
Parallel Computing 13 (1990) 235-243
North-Holland

235

Short Communication

Data mapping of linear programming
on fixed-size hypercubes

Gen-Huey CHEN
Department of Computer Science and Information Engineering, National Taiwan University,
Taiwan, Republic of China

Taipei,

Hong-Fa HO
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China

Shieu-Hong LIN
Department of Computer Science and Information Engineering, National Taiwan University,
Taiwan, Republic of China

Taipei,

Jang-Ping SHEU
9epartmont of Electrical Engineering, National Central University, Chung.Li, Taiwan, Republic of China

Received January 1989
Revised June 1989

Abstract. Although many solution methods are available for the linear programming problem, the simplex
method is undoubtedly the most widely used one for its simplicity. In this paper, we propose an implementation
of the simplex method on freed-size hypercubes. A partitioning technique and a mapping technique are
presented to fit largo- ~sL~ problem instances into relatively small-size hypercubes. Two cases, pipelined
broadcasting allowed and pipelined broadcasting not allowed, are considered. We show that the proposed
implementation achieves the linear speedup asymptotically for both cases. Also, under the given mapping
method, we discuss how to partition data so as to minimize the total run time arid the communication time. We
derive sufficient conditions for optimal partitionings. These sufficient conditions are helpful to obtain better
partitionings. The optimal partitioning is obtained for a special case.

Ke~oMs. Linear programming, simplex method, data mapping, hypercubes.

1. Introduction

Linear programming is a fundamental problem in operations research and has received much
attention for its importance. Mathematically, this problem can be formulated in standard form
[5] as follows:

z - c x , (1)
subject to A x--d,
x>~O

01674191/90/$3.50 © 1990, Elsevier Science Publishers B.V. (North-Holland)

236 G.-H Chen et al. / Linear programming on fixed.size hypercubes

where A - [a i j] is an M × N constraint matrix, O<~i<~M-1, O<~j<~N-1, d - [d 0 ,
dl , . . . , dM-l] T is a positive column vector of length M, e - [Co, c l , . . . , cs- l] is a row vector of
length N, and x - [Xo, x~,.. . , xs_l] T is a column vector of length N. The linear programming
problem is to find the minimum of z. Dantzi8 [3] has proposed a well-known solution, the
simplex method, for this problem. The simplex method is essentially an iterative procedure; it
starts from an initial feasible solution, and moves continuously from one feasible solution
another, if improvement can be obtained. In each iteration, operations are needed to determine
the pivot column, the pivot row, and the pivot element, and then to update A, e, d, and z [7].
The(u+ 1)th colunm of ,4 is the pivot column if and only if c u - n ~ (c ~ l c ~ <0). If all the c/s
are nonnegative, then the current value of z is optimal. The (t + 1)th row of A is the pivot row
if and only if dt/atu - min(dJa~u]0 ~ i ~< M - 1 and a~, > 0). Moreover, at, is called the
pivot element. After determining the pivot element, A, ¢, d, and z are updated as follows:

P ~ t j / a t " , o,j (2)

a~j a~j a.,a,j, i ~ t, (3)

d/q- d J a . , , (4)

d/ ~ d, - ai .d/ , i ~ t, (5)

cj - c.a,j, (6)

z" *- z + c,d/, (7)

where jffi0, 1,...,N-1, and a~j, dr, cj, and z (a~j, d/, c~ and z') denote the old (new)
values. Let us assume that each binary operation requires the same time and therefore counts
one computation step. Then, the total number of (sequential) computation steps required for
each iteration is 2MN + 2N + 3 M - 1. Since the feasible solution space is a convex set, the
optimum will be reached eventually after a finite number of iterations.

