For simplicity, we temporarily assume that n is a multiple of five, n = 5t.
We regard p0� 0 as the center of L0 and horizontally slice L0 into five segments
Si� i = −2� � � � � 2, each containing t nodes (see Figure 1(a) for an illustration).
With one step, p0� 0 can send M to four nodes p−2t�−2t , p−t�−t , pt� t , and p2t� 2t . The
routing is clearly congestion-free.
Now on each Si� i = −2� � � � � 2� the center node already has M . So we can

recursively execute step 1 on each Si from its center node. This is illustrated in
Figure 1(b). The recursion stops when the length of each Si reduces to one or
zero. When n is not a multiple of 5, we simply make the lengths of Sis as even as
possible. One important invariant is to always keep the nodes already owning M at
the centers of Sis. Overall, this stage takes �log5 n
 steps to complete.

222 wang et al.

Figure 1. The broadcasting steps in a square 2D torus: (a) step 1 of Stage 1, and (b) step 2 of Stage 1,
(c) step 1 of Stage 2, and (d) step 2 of Stage 2.

Stage 2. In this stage, the torus is viewed as n diagonals (i = −� n−12 �, −� n−12 � +
1� � � � � � n−12
)

Li = SPAN�pi� 0� ��e1� 2�� �n��� (1)

For simplicity, we again let n = 5t. With these diagonals, we then partition the torus
into 5 strips Si� i = −2� � � � � 2, such that first strip consists of the first t diagonals
in Eq. (1), the second strip the next t diagonals, and so on. This is illustrated in
Figure 1(c).
In the first step, we let L0 send M to L−2t � L−t � Lt� and L2t . This can be done

by having each node pi� i in L0 send M to nodes pi−2t� i, pi� i+t , pi� i−t , and pi+2t� i.
The communication, as illustrated in Figure 1(c), is clearly congestion-free.
Now on each Si� i = −2 � � � 2, the center diagonal Lit already has M . So we can

recursively repeat step 1 in each Si. The second step is illustrated in Figure 1(d). The
recursion terminates when each Si contains one or zero diagonal. The modification
for n not a multiple of 5 is similar to stage 1. This stage takes �log5 n
 steps to
complete. The result is one step less than that of [15].

circuit-switched broadcasting 223

Theorem 1 In a circuit-switched all-port Tn×n torus, broadcast can be done in
2�log5 n
 steps, which number of steps is at most 1 step more than the lower-bound
Lemma 1.

3.1.2. When � ≤ 3. First, recall Stage 1 of Section 3.1.1, where the diagonal L0 =
SPAN�p0� 0� 0� ��e12�� �n�� is evenly partitioned into five segments recursively. To cope
with the α-port model, α ≤ 3, here only α+ 1 segments should be obtained in each
recursion. The message delivery should be straight-forward. So totally �logα+1 n

steps are needed for the modified Stage 1.
Similarly, the Stage 2 of Section 3.1.1 should be modified to have α + 1 strips

instead of five strips in each recursion. One can easily derive the result. So we have
the following theorem.

Theorem 2 In a circuit-switched α-port Tn×n torus, broadcast can be done in
2�logα+1 n
 steps, which number of steps is at most 1 steps more than the lower-bound
Lemma 1.

3.2. Non-square cases

Consider a non-square torus Tn1×n2 such that n1 < n2. First, we embed a square
dilated tori on the non-square one. Then, we combine the result in Section 3.1.1
and the “squeeze-then-expand” approach in [15] to solve the broadcasting problem.
Intuitively, the torus is squeezed into a square one, on which M is distributed.
Then, the squeezed torus is expanded to the original one, on which M is further
distributed.
Again, a scheme is first proposed for all-port (α = 4) tori. Then, we generalize

to other port models.

3.2.1. When � = 4. We begin with a definition which embeds a square dilated
torus on an non-square one so that we can perform the “squeeze-then-expand”
approach.

Definition 2 [15] Given a non-square torus Tn1×n2 such that n1 < n2, the dilated
torus induced by Tn1×n2 , denoted as T̃n1×n2 , is an n1 × n1 torus consisting of n21 nodes
each denoted by p̃i� j� 0 ≤ i < n1� 0 ≤ j < n1, where p̃i� j = pi� �jn2/n1�.

Intuitively, in the dilated torus T̃n1×n2 , adjacent nodes along the same column are
dilated by � n2

n1
� or � n2

n1

 links in the original torus Tn1×n2 , but there is no dilation

for adjacent nodes along the same row. For instance, in Figure 2(a) a non-square
Tn1×n2 is “squeezed” into a square T̃n1×n2 , with n1 nodes in each side. Now that
T̃n1×n2 is a square torus, we can use it almost like an ordinary torus based on the
distance-insensitive characteristic of circuit switching.
Below, we use four stages to perform broadcast. We temporarily assume that

n1 is even. The first two stages will distribute M to every alternatively diagonal

224 wang et al.

