
The Journal of Supercomputing, 17, 187–204, 2000
© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Improving Memory Traffic by Assembly-Level
Exploitation of Reuses for Vector Registers
CHIH-YUNG CHANG∗ changcy@email.au.edu.tw

Department of Computer and Information Science, Aletheia University, 32 Chen-Li St.,
Tamsui, Taipei, Taiwan

TZUNG-SHI CHEN chents@mail.cju.edu.tw

Department of Information Management, Chang Jung University, Tainan, Taiwan

JANG-PING SHEU sheujp@csie.ncu.edu.tw

Department of Computer Science and Information Engineering, National Central University,
Chung-Li, Taiwan

Final version accepted December 20, 1999

Abstract. In this paper, we propose a compilation scheme to analyze and exploit the implicit reuses of
vector register data. According to the reuse analysis, we present a translation strategy that translates the
vectorized loops into assembly vector codes with exploitation of vector reuses. Experimental results show
that our compilation technique can improve the execution time and traffic between shared memory and
vector registers. Techniques discussed here are simple, systematic, and easy to be implemented in the
conventional vector compilers or translators to enhance the data locality of vector registers.

Keywords: data dependence, vector register, partial reuse, vector compilers, reuse distance,
vectorization, supercomputer

1. Introduction

In today’s supercomputers, memory is organized as a hierarchy which may consist
of several levels, ranging from a number of scalar and vector registers, a small and
high speed cache, to the shared memory. Given that a program has been written
or transformed into a vector form, one of the most critical issues in improving the
performance of supercomputer is to decrease the amount of data movement in
a memory hierarchy. Much work [2, 3, 7, 8, 11, 14] has been done in automati-
cally transferring loops into a form that reduces the frequency of loading or stor-
ing data between different memory levels. A lot of researchers [6, 10] developed
prefetching schemes to predict the needed data and prefetch them from memory to
cache for improving the performance of data access. Techniques such as tiling and
blocking [11, 14, 15] are the well known transformation schemes that improve the
data locality of numerical algorithms. Callahan, Carr, and Kennedy [3] present the

∗To whom all correspondence should be addressed.

188 chang, chen and sheu

method of scalar replacement, which uses scalar registers to rotate the scalar data
for reuse in time. Moreover, Allen and Kennedy [2] report the source-to-source
translation scheme to exploit the reuse of vector data in vector register. All these
schemes significantly improve the localities of loops execution. Although a lot of
effort is being spent on improving the reuse exploitation of vector data, the effi-
cient and effective methods have yet to be developed for fully exploiting the reuse
opportunities of vector data.

In loops program, there may exist partial reuse opportunities of the vector register
data in the execution of successive iteration. That is, only parts of data generated
in vector register can be reused in the next computation. For example, elements
A�1 x 64� are generated in vector register VR1 by current vector operation and
elements A�2 x 65� will be referenced in the execution of next vector operation.
However, only 63 elements A�2 x 64� of VR1 can be reused. The lack of one element
A�65� will cause current compiler or assembler to generate a vector load operation
which loads 64 elements A�2 x 65� from main memory to vector register [2]. Allen
and Kennedy [2] apply loop alignment technique to skillfully exploit the partial reuse
existed between two statements. However, two types of partial reuse widely found
in application programs are difficult to be exploited up to now. First, the partial
reuse opportunities that exist in the same statement of loop program are difficult
to be exploited. Second, if there are two or more partial reuses that exist between
two statements, techniques such as loop alignment or index shifting [9] can exploit
only one of these partial reuses. To save more vector load operations, we develop a
scheme to translate vectorized program into assembly code such that the two types
of partial reuse can be completely exploited. We discuss how to systematically apply
the vector shift operation together with the prefetching technique to exploit the
partial reuses. The scheme proposed in this paper can be easily integrated in the
current vector compilers design.

The rest of this paper is organized as follows. The primary concept of partial
reuse exploitation is briefly discussed in Section 2. A translation scheme is pro-
posed in Section 3 to generate the assembly code whose partial reuse opportunities
can be fully exploited. Performance analysis is made in Section 4 to measure the
improvement of our compilation scheme. The conclusion will be finally given in
Section 5.