The simplex method has been implemented on several parallel machines. For example, a
VLSl wavefront array processor implementation was proposed by Onaga and Nagayasu [4],
and a VLSI mesh of trees implementation was proposed by Bertossi and Bonuccelli [1]. Both
implementations do not achieve the linear speedup [6], and they need extra hardwares and
more complicated control when no sufficient processors are available. The speedup of a parallel
algorithm is defined to be the ratio of the fastest worst-case sequential run time to the
worst-case parallel run time. A parallel algorithm running on p processors is said to achieve the
linear speedup if the speedup is O(p). In this paper, we propose an implementation of the
simplex method on fixed-size hypercubes. A partitioning technique and a mapping technique
are presented to fit large-size problem instances into relatively small-size hypercubes. Two
cases: pipelined broadcasting allowed and pipelined broadcasting not allowed, are discussed.
We show that both cases achieve the linear speedup asymptotically. In addition, we focus our
attention on minimizing the total run time and the communication time under the given data
mapping method. Sufficient conditions for optimal partitionings are derived. These sufficient
conditions are helpful to obtain better parfitionings. Also, the optimal partitioning is obtained
for a special case.

2. H~lereubes and embedded hypercubes

An h-dimensional hypercube contains p - 2 h (h is a positive integer) identical processors.
Each processor is given an h-bit address (bh, bh_ 1,.-., bl), b~ - 0, 1, 1 ~ i ~< h, and there exists

G.-H Chen et al. / Linear programming on fixed.size hypercubes 237

a link between two processors if and only if their addresses differ i~ exactly one bit position.
The hypercube has a recursive structure as explained below. An h-dimensional hypercube can
be regarded as composed of two (h - 1)-dimensional hypercubes, one with bh - 0 and the other
with b~, - 1. Similarly, each of the two (h - 1)-dimensional hypercubes can further be regarded
as composed of two (h - 2)-dimensional hypercubes, one with b h - I - 0 and the other with
bh-i - 1, and so on. Generally, each of the subsets of processors whose addresses differ in k
(1 ~< k ~< h) specified bit positions ha, hi2,..., bi~ and are the same in the remaining (h - k) bit
positions forms a k-dimensional hypercube. Such a hypercube is cared a k-dimensional
embedded hypercube on (bit, bi2,..., bik). The embedded hypercubes are also known as
subcubes.

One important issue to implement the simplex method on the hypercube is data broadcast-
ing on some embedded hypercubes. That is, some designated processors are necessary to
transmit data to all the other processors belonging to the same embedded hypercubes. These
data include the pivot element, the pivot row, the pivot column, etc. To broadcast on a
k-dimensional embedded hypercube (on (bit, bi2,..., bi~)), k communication steps are neces-
sary. Initially, the data to be broadcast are located in the designated processor. In the rth step
(1 ~< r ~< k), each of the processors owning the data sends a duplicate to the processor whose
address differs from its address in the bit position bt,. Thus, k communication steps are
sufficient to complete the broadcasting. By taking advantage of the property of fast broad-
ening, we can implement the simplex method efficiently on the hypercube.

From the above discussion, two properties of the hypercube immediately follow.

Property 1. Broadcasting on a k-dimensional embedded hypercube requires k communication
steps.

An operation is called a semigroup operation if it is associative. Some well-known semigroup
operations are addition, multiplication, finding maximum, and finding minimum. The follow-
ing property is an immediate result of Property 1.

Property 2. Performing semigroup operations on a k-dimensional embedded hypercube (one
operand in each processor initially) requires k communication steps and k computation steps.
Additional k communication steps are necessary if the computation result is required by every
processor.