R checks

N checks

sending node

receiving node

new R checks

new N checks

Figure 2. (a) A torus which is considered as a checkerboard after performing stage 2. Here we assume
n1 = 6. (b) The communication pattern in a step for R-marked checks. (c) The new checkerboard with
smaller checks after performing the step in part (b).

of T̃n1×n2 . (As mentioned earlier, the torus is squeezed into a square one, on which
M is distributed.) The last two stages disseminate M to all nodes in Tn1×n2 . (Also
mentioned intuitively, the squeezed torus is expanded to the original one, on which
M is further distributed.) At the end, we will comment on the case of n1 being
odd. As this part is extended from [15], whenever the result of [15] is borrowed, the
reader is referred to that paper for more details.

Stage 1. Distribute the broadcast message to SPAN�p̃0� 0� ��e1� 2�� �n1�� (i.e., the
main diagonal) of T̃n1×n2 , by applying Stage 1 in Section 3.1.1 to T̃n1×n2 . This takes�log5 n1
 steps.

Stage 2. The goal of this stage is to send M to the following n1
2 diagonals:

SPAN�p̃2i�0� ��e1� 2�� �n1��� i = 0� � � � � n12 − 1 (i.e., alternative diagonals). This can
be done by having SPAN�p̃0� 0� ��e1� 2�� �n1�� send M to the four diagonals that
are ≈ − 2n2

5 �− n2
5 �

n2
5 , and

2n2
5 hops away, and repeat this process recursively (similar

to Section 3.1.1). This stage takes �log5 n12
 steps.

Stage 3. This stage borrows the result in [15]. We regard Tn1×n2 as a checkerboard
which contains n21 checks. The checkerboard is formally defined below.

Definition 3 [15] In Tn1×n2 , each smallest submesh in which the lower-left and
upper-right corner nodes are the only two nodes that have received the broadcast
message is regarded as a check marked by R (r

¯
eceived). Excluding the R-marked

circuit-switched broadcasting 225

checks, the rest of the checkerboards are considered as a number of checks marked
by N (n

¯
on-received).

For instance, Figure 2(a) illustrates a torus (with n1 = 6) after performing Stage 2.
Only three alternative diagonals have received M . So each R-marked check’s lower-
left and upper-right corners must match with two consecutive nodes in some dilated
diagonal. The rest of the checkerboard are all marked by N. Note that R-marked
checks and N-marked checks must interleave with each other in Tn1×n2 [15].
With the checkerboard structure, we will recursively increase the number of

checks and decrease size of checks, until the height of each check is less than 5
(height = the number of links along the y-axis). Below, we show one recursive step.
Consider any R-marked check of height h ≥ 5 with its lower-left corner being px� y
and upper-right corner being px′� y ′ . For simplicity, let the height h = 5t (a multiple
of five). We perform the following communications: (i) px� y sends two messages to
nodes px+t� y+t and px� y+2t , and (ii) px′� y ′ sends two messages to nodes px′−t� y ′−t
and px′� y ′−2t . The communication is illustrated in Figure 2(b).
After this step, each R-marked check will be partitioned into five smaller checks,

three of which marked R and two of which marked N. Similarly, each N-marked
check is partitioned into five smaller checks, but only two of them are marked R,
and the rest three N. For instance, the four checks in Figure 2(b), after performing
this step, will be partitioned into 20 smaller checks as shown in Figure 2(c). The
above recursion is repeated until the height of every check is less than 5. The total
number of steps required in this stage is �log5 n2n1
 − 1.

Stage 4. It remains to distributeM to every un-received node in R-marked checks.
One possible solution is shown in Figure 3. As each N-marked check is surrounded
by R-marked checks, this implies the completion of broadcast. The number of steps
required is at most two.

Comment. When n1 is odd, the alternative diagonals used in Stage 2 are not well-
defined. So we first translate Tn1×n2 into a smaller torus T�n1−1�×n2 , by removing
any column in the former, using the dilation concept. Then, apply Stages 1–4 on
T�n1−1�×n2 . Finally, send M to nodes on the removed column using one step.

Figure 3. The message distribution in an R-marked check of height 1, 2, 3, and 4.

226 wang et al.

Theorem 3 In a circuit-switched all-port Tn1×n2 torus such that n1 < n2, broadcast
can be done within

�log5 n1
 +
⌈
log5

n1
2

⌉
+

⌈
log5

n2
n1

⌉
+ c

steps, where c = 1 (resp., 2) when n1 is even (resp., odd), which number of steps is at
most 3 (resp., four) more than the lower bound in Lemma 1.

3.2.2. When � = 3. Below, we modify the all-port algorithm in Section 3.2.1 for
a 3-port model. The main difficulty is in redefining Definition 2 (dilated torus) and
Definition 3 (check structure). In the following discussion, we assume that n1 is
even, with the understanding that one more step is required when n1 is odd (refer
to the comment at the end of Section 3.2.1). Also, to avoid the tedium of using
floor and ceiling functions, we assume that n2 is a multiple of n1.

Definition 4 Given a non-square torus Tn1×n2 such that n1 < n2, the dilated torus
induced by Tn1×n2 , denoted as T̂n1×n2 , is an n1 × n1 torus consisting of nodes from
the following four n1

2 × n1
2 tori:

T0� 0 = SPAN�p0� 0� B2�N2��
T1� 0 = SPAN�p1� 0� B2�N2��
T0� 1 = SPAN�p0� 4

3
n2
n1
� B2�N2��

T1� 1 = SPAN�p1� 4
3
n2
n1
� B2�N2��

where B2 = �2�e1� 2n2
n1

�e� and N2 = � n12 � n12 �. T̂n1×n2 has n21 nodes which are denoted
by p̂i� j , for i� j = 0� � � � � n1 − 1.