2. Basic concept of extracting partial reuses of vector data

In this section, we first introduce the data dependence [2, 12, 17] for a loop L.
The basic concept of exploiting partial reuses is then introduced.

In loops execution, two references may access a common set of variables in a
manner that requires preserving their relative order. This gives rise to data depen-
dence. There are three important classes of dependence identified for two state-
ments S1 and S2 in previous research [2, 17]. Statements S1 and S2 are said to
have a true dependence if S1 stores into a variable which S2 later uses. If two state-
ments S1 and S2 both store into the same variable, we say that S1 and S2 have
an output dependence. Statements S1 and S2 are said to have an input dependence

improving memory traffic 189

if S1 and S2 both read the same variable. The dependence of a program repre-
sents the statement orderings that must be preserved in order to preserve the valid
output of the program. If a variable is generated by S1 in iteration ī1, and then
used by S2 in iteration ī2, we say that statements S1 and S2 have a dependence
vector d̄ = �d1; d2; : : : ; dn� = ī2 − ī1. Dependence vector is used to measure the
iteration distance of a true dependence. In this paper, information such as depen-
dence vector, input, output, and true dependence is used to exploit the partial reuse
opportunities.

The problem on reuse exploiting is that there may exist partial reuse in loop. That
is, only parts of data generated in vector register can be reused in the next com-
putation. For example, two references A�1 x 64� and A�2 x 65� have partial reuse
opportunity. The 64 elements A�1 x 64� loading from memory to vector register can
be partially reused for reference A�2 x 65�. However, only 63 elements A�2 x 64�
can be reused in vector register. The lack of one element A�65� will cause compiler
or assembler to generate a vector load operation which loads 64 elements from
main memory to vector register. In this paper, we present a method to exploit the
partial reuse opportunities of a loop program.

Allen and Kennedy [2] proposed a loop alignment technique to exploit partial
reuse opportunity existed between different statements. Consider the following vec-
torized loop program (borrowed from [2])

DO 2 I = 1; 8
S1 x A�1 x 64; I� = B�1 x 64; I� + 1:0 (L1)
S2 x C�1 x 64; I� = A�2 x 65; I� + 2:0

2 CONTINUE

Here, the vector data A�2 x 65; I� loaded in S2 are offset by 1 from the vector
data A�1 x 64; I� stored in S1. The reuse opportunities can be exploited by applying
techniques such as loop alignment [2] or index shifting [9]. The transformed loop
program is shown as follows.

DO 2 I = 1; 8
A�1; I� = B�1; I� + 1:0
S1 x A�2 x 64; I� = B�2 x 64; I� + 1:0 (L1′)
S2 x C�1 x 63; I� = A�2 x 64; I� + 2:0
C�64; I� = A�65; I� + 2:0

2 CONTINUE

In the transformed loop program L1′, a vector load operation from memory to
vector register is saved in each iteration.

The partial reuse opportunities that exist in different statement can be exploited
by applying loop translation techniques such as loop alignment or index shifting
methods. However, if the reuse opportunities are existed in the same statement,

190 chang, chen and sheu

these two techniques cannot be applied. Consider the following vectorized loop
program.

DO 2 J = 2; 65
S1 x A�2 x 65; J�︸ ︷︷ ︸

VR3

= B�2 x 65; J�︸ ︷︷ ︸
VR1

∗A�1 x 64; J − 1�︸ ︷︷ ︸
VR2︸ ︷︷ ︸

VR3

(L2)

2 CONTINUE

In loop L2, there is a true dependence between references A�2 x 65; J� and A�1 x
64; J − 1�. The dependence vector is d̄ = (1, 1). The first dimension of array A is
vectorized in loop L2. A nonzero value of the second dimension of dependence vec-
tor indicates that there is a reuse opportunity in statement S1. Moreover, a nonzero
value of the first dimension of dependence vector indicates that the reuse type is
partial reuse. For example, data elements A�2 x 65; 2� generated in vector register
VR3 at instance J = 2 will be partially reused by vector register VR2 at instance
J = 3. The partially reused 63 elements A�2 x 64; 2� of VR2 can be obtained from
VR3. However, current vector compilers fail to exploit the partial reuse opportu-
nity and will load vector elements A�1 x 64; J − 1� from memory to VR2 in each
running iteration.