3. The implementation of the simplex method on fixed.size hypercubes

CappeUo [2] has proposed a hypercube algorithm for solving A x = b via Gaussian elimina-
tion with pivoting followed by back substitution, where A is a square matrix. In his approach,
data partitioning and data mapping are needed when the given problem instance size is larger
than the machine size. In this section, we propose an approach to implement the simplex
method on a fixed-size hypercube. The technique we use for data partitioning and data
mapping is a direct extension of Cappello's. Suppose that the hypercube is h-dimensional (h is
a constant) and therefore contains p = 2 ~ processors, where b i n > p is assumed. We also
assume, as Cappello did in [2], that each processor can simultaneously communicate (send data
or receive data) with all its neighbor processors within a communication step (we shall remove
this assumption later in this paper). Therefore, if a processor wants to broadcast w data items
on a k-dimensional embedded hypercube, it can send out these data items in consecutive w
communication steps. After k + w - 1 communication steps, the broadcasting can be com-
pleted. Broadcasting in such a way is called pipelined broadcasting.

238 G.-H Chen et al. / Linear programming on fixed-size hypercubes

A

A 0 0

Alo
A2o

A01 A 0 2 ... A0 2n-I

AI I Al 2 ... AI 2 ~. l

A21 A 2 2 ... A2 2n-I

• @ • •

A2n'- 2 0

A2m- 1 0

A2m- 2 1 A2m- 2 2 ...

A2m- 1 1 A2m- 1 2 ...

(a)

A2"- 2 2 n- 1

A2m- 1 2n-1

d = [d0, dl , d 2 ,

(b)

, d2m-2, d2L 1]T

Cm~ [Co, C1, C2, ... , C2,-2, C2,-1]

(c)

Fig. 1. The partitioning of A, d and ¢.

Before presenting our approach, let us discuss the necessary data partitioning and data
mapping. To balance the computation load, A is distributed evenly over the hypercube; that is,
each of the submatrices of A is of size kl × k2, where k l k 2 - - M N / p . Without loss of
generality, let us assume M = k12 m and N = k22n (m + n = h) (if not so, we can extend A
appropriately by adding dummy rows and dummy columns to ,,1) in the following discussion.
The partitioning of A is shown in Fig. l(a), where A~j's (0 ~< i ~< 2" - 1 and 0 ~<j ~< 2 n - 1)
represent the submatrices. The partitioning of e and d is shown in Fig. l(b) and Fig. l(c)
respectively, where ¢/s (0 ~<j ~< 2 n - 1) and d~'s (0~< i ~ 2 " - 1) represent row subvectors of
l e n g t h k 2 and column subvectors of length k~ respectively. The mapping of A, ¢, and d onto
the hypercube is as follows:

(1) A~7 is placed into the processor with address (bh, bh-1,. . . ,bn+l, b~,. . . ,bl) , where
bhbh-! ... bn+ i is the binary representation of i and b~... bl is the binary representation of j.

(2) cj is placed into the processor with address (0, 0, . . . , O, b~,..., bl), where bn... bl is the
binary representation of j.

(3) dr is placed into the processor with address (bh, bh-l , . . . ,b~+l, 1, 1,. . . ,1), where
bhbh-1 ... b~+l is the binary representation of i.

(4) z is placed into the processor with address (0, 0 , . . . , 0, 1, . . . , 1) (that is, bh = bh- ~ = ---
-b~+ ! - 0 and bn - " - - b l - 1).
Table 1 shows the data mapping for M = 4, N = 8, h - 4, k~ = 1, and k 2 - 2.

According to the above mapping, four facts are as follows.

G.-H Chen et al. / Linear programming on fixed-size hypercubes 239

Table 1
The data mapping for M = 4, N - 8, h = 4, kt = 1 and k 2 - 2 ; the 4-digit binary numbers indicate the addresses of
processors

0000 0001 0010 0011 Z
Co c~ c2 '='3 c4 c5 c6 c~ do
tiO0 ao! do2 do3 ti04 a05 a06 ao?

0100 0101 0110 0111

ai0 till ti|2 tiI3 til4 al$ ti16

1000 1001 1010 1011

dl
a17

d2
ti20 ti21 a22 ti23 ti24 a25 ti26 a27

1100 1101 1110 1111
d3

a30 a31 a32 ti33 t134 ti35 ti36 a37

Fact I. For any fixed i, the submatrices Ao's, 0 ~<j ~< 2" - 1, are mapped onto an n-dimen-
sional embedded hypercube on (b , , . . . , hi). Moreover, each of the processors in the embedded
hypercube has the most significant m bits equal to the binary representation of i. For easy
description, we refer to this embedded hypercube as row-i embedded hypercube in the following
discussion.