Intuitively, the dilated torus in Definition 4 is partitioned into four sub-tori, each
being dilated two times longer and having half of the nodes in each dimension than
the earlier one in Definition 2. For instance, Figure 4(a) shows the four dilated tori
in an n1 × n2 torus (n1 = 6). Naturally, T̂n1×n2 still has n1 diagonals. However, we
now do not have “straight” diagonals as opposed to Figure 2.
Broadcasting is still done in four stages with similar philosophy.

Stage 1. Spread M to SPAN�p̂0� 0� ��e1� 2�� �n1��, by applying the Stage 1 in
Section 3.1.2. This takes �log4 n1
 steps.

Stage 2. Spread M to n1
2 diagonals, SPAN�p̂2i� 0� ��e1� 2�� �n1��� 0� � � � � n12 − 1, by

applying the Stage 2 of Section 3.1.2. This takes �log4 n12
 steps. Now, nodes of
T0� 0 and T1� 1 already have M .

Stage 3. This stage is based on the recursive structure below. First, we regard the
torus Tn1×n2 as a checkerboard using Definition 3. We further classify R-marked
checks on the checkerboard as follows (see Figure 4(a) for an example).

circuit-switched broadcasting 227

Figure 4. (a) A 3-port Tn1×n2 which is considered as four dilated n1
2 × n1

2 tori (n1 = 6). The lines in
bold are the alternative diagonals used in Stage 2. (b) The communication pattern in a recursive step of
Stage 3. (c) The new checkerboard with four smaller rectangles after performing the step in part (b).

Definition 5 A check marked by R is classified as Reven if its lower-left node’s
index along the x-axis is even, and classified as Rodd otherwise.

The recursion should proceed as long as the sum of the heights of two consecutive
Reven and Rodd is ≥ 8. Let’s consider two consecutive Reven, Rodd checks, and two
neighboring N checks that form a rectangle (refer to Figure 4(b)). For ease of
presentation, let the height h of the rectangle be a multiple of eight, h = 8t. We
perform the following communications:

• for each px� y located at the lower-left corner of a Reven-check, px� y sends three
messages to px� y+2t , px� y−2t , and px+1� y+ 4

3 t
, and

• for each px� y located at the lower-left corner of a Rodd-check, px� y sends three
messages to nodes px� y+2t , px� y−2t , and px−1� y+ 4

3 t
.

After this step, the rectangle will be partitioned into four smaller rectangles as
shown in Figure 4(c). The recursion maintains an important invariant:

I1. The ratio of the height of Reven-checks and the height of Rodd-checks is (or
close to) 2 � 1.

To prove, first observe that I1 already holds true from Definitions 4 and 5. Further-
more, the communication step maintains this invariant.

228 wang et al.

Figure 5. (a) Sending M in a Reven-check of heights 1, 2, 3, and 4, and (b) sending M in a Rodd-check
of heights 1, 2, and 3.

The above recursion is repeated until the height of every rectangle is less than 8.
As the initial height of the first rectangle is upper-bounded by � 2n2

n1

 and the rect-

angle height is reduced by a factor of 4 after each recursion, this stage will take
�log4 2n2

n1

 − 1 steps.

Stage 4. At the end of Stage 3, it is possible to manage the height of each Reven
and Rodd checks not exceeding 4 and 3, respectively. For each possible height, we
show one possible solution in Figure 5 to sendM to nodes in Reven and Rodd checks.
Note how the 3-port model is observed in the communication. Also note that no
communication is scheduled for N checks as their boundaries must be parts of some
Reven- and Rodd-checks. The number of steps required is at most two.

Theorem 4 In a circuit-switched non-square 3-port Tn1×n2 torus such that n1 < n2,
broadcast can be done within

�log4 n1
 +
⌈
log4

n1
2

⌉
+

⌈
log4

2n2
n1

⌉
+ c

steps, where c = 1 (resp. 2) when n1 is even (resp. odd), which number of steps is at
most 4 (resp. 5) steps more than the lower bound in Lemma 1.

3.2.3. When � = 1 and = 2. As our scheme follows a dimension-by-dimension
approach, when α = 1 or 2, the rows/columns of the torus already give a natural
solution. So a simple recursive doubling/tripling on rows and columns of the torus
will do the job.

4. Broadcasting in 3D tori

Next, we extend our results to α-port 3D tori. Similar to Section 3, we will span the
nodes receiving M from the source to a line of nodes, to a plane of nodes, and then

circuit-switched broadcasting 229

to the whole torus. We extend the “squeeze-then-expand” approach in [15] for 2D
tori to 3D tori. The case of α being odd will bring more difficulty to the “expand”
part. We will propose a general solution to it.
The cases of α = 1 and 2 can be solved trivially as commented in Section 3.2.3.

So the following discussion will focus on the α ≥ 3 cases.