The main idea of partial reuse exploitation is to apply the vector shift operation
together with the prefetch scheme on vector register to exploit the partial reuses
existing in the same or different statements. In what follows, we define the vector
shift operation which will be used to exploit the partial reuse opportunities.

Definition 1. For a given vector computer, assume that a vector register can store
64 array elements. The vector register can be treated as 64 scalar registers. The
vector shift-left (or shift-right) operation Lshift VR�i�; VR′ (or Rshift VR�i�; VR′)
is defined by shifting all the data elements in scalar registers of VR to the left
(right) i positions and storing the resultant vector data in the corresponding posi-
tion of vector register VR′.

Figure 1 shows an example of the operations Lshift VR�1�; VR′ and Rshift
VR�1�; VR′. In Figure 1(a), the Lshift VR�1�; VR′ operation shifts all elements of
vector register VR to the left one position and stores the resultant vector data in
the corresponding position of vector register VR′. Similarly, Figure 1(b) displays
the Rshift VR�1�; VR′ operation. We apply the vector shift operation together
with the prefetch scheme on vector register to exploit all the partial reuses existed

Figure 1. An example of vector shift operations.

improving memory traffic 191

in the same or different statements. Compilers may predict the missing elements
A�1; J − 1�, for 2 ≤ J ≤ 65, and preload them into an extra vector register VR4.
Then compilers apply the vector shift operations to shift elements in vector registers
VR3 and VR4 for supporting the reused elements of VR2 in time. Let instruction
Multiply/i perform vector multiply if the corresponding bit of mask register is i, for
i = 0 or 1. Loop L2 can be rewritten as the following form (noted as PRA).

/* Partial Reuse of array A exploited (PRA): */
Vector Preload A�1; 1 x 64� to VR4 /* preload the predicted missing elements */
Vector Load A�1 x 64; 1� to VR2
Set mask register to value 00 · · · 001
Perform J from 2 to 65 on the following operations:
OP1: Vector Load B�2 x 65; J� to VR1
OP2: Vector Multiply/1 VR1 by VR4 into VR3 /* compute B�2; J�

∗A�1; J − 1� */
OP3: Rshift VR4�1�; VR4 /* shift next predicated

element for use */
OP4: Vector Multiply/0 VR1 by VR2 into VR3 /* compute B�3 x 65; J�

∗A�2 x 64; J − 1� */
OP5: Lshift VR3�1�; VR2 /* 63 elements of VR2 are

supported by VR3 */
OP6: Vector Store VR3 to A�2 x 65; J�

The operations of vector registers are depicted in Figure 2. Data needed for reuse
by vector register VR2 are then obtained from the register operations including
vector preloading, OP3, and OP5 instead of loading from memory. Assume that
there is one Load/Store functional unit. In loop L2, the load of elements B�2 x 65; J�
will occupy the Load functional unit. The 64 clock cycles waiting for the available
Load/Store functional unit to load array elements A�1 x 64; J − 1� can be reduced
to 2 clock cycles in program PRA for executing the operations OP3 and OP5, in
each iteration, in a pipelining and chaining fashion [17]. In program PRA, there are
2 + 64× 2 = 130 Load/Store vector operations in total. Compared to loop L2, 1/3
Load/Store vector operations are saved in PRA. Moreover, the reuse exploitation
of vector data in VR2 reduces the bus traffic and benefits the data accessing of
other processors to shared memory.

In the next section, we will propose an algorithm and related data structure to
implement the prefetching operation and to exploit the total/partial reuse oppor-
tunities. The reuse opportunities with a distance of zero or one iteration can be
exploited in the assembly code translation phase.

3. Assembly-level transformation for reuse exploitation

In this section, we present the transformation algorithm to exploit reuse opportuni-
ties by assembly-level transformation. To illustrate our reuse exploitation algorithm,
we define the following two types of distance.

192 chang, chen and sheu

Figure 2. Operations of program PRA: combining prefetching and vector shift operations to exploit the
partial reuse for loop L2.

Definition 2. The missing distance is defined as the number of missing elements
in a partial reuse. The reuse distance is defined as the iteration difference between
generation and use of the vector elements in a loop program.

Consider the following example.