Fact 2. For any fixed j , the submatrices Ao's 0 ~< i ~< 2 " - 1, are mapped onto an m-dimen-
sional embedded hypercube on (bh, bh- l , . . . , b,+i). Moreover, each of the processors in the
embedded hypercube has the least significant n bits equal to the binary representation of j . In
the following discussion, we refer to this embedded hypercube as column-j embedded hypercube.

Fact 3. The row vector e is mapped onto the row-O embedded hypercube.

Fact 4. The column vector d is mapped onto the column-(2" - 1) embedded hypercube.

Now, it is time to describe the implementation. Since the simplex method consists of a finite
number of iterations, we shall concentrate our efforts on the necessary operations of each
iteration. These operations include, determining the pivot row, the pivot column, and the pivot
element, and updating A~ d, e, and z. In the following, we describe their implementation.

Determine the pivot column
The operands required for this operation are ¢. According to Fact 3, we know that k 2

elements of e are distributed in each processor of the row-0 embedded hypercube. Thus, the
most negative element in each processor is determined first. This takes k 2 - 1 computation
steps. Then, according to Property 2, the most negative element of ¢ can be determined and
broadcast to all the processors of the row-0 embedded hypercube in n computation steps and
2n communication steps. The pivot column is the (u + 1)th column of A, where cu is the most
negative element of ¢. After the pivot column is determined, u, the index of the pivot column,
is broadcast on all column-j embedded hypercubes, 0 ~<j ~< 2 " - 1, simultaneously. This oper-
ation needs m communication steps. In case of no negative elements, the current value of z is
optimal.

240 G.-H Chen et al. / Linear programming on fixed.size hypercubes

Determine the pivot row and the pivot element
The operands required for this operation are d and the pivot column. First, each subvector

d~, 0 ~< i ~< 2" - 1, is sent to the processor that holds A~y, where y - u DIV k 2 and u is the
index of the pivot column. The computation of y takes only one computation step. Since d~
and A~y are in the same embedded hypercube (the row-/embedded hypercube), the transmis-
sion can be pipelined and performed in parallel. Also since the used embedded hypercubes are
disjoint, no data congestion is possible. Therefore, kt + n - 1 communication steps are re-
quired. Then, the minimum of dJa~u's with a~u > 0 is determined in each processor. This takes
at most 3 k ~ - 1 computation steps. Finally, the minimum of these 2" minima is determined.
Since these minima are in the colunm-y embedded hypercube, 2m communication steps and m
computation steps are required. The pivot row is the (t + 1)th row of A, where dt/atu is the
minimum. Besides, atu is the pivot element.

Update A, ~ e and z
(a) The pivot element is broadcast on the row-(t DIV kl) embedded hypercube, and then

the pivot row is updated according to (2). This takes n communication steps and one
computation step.

(b) The elements of the pivot column are broadcast on all row-i embedded hypercubes,
0 ~< i ~< 2" - 1. Since the broadcasting can be pipelined and performed in parallel, kl + n - 1
communication steps are required.

(c) The elements of the pivot row are broadcast on all column-j embedded hypercubes,
0 ~<j ~< 2 n - 1. This takes k 2 + m - 1 communication steps.