4.1. Square cases

4.1.1. When � = 6. Consider a 3D Tn×n×n with any n. Without loss of generality,
let p0� 0� 0 be the source node. The basic idea is to distribute the broadcast message
M in three stages: (i) from p0� 0� 0 to the line SPAN�p0� 0� 0� ��e1� 3�� �n��, (ii) from
the above line to the plane SPAN�p0� 0� 0� ��e1� 3� �e1� 2�� �n� n��, and then (iii) from
the above plane to the whole torus. For simplicity, we may use X-, Y -, and Z-axes
to refer to the first, second, and third dimensions, respectively.

Stage 1: From the source node to a line. To send M to L0 = SPAN�p0� 0� 0� ��e1� 3�,
�n��, we use the following recursive structure. For simplicity, let n be a multiple
of 7, n = 7t. We view L0 as consisting of n nodes pi� 0� i, i = −� n−12 ��−� n−12 � +
1� � � � � � n−12
. We then partition L0 horizontally into 7 segments Sj� j = −3� � � � � 3,
such that the first segment consists of the first t nodes, the second segment the next
t nodes, etc. Let’s identify the center node of Sj as mj . In one step, node m0 can
forward M to m±1�m±2�m±3, as illustrated in Figure 6.
Clearly, we can recursively distributeM to nodes of Sj from mj� j = −3 � � � 3. This

stage will take �log7 n
 steps to complete.

Figure 6. Stage 1 of broadcasting in a square 3D torus: the first step.

230 wang et al.

Stage 2: From a line to a plane. In this stage, M will be distributed from the L0
to the plane P0 = SPAN�p0� 0� 0� ��e1� 3� �e2�� �n� n��. However, we view the plane as
consisting of n lines:

Li= SPAN�pi� i� 0� ��e1� 3�� �n���
i=−

⌊
n−1
2

⌋
�−

⌊
n−1
2

⌋
+ 1� � � � �

⌈
n−1
2

⌉
�

(2)

See Figure 7(a) for an illustration.
It is easy to send messages from a line to another parallel line in one commu-

nication step. For instance, to deliver messages from line SPAN�p0� 0� 0� ��e1� 3�� �n��

Figure 7. Stage 2 of broadcasting in a square 3D torus: (a) viewing the torus from the perspective P0 =
SPAN�p0� 0� 0� ��e1� 3� �e2� �e1�� �n� n� n�� which is partitioned into seven strips, and (b) the communication
pattern in one step.

circuit-switched broadcasting 231

to line SPAN�p2� 3� 4� ��e1� 3�� �n��, we simply let each pi� 0� i (of the former line) send
to pi+2� 3� i+4 (of the latter line). One can easily generalize this to a line sending to
six other parallel lines in one step.
This stage is based on a recursive structure as follows. For simplicity, let n = 7t.

We partition the plane P0 into seven strips Sj� j = −3� � � � � 3, such that S−3 consists
of the first t lines in Eq. (2), S−2 the next t lines, etc. (refer to Figure 7(b)). By
having each pi� 0� i ∈ L0 send M to the following six nodes:

pi+t� t� i� pi� 2t� i−2t � pi� 3t� i−3t � pi−t�−t� i� pi�−2t� i+2t � pi�−3t� i+3t �

we can distribute M to the following six lines in one step:

L±t = SPAN�p±t�±t� 0� ��e1� 3�� �n���
L±2t = SPAN�p0�±2t�∓2t � ��e1� 3�� �n���
L±3t = SPAN�p0�±3t�∓3t � ��e1� 3�� �n���

This communication step, as illustrated in Figure 7(b), is congestion-free. The result-
ing line Ljt is on the central line of Sj for all j = −3� � � � � 3. To see this, let’s prove
the case of L2t :

L2t = SPAN�p0� 2t�−2t � ��e1� 3�� �n���
= SPAN�p0� 2t�−2t + 2t�e1� 3� ��e1� 3�� �n���
= SPAN�p2t� 2t� 0� ��e1� 3�� �n���
∈ P0�

which is indeed the central plane of S2. The other cases can be proved similarly.
Next, we can recursively perform the similar line-to-line distribution in each Sj

using Ljt as the source. The recursion is repeated until each Sj is reduced to one
or zero line. This stage takes �log7 n
 steps to complete.

Stage 3: From a plane to more planes. In this stage, we view the torus from
another perspective:

SPAN�p0� 0� 0� ��e1� 3� �e1� 2� �e1�� �n� n� n��� (3)

which is illustrated in Figure 8(a). With this view, we partition the torus along the
direction �e1 into n planes:

Pi = SPAN�pi� 0� 0� ��e1� 3� �e1� 2�� �n� n��� i = −
⌊
n− 1
2

⌋
� � � � �

⌈
n− 1
2

⌉
� (4)

For simplicity, let n = 7t. Following the same philosophy as before, we divide the
torus into seven cubes Cj� j = −3� � � � � 3, such that the first cube consists of the
first t planes, the second cube the next t planes, etc. This is shown in Figure 8(b).

232 wang et al.

Figure 8. (a) Viewing the torus from the perspective SPAN�p0� 0� 0� ��e1� 3� �e1� 2� �e1�� �n� n� n��, and (b)
partitioning the torus into seven cubes Cj� j = −3� � � � � 3.

The central plane P0 in Eq. (4) already owns message M . In this stage, plane-to-
plane message distribution will be performed. For instance, if every node on plane
SPAN�p0� 0� 0� ��e1� 3� �e1� 2�� �n� n�� sends M along the Y - and Z-axes to nodes that
are +3 and +5 hops way, respectively, then two planes will receive M:

SPAN�p0� 3� 0� ��e1� 3� �e1� 2�� �n� n�� = SPAN�p−3� 0� 0� ��e1� 3� �e1� 2�� �n� n�� = P−3

SPAN�p0� 0� 5� ��e1� 3� �e1� 2�� �n� n�� = SPAN�p−5� 0� 0� ��e1� 3� �e1� 2�� �n� n�� = P−5�

Thus, by having each node pa� b� c ∈ P0 send M to the following six nodes:

pa+t� b� c� pa� b−2t� c� pa� b� c−3t � pa−t� b� c� pa� b+2t� c� pa� b� c+3t �

we can distribute M to six other planes in one step:

Pjt = SPAN�pjt� 0� 0� ��e1� 3� �e1� 2�� �n� n��� j = −3 � � � 3�

The resulting planes Pjt is the central plane of Cj for all j = −3 � � � 3.
Next, we can recursively perform the similar plane-to-plane distribution in each

Cj using Pjt as the source. Totally this stage takes �log7 n
 steps.

Theorem 5 In a circuit-switched all-port Tn×n×n torus, broadcast can be done in
3�log7 n
 steps, which number of steps is at most two steps more than the lower bound
in Lemma 1.

4.1.2. When 3 ≤ � ≤ 5. For an α-port torus Tn×n×n, 3 ≤ α ≤ 5, we mod-
ify the scheme developed in Section 4.1.1 as follows. In Stage 1, the line
L0 = SPAN�p0� 0� 0� ��e12�� �n�� is evenly partitioned into α + 1 segments recur-
sively. The message is delivered from source node to one representative node of
each segment recursively. At the end of recursion, the nodes in L0 receive the mes-
sage. Similarly, in Stage 2, the plane P0 = SPAN�p0� 0� 0� ��e1� 3� �e1� 2�� �n� n�� is evenly
partitioned into α+ 1 strips recursively. We can recursively distribute the message
from L0 to one representative line of nodes in each strip. Eventually, the plane P0
receives the message. In Stage 3, the torus SPAN�p0� 0� 0� ��e1� 3� �e1� 2� �e1�� �n� n� n��
is evenly partitioned into α + 1 cubes recursively. The message delivery should be
straight-forward.

circuit-switched broadcasting 233

Theorem 6 In a circuit-switched α-port Tn×n×n torus, broadcast can be done in
3�logα+1 n
 steps, which number of steps is at most two steps more than the lower
bound in Lemma 1.

4.2. Non-square cases

Consider a non-square and α-port torus Tn1×n2×n3 , 3 ≤ α ≤ 6. Without loss of gen-
erality, let n1 = min�n1� n2� n3�. Similar to Section 3.2, we assume that n1 is even;
otherwise, we can translate the torus into T�n1−1�×n2×n3 , which will require one more
step to perform broadcast.
As before, we will “squeeze” the torus into a square one and then “expand” it

back. As will be seen later, the “expand” part is more difficult, especially when α
is odd.

4.2.1. When � is even. Here, our approach is still based on recursively partitioning
lines/planes/cubes into α + 1 parts. Below we first discuss the case of α = 6. The
case of α = 4 can be solved similarly and we will briefly comment on it at the end
of this section.
To support the “squeeze-then-expand” approach, we first define a dilated tori as

follows.

Definition 6 The dilated torus induced by Tn1×n2×n3 , denoted as Ťn1×n2×n3 , is an
n1 × n1 × n1 torus consisting of n31 nodes each denoted as (0 ≤ i� j� k < n1):

p̌i� j� k = pi� �jn2/n1�� �kn3/n1��

Intuitively, in Ťn1×n2×n3 , adjacent nodes along the same y-axis (resp., z-axis) are
dilated by � n2

n1
� or � n2

n1

 (resp., � n3

n1
� or � n3

n1

) links in the original torus Tn1×n2×n3 , but

there is no dilation along the x-axis. On Ťn1×n2×n3 , we further define two (dilated)
subtori:

Ť0� 0� 0 = SPAN

(
p̌0� 0� 0� �2�e1� 2�e2� 2�e3��

(
n1
2
�
n1
2
�
n1
2

))
�

Ť1� 1� 1 = SPAN

(
p̌1� 1� 1� �2�e1� 2�e2� 2�e3��

(
n1
2
�
n1
2
�
n1
2

))
�

That is, Ť0� 0� 0 and Ť1� 1� 1 are dilated by two links along each dimension in Ťn1×n2×n3 .
Assuming p̌0� 0� 0 as the source node, the broadcast is done in five stages.

Stage 1. The source p̌0� 0� 0 sends M to p̌1� 1� 1.

Stage 2. Node p̌0� 0� 0 performs broadcast on Ť0� 0� 0, and node p̌1� 1� 1 performs
broadcast on Ť1� 1� 1. This can be done in parallel as Ť0� 0� 0 and Ť1� 1� 1 are inde-
pendent of each other. We can apply the scheme in Section 4.1.1, which will take
3�log7 n12
 steps to complete.

234 wang et al.

Figure 9. (a) Four types of unit cubes and (b) the geometric relationship of these four types of unit
cubes.