(d) The value dt is updated according to (4). This takes one computation step.
(e) The value dt is broadcast on the column-(2"- 1) embedded hypercube. This takes m

communication steps.
(f) A, c, d, and z are updated according to (3), (5), (6), and (7) respectively. This takes

totally 2 (k l k 2 + k~ + k 2 + 1) computation steps.
Thus, the total number of (parallel) computation steps required for each iteration is

(k 2 - 1) + n + 1 + (3kl - 1) + m + 1 + 1 + 2(klk 2 + k 1 + k 2 -4- 1)

- 2klk2 + 5kl + 3k 2 + (m + n) + 3 - 2k lk2 + 5k~ + 3k2 + h + 3 (8)

and the total number of communication steps required fo~ each iteration is

2 n + m + (k 1 + n - 1) + 2 m + n + (k I + n - 1) + (k 2 + m - 1) + m

ffi 2kl + k 2 + 5 (m + n) - 3 - 2kl + k2 + 5h - 3. (9)

Since k l k 2 - M N / p , the linear speedup is achieved asymptotically.
Since asymptotical analysis is only of theoretical interest and M, N are finite in practice, we

are more interested in how to choose kl and k 2 so as to minimize the total run time and the
communication time. Let a be the ratio of the unit time for computation to the unit time for
communication. The problem can be stated as follows. Given p - 2 ~, M, N, and a, determine
n, m, kl , and k 2 satisfying

h - n + m, M - k i 2 " , N - k2 2n

so as to minimize

a(2k lk2 + 5kl + 3k2 + h + 3) + (2kl + k2 + 5 h - 3) (Objective 1) (10)
and

2kl + k 2 + 5 h - 3. (Objective 2)

G.-H Chert et al. / Linear programming on fixed.size hypercubes 241

Objective 1. To minimize the total run time. Substituting MN/pk 1 for k 2 with respect to (10),
then differentiating it at kt, and equalizing it to 0, we have

5 a - (3a + 1)MN/pk 2 + 2 --0. (11)

Solving (11), we have k I ffi (((3a + 1)/(5a + 2)XMN/p)) !/2. The values k2, n, and m can be
determined accordingly. Since kl is not an integer, the integer closest to k~ is chosen.

Objective 2. To minimize the communication time. Set a ffi 0 with respect to (11) and then kl
becomes (MN/2p) ~/2. If k~ is not an integer, the integer closest to k~ is chosen.

In the above discussion, pipelined broadcasting is allowed. If pipelined broadcasting is not
allowed, broadcasting k I (k2) data items on an n (m)-dimensional embedded hypercube
requires kin (k2m) communication steps. Thus, the total number of communication steps
required for each iteration changes to

2kin + (k2 + 1)m + 3h. (12)

The linear speedup is still achieved asymptotically in this case.
We now proceed to discuss the optimal value of k~.

Objective 1. To minimize the total run time. We need to minimize

a(2klk 2 + 5k I + 3k 2 + h + 3) + (2kan + (k2 + 1)m + 3h). (13)

Substituting MN/pkl for k 2, log2(pkl/M) for n, and log2(M/kl) for m, (13) becomes

a(2MN/p+ 5kt + 3MN/pkt + h + 3) + 2kt log2(pk~/M)

+(MN/pk I + 1) log2(M/kl)+ 3h. (14)

Then, differentiating (14) at kl and equalizing it to 0, we have

a (5 - 3MN/pk21) + 2 log2(Pkl/M) - (MN/pk 2) log2(M/kl)

+ (2 - (l /k1 + MN/pk2)) Io82 effi0. (15)

To solve (15) for k~ is not easy; however, it is helpful to get a better partition.

Objective 2. To minimize the conunum'cation time. Set a ffi 0 with respect to (15) and we can
see that the optimal value of kl is not easy to be obtained. H~we~er, we shall show in the
following that the optimal value of kl can easily be found for a special case.

When M and N ate much greater than p, the constant I in (12) is negligible as compared
with k 2 and therefore (12) can be simplified to 2kln + k2m + 3h. According to the following
theorem, we know that the optimal value of k~ for the simplified case occurs at 2k~ ffi k2 when
2M---N.

Theorem 1. I f the number of communication steps required can be expressed in the form of

akin + bk2 m + c,

where a, b, and c are constants, then akl - bk2 minimizes (16) when aM ffi bN.