Stage 3. After stage 2, there are 1/4 nodes on Ťn1×n2×n3 already having M . If we
look at each unit cube (size 1 × 1 × 1) in Ťn1×n2×n3 , two out of eight nodes in the
unit cube already have M . According the distribution of the nodes having M , we
can classify a unit cube into four types, as shown in Figure 9(a). In Figure 9(b),
we further show the geometric relationship of these four types of unit cubes in the
torus.
Now we show how the recursion proceeds in one step. On each unit cube of

type I, let its two corner nodes already owning M be: px� y� z and px′� y ′� z′ (refer to
Figure 10). Let the width of the unit cube on the original torus be w = y ′ − y. The
recursion should proceed as long as w ≥ 7. For ease of presentation, suppose w is
a multiple of 7, w = 7t. Then we perform the following communications:

• px� y� z sends M to three nodes px� y+2t� z� px� y+4t� z, and px� y+6t� z, and
• px′� y ′� z′ sends M to three nodes px′� y ′−2t� z′� px′� y ′−4t� z′ , px′� y ′−6t� z′ .

The communication is illustrated in Figure 10(a).
Now observe the type I unit cube in Figure 10(a). More nodes have receivedM . If

we consider the pattern of the nodes owningM , then after the above communication
step the unit cube can be further partitioned into seven smaller unit cubes, four of
which are of type I and three of which are of type III. Similarly, the type II, III,
and IV unit cubes in Figure 10(a) are now each partitioned into seven more smaller

Figure 10. (a) The communication pattern of one step in a type I unit cube. (b) Each unit cube is
partitioned into seven smaller unit cubes after performing the step in (a).

circuit-switched broadcasting 235

cubes of different types. The rest is shown in Figure 10(b). An interesting property
is that there are now totally 28 smaller unit cubes (which are evenly distributed to
each type) obtained after the communication step. Also, the width of each cube
along the Y axis is reduced by a factor of about 1

7 . As the initial value of w is no
more than � n2

n1

, the total number of steps required in this stage is �log7 n2n1
 − 1.

Stage 4. Let’s summarize what we have done in stage 3. In stage 3, we have
“expanded” Ťn1×n2×n3 from one with n31 unit cubes to one with more unit cubes
along the Y -axis. Furthermore, each unit cube is dilated along the Y -axis by no
more than six links. In this stage, we will further “expand” the torus such that each
unit cube is dilated along the Z-axis by no more than six links, too.
Now we show how the recursion proceeds in one step. The geometric relationship

of unit cubes is shown in Figure 11(a). On each unit cube of type I, let its two
corner nodes already owning M be: px� y� z and px′� y ′� z′ (refer to Figure 11(b)). Let
the height of the unit cube be h = z′ − z. The recursion should proceed as long
as h ≥ 7. For ease of presentation, suppose h is a multiple of 7, h = 7t. Then we
perform the following communications:

• px� y� z sends three messages to nodes px� y+2t� z� px� y+4t� z, and px� y+6t� z.
• px′� y ′� z′ sends three messages to nodes px′� y ′−2t� z′� px′� y ′−4t� z′ , and px′� y ′−6t� z′ .

The communication is illustrated in Figure 11(b).

Figure 11. (a) The geometric relationship of eight neighboring unit cubes. (b) The communication
pattern in one step for a type I unit cube. (c) and (d) Each unit cube is partitioned into seven smaller
new cubes after performing the step in (a).

236 wang et al.

Figure 12. The message distribution in a type I unit cube which is a 2 × 7× 7 mesh.

After the communication step, more nodes will own M . Using the pattern in
Figure 9, we can define new unit cubes. The result is shown in Figure 11(c) and (d),
where one can see that each unit cube is now partitioned into seven smaller unit
cubes.
The above recursion is repeated until h < 7. As the initial value of h is no more

than � n3
n1

, the total number of steps required is �log7 n3n1
 − 1.

Stage 5. After Stage 4, each unit cube of type I is dilated by at most six links
along each of Y and Z axes (there is no dilation along the X-axis). So there are 36
possible sizes of the cube. Due to space limitation, we only show how the largest
case is solved in Figure 12. This stage takes at most three steps.

Theorem 7 In a circuit-switched 6-port non-square torus Tn1×n2×n3 , broadcast can be
done within

3
⌈
log7

n1
2

⌉
+

⌈
log7

n2
n1

⌉
+

⌈
log7

n3
n1

⌉
+ c

steps, where c = 2 (resp., 3) when n1 is even (odd), which number of steps is at most
five (six) steps more than the lower bound in Lemma 1.

Comment. When α = 4, the communication patterns in Stages 3 and 4 should be
modified to ones as shown in Figure 13. As can be seen, each unit cube is partitioned
into 5, instead of 7, more smaller unit cubes after each communication step. Also,
the recursion should be proceeded as long as the value of w or h is larger than 4.

Theorem 8 In a circuit-switched 4-port torus Tn1×n2×n3 , broadcast can be done within

3
⌈
logα+1

n1
2

⌉
+

⌈
logα+1

n2
n1

⌉
+

⌈
logα+1

n3
n1

⌉
+ c

steps, where c = 2 (resp., three) when n1 is even (resp., odd), which number of steps
is at most five (resp., six) steps more than the lower bound in Lemma 1.

circuit-switched broadcasting 237

Figure 13. The communication patterns of Stages 3 and 4 in 4-port tori: (a) the communication pattern
of one step in Stage 3, (b) each unit cube is partitioned into five smaller unit cubes after performing the
step in (a), (c) the communication pattern of one step in Stage 4 and each unit cube is partitioned into
five smaller unit cubes after performing the step in the leftmost of (c).

4.2.2. When � is odd. Earlier, when α is even, we used the concept of unit cube
in a recursive manner. After one recursive step, the number of nodes owning M in
a unit cube remains as an even number. This is important to maintain the recursive
structure. When α is odd, in order to maintain such structure, we have to redefine
the dilated torus. To avoid the tedium of using floor and ceiling functions, we assume
that n2 and n3 are each a multiple of n1.

Definition 7 Given a non-square torus Tn1×n2×n3 , the dilated torus induced by
Tn1×n2×n3 , denoted as T̆n1×n2×n3 , is an torus consisting of nodes from the follow-
ing eight n1

2 × n1
2 × n1

2 tori:

Ta� b� c = SPAN
(
pa� b α+1α

n2
n1
� c α+1α

n3
n1
� B3�N3

)
�

where a� b� c = 0 � � � 1, B3 = �2�e1� 2n2
n1

�e2� 2n3
n1

�e3� and N3 = � n12 � n12 � n12 �. T̆n1×n2×n3 has
n31 nodes, which are denoted by p̆i� j� k for i� j� k = 0� � � � � n1 − 1.

One important property of this definition is that the ratio of the dilations on
the Y axis is �α + 1� � �α − 1�, and that the ratio of the dilations on the Y -axis

238 wang et al.

Figure 14. Illustration of Definition 7.

is �α + 1� � �α − 1�, too. Recall Section 3.2.2 (3-port, 2D torus), the dilated torus
is comprised of sub-tori (T0� 0� T0� 1� T1�0� T1� 1). Here for a 3D torus, we use eight
sub-tori. Figure 14 illustrates this definition.
Let p̆0� 0� 0 be the source node. There are five stages to perform broadcast.

Stage 1. Node p̆0� 0� 0 sends M to p̆1� 1� 1.

Stage 2. Node p̆0� 0� 0 and node p̆1� 1� 1 concurrently perform broadcast on T0� 0� 0
and T1� 1� 1, respectively, by applying the result in Section 4.1.2. This takes
3�log�α+1� n12
 steps.

Stage 3. In this stage, we will “expand” nodes owning M along the Y axis. From
nodes already owning M , we can define a number of unit cubes as in the previous
section. Also, according to the distribution of the nodes owning M , we can classify
the unit cubes into four types, I, II, III, and IV, according to Figure 9(a).
Now consider two consecutive unit cubes of type I as shown in Figure 15(a). Let

px� y� z, px′� y ′� z′ , px′′� y ′′� z′′ be the nodes already owning M . We can assume without
loss of generality that px� y� z is a node in T0� 0� 0, and px′� y ′� z′ one in T1� 1� 1. By
Definition 7, it must be that �y ′ − y� � �y ′′ − y ′� ≈ �α + 1� � �α − 1�. For easy of
presentation, let y ′′ − y be a multiple of 2�α + 1�. Then we perform the following
communication: �i = 1 � � � α−12 and j = 1 � � � α+12 �.

• px� y� z sends α+1
2 messages to nodes px� y+2it� z,

• px′� y ′� z′ sends α+1
2 messages to nodes px′� y ′−2it� z′ and α−1

2 messages to nodes
px′� y ′+2jt� z′ ,

• px′′� y ′′� z′′ sends α−1
2 messages to nodes px′′� y ′′−2jt� z′′ .

circuit-switched broadcasting 239

Figure 15. One communication step of Stage 3 in eight neighboring unit cubes: (a) the communication
pattern of 5-port tori and (b) each unit cube is partitioned into six smaller cubes after one step; (c) the
communication pattern of 3-port tori and (d) each unit cube is partitioned into four smaller cubes after
one step.

For instance, assuming α = 3, Figure 15(a) shows the communication paths.
Apparently, after this step, each unit cube will be partitioned into a number of
smaller unit cubes. In this example, each unit cube will generate three or five smaller
unit cubes. In Figure 15(b), it is shown that totally 32 smaller cubes are generated
from the eight larger cubes.
As another example, Figures 15(c) and (d) show the case of α = 5. In general,

the number of unit cubes will be multiplied by a factor of α + 1 after each com-
munication step. In order to regularly reduce the size of unit cubes, the recursion
should maintain an important invariant:

I2. For any two consecutive unit cubes of type I, the ratio of the width of the
larger cube to that of the smaller one should be approximately �α+ 1� � �α− 1�.

To prove that our approach follows this invariant, one can first verify Definition 7
and then the communication pattern given above.
The recursion is repeated until y ′′ − y < 2�α+ 1�. This stage takes �log�α+1� 2n2

n1

−

1 steps to complete.

240 wang et al.

Stage 4. This Stage is similar to Stage 3, except that we want to “expand” the
nodes owning M along the Z axis. The derivation is similar to Stage 3 and we omit
the details.