(16)

Proof. Substituting MN/pkl for k2, log2(pkl/M) for n, and log2(M/kl) for m, (16)
becomes

ak 1 log2(pkl/M) + b(MN/pkl) log2(M/kl) + c. (17)

242 O.-H Chen et aL / Linear programming on fixed-size hypercubes

Differentiating (17) and eq!JAllzins it to 0, we have

a l og2 (Pk t /M) - b (M N / p k ~) l o g 2 (M / k t) + (a - b (M N / p k ~)) log2 e=O.
(18)

It is not difficult to check that ak I ffi bk2 is a solution of (18) when aM ffi bN. Thus, this
theorem follows. E!

4. Concluding remadm

The simplex method is a well-known solution method for the linear programming problem.
In this paper, we have proposed an implementation of the simplex method on a fixed-size
hypcrcube. Two cases, pipelined broadcasting allowed and pipelined broadcasting not allowed,
were considered. For both cases, the linear speedup is achieved asymptotically. Under the
proposed data mapping method, we also derived two sufficient conditions for optimal parti-
tioning~. It is not easy to derive optimal partitionings from these two conditions; however,
suboptimal partitionings can be obtained with the aid of them. We have obtained the optimal
partitioning for a special case. Although the simplex method can also be implemented on other
parallel machines [1,4], they do not achieve the asymptotically linear speedup. Moreover, the
number of processors they use is dependent upon the problem instance size.

Since the linear programming problem we considered in this paper is in standard form, a
basic feasible solution must be provided initially. This can be accomplished using the two-phase
technique [5]. In phase 1, we first augment new 'artificial' variables as necessary to secure a
starting solution, and then seek the minimization of the sum of the artificial variables. In Phase
2, we use the optimum basic solution of Phase 1 as a starting solution to minimize the objective
function of the original problem.

In the proposed implementation, the processor with address (0, 0, . . . , 0, 1, . . . , 1) (bh - bh_ t
= "'" ~b,,+l •0 and bn = . . . fibs ffi 1) has more computation loads than others. If its
computation loads can be shared by the other processors, then the number of computation
steps required for each iteration can further be reduced. To do this is not difficult. We can
simply let M - kt2 ' n - 1 and N - k2 2n - 1 and reduce the size of Aoj'S and Ai(2,_l) 'S , where
0~<j~<2 n - 1 and 0~<i ~<2 m - 1, t o (k ~ - 1) × (k 2 - 1).

Acknowledgment

The authors wish to thank the Editor and the anonymous referees for their many valuable
comments and suggestions. The authors are also grateful to the Advanced Technique Center of
Electronic Research Service Organization, Industrial Technique Research Institute, Republic of
China for supporting this research.

R e f e r e n c e s

[1] A.A. Bertossi and M.A. Bonucceili, A VLSI implementation of the simplex algorithm, IEEE Trans. Comput. 36 (2)
(1987) 241-247.

[2] P.R. Cappello, Gaussian elimination on a hypercube automaton, J. Parallel Distrib. Comput. 4 (1987) 288-308.
[3] G.B. Dantzig Linear Programming and Extensions (Princeton University Press, Princeton, NJ, 1963).

O.-H Chen et al. / Linear programming on fixed-size hypercubes 243

[4] IC Onaga and H. Napyasu. A wavefront-driven algorithm for linear programming on dataflow processor-arrays,
in: Proc. International Computer Sympmium (1984) 739-746.

[5] C.H. Papadimitriou and K.S. Steislitz, Combinatorial Optimization: Algorithms and Complexity (Prentice-Hall,
Enslewood Cliffs, NJ, 1983).

[6] M.J. Quinn, Designing Efficient Algorithms for Parallel Computers (McCn'aw-Hill, New York, 1987).
[7] A.H. Taha, Operations Research: An Introduction (Macmillan, New York, 1971).