Stage 5. Now each unit cube of type I will be of width at most α+ 1 and of height
at most α+ 1. The approach is similar to the Stage 5 of Section 4.2.1, so we omit
the details. This stage takes three steps.

Theorem 9. In a circuit-switched α-port 3D torus Tn1×n2×n3 such that α is odd, broad-
cast can be done in

3
⌈
logα+1

n1
2

⌉
+

⌈
logα+1

2n2
n1

⌉
+

⌈
logα+1

2n3
n1

⌉
+ c

steps, where c = 2 (resp., 3) when n1 is even (resp. odd), which number of steps is at
most six (resp., 7) steps more than the lower bound in Lemma 1.

5. Extensions to higher-dimensional tori

In this section, we briefly show how to extend the result to a kD torus Tn1×n2×···×nk .
If the torus is square, then a dimension-by-dimension approach can be used to
distribute M . Otherwise, assuming the first dimension to be the one of smallest
length, we can first “squeeze” the torus into a square, dilated one Tn1×···×n1 . Then
we try to reduce the dilation along the 2nd, 3rd, � � � � kth dimensions one by one.
If the number of ports α is even, then we can simply partition the torus into sub-
networks of even size. Otherwise, an invariant similar to I2 should be developed so
that the recursion can proceed.

6. Conclusions

In this paper, we have presented a systematic solution to solve the broadcasting
problem in an α-port torus of any dimension and any size with circuit switching.
The problem has posed a great challenge because a good solution should try to
utilize as many of the available ports as possible. Further, when the torus is non-
square, we should try to distribute the broadcast message to nodes in the network
as evenly as possible to avoid congestion in the subsequent communications. The
“dimension-by-dimension” and “squeeze-then-expand” approaches proposed in this
paper have successfully conquered these difficulties and have delivered performance
very close to the lower bound of this problem.

References

1. CM-5 technical summary. Thanking Machines Corp., 1991.
2. V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C. T. Ho, S. Kipmis, and Snir. CCL: A portable

and tunable collective communication library for scalable parallel computers. In International Parallel
Processing Symposium, Cancun, Mexico, pp. 835–843, April 1994.

circuit-switched broadcasting 241

3. C.-T. Ho and M.-Y. Kao. Optimal broadcasting in all-port wormhole-routed hypercubes. IEEE Trans-
actions on Parallel and Distributed Systems, 6(2):200–204, 1995.

4. S.-K. Lee and J.-Y. Lee. Optimal broadcast in α-port wormhole-routed mesh networks. In Interna-
tional Conference on Parallel and Distributed Systems, pp. 109–114, 1997.

5. P. K. McKinley, Y.-J. Tsai, and D. F. Robinson. Collective communication in wormhole-routed mas-
sively parallel computers. IEEE Computers, 28(12):39–50, 1995.

6. Message Passing Interface Forum. Document for standard message-passing interface, November
1993.

7. W. K. Nicholson. Linear Algebra with Applications, 3rd ed. PWS Publishing Company, 1995.
8. S. F. Nugent. The iPSC/2 direct-connect technology. In Proceedings of 3rd ACM Conference on Hyper-

cube Concurrent Computers and Applications, pp. 51–60, 1988.
9. J. L. Park and H.-A. Choi. Circuit-switched broadcasting in tori and meshes networks. IEEE Trans-

actions on Parallel and Distributed Systems, 7(2):184–190, 1996.
10. J. L. Park, S.-K. Lee, and H.-A. Choi. Circuit-switched broadcasting in d-dimensional torus and

mesh networks. In International Parallel Processing Symposium, pp. 26–29, 1994.
11. J. G. Peters and M. Syska. Circuit-switched broadcasting in torus networks. IEEE Transactions on

Parallel and Distributed Systems, 7(3):246–255, 1996.
12. R. Ponnusamy, A. Choudhary, and G. Fox. Communication overhead on CM5: an experimental

performance evaluation. In Symposium on Frontiers of Massively Parallel Computation, pp. 108–115,
1992.

13. D. F. Robinson, P. K. Mckinley, and B. H. C. Cheng. Optimal multicast communication in wormhole-
routed torus networks. IEEE Transactions on Parallel and Distributed Systems, 6(10):1029–1042, 1995.

14. Y.-J. Tsai and P. K. McKinley. A broadcasting algorithm for all-port wormhole-routed torus net-
works. IEEE Transactions on Parallel and Distributed Systems, 7(8):876–885, 1996.

15. Y.-C. Tseng. A dilated-diagonal-based scheme for broadcast in a wormhole-routed 2d torus. IEEE
Transactions on Computing, 46:947–952, 1997.

16. Y.-C. Tseng, S.-Y, Ni, and J.-P. Sheu. Toward optimal complete exchange on wormhole-routed tori.
IEEE Transactions on Computing, 48(10):1065–1082, 1999.

17. C.-M. Wang and C.-Y. Ku. A near-optimal broadcasting algorithm in all-port wormhole-routed
hypercubes. In ACM International Conference on Supercomputing, pp. 147–153, 1995.

18. S.-Y. Wang and Y.-C. Tseng. Algebraic foundations and broadcasting algorithms for wormhole-
routed all-port tori. IEEE Transactions on Computing, 49(3):246–258, 2000.