DO 2 J = 2; 65
S1x A�2 x 65; J� = A�2 x 65; J − 1� ∗A�1 x 64; J − 1�

2 CONTINUE

The references A�2 x 65; J� and A�2 x 65; J − 1� have total reuse opportunity. The
reuse distance is one since there is one iteration distance between the generation of
vector array A�2 x 65; J� and the use of vector array A�2 x 65; J− 1�. Since the reuse

improving memory traffic 193

type is total reuse, all 64 elements can be found in the vector register after one iter-
ation, provided that the vector data are preserved in vector register. Because there
is no missing element, the missing distance is zero. For the references A�2 x 65; J�
and A�1 x 64; J − 1�, they have partial reuse opportunity. The reuse distance is
one since there is one iteration difference between the generation of vector array
A�2 x 65; J� and the use of vector array A�1 x 64; J − 1�. After one iteration, only
63 elements A�2 x 64; J� of A�2 x 65; J� in vector register can be reused by the
reference A�1 x 64; J − 1�. Since there is one missing element between these two
references, the value of missing distance is one. To exploit a reuse opportunity,
a vector register should be reserved for storing elements for reuse in time. The
exploitation of a reuse opportunity whose reuse distance is larger than one has an
overhead that one vector register should be scheduled for storing elements for a
long time. To prevent the exhaustive use of vector registers provided by vector com-
puter, only those reuse opportunities whose reuse distance is zero or one iteration
are considered to be exploited.

The input of our transformation algorithm is a vectorized program together with
the dependence vectors of this program. Our exploitation technique consists of
two stages. In the first stage, the binding stage, data structure should be cre-
ated for keeping the binding information of dependence vector and the original
vectorized program. Each array reference of vectorized statements in program is
assigned a unique label l from 1 to j, where j is the number of array references
of vectorized statements in program. For each dependence vector, the dependence
structure DS = �S;D; type; dependence vector� containing �n+ 3� elements should
be constructed to present the reuse information. The first two elements, S and D,
of dependence structure denote labels of the references of source and destination
respectively, associated to the dependence relation. The value of the third element
is one of the three symbols i, t or o, denoting the dependence type of this depen-
dence vector is input, true, or output dependence respectively. The last n elements
record values of the dependence vector. In the second stage, we will transform the
program into assembly code to explicitly exploit the reuse opportunities, including
total reuse and partial reuse.

Each dependence structure will be classified into one of the following five reuse
cases: (1) total reuse with reuse distance of zero iteration, (2) partial reuse with
reuse distance of zero iteration, (3) total reuse with reuse distance of one iteration,
(4) partial reuse with reuse distance of one iteration, and (5) reuse with reuse
distance larger than one iteration. Here, we only consider the reuse exploitation in
cases (1) to (4). The classification of reuse type for compilers is easy. For checking
the reuse of a DS is total or partial reuse, compilers only need to check the value
of element in vectorized dimension of the dependence vector in DS is zero or
not, respectively. The distance of reuse can be examined by checking the value of
nonvectorized elements of dependence vector in DS.

In the second stage, the transformation stage, compilers transform the pro-
gram into assembly code by explicitly exploiting the reuse opportunities. Consider
the dependence structure DS = �S;D; type; dependence vector�. Let S and D be
the labels of references of arrays A�f �In�� and A�g�In��, respectively, where In

is the iteration space �I1; I2; : : : ; In� and f and g are intrinsic functions. Let Reg�S�

194 chang, chen and sheu

and Reg�D� respectively denote the vector registers assigned to references A�f �In��
and A�g�In��. The transformation algorithm for 4 cases of reuse is now described
in the following.

(1) The total reuse with reuse distance of zero iteration

Examples of this case can be considered as the following three loops.

(a) type “o” (b) type “i” (c) type “t”
DO 1 J = 1; 64 DO 2 J = 1; 64 DO 3 J = 1; 64
A�1 x 64; J�︸ ︷︷ ︸

Reg�S�

= · · · · · · = A�1 x 64; J�︸ ︷︷ ︸
Reg�S�

A�1 x 64; J�︸ ︷︷ ︸
Reg�S�

= · · ·

A�1 x 64; J�︸ ︷︷ ︸
Reg�D�

= · · · · · · = A�1 x 64; J�︸ ︷︷ ︸
Reg�D�

· · · = A�1 x 64; J�︸ ︷︷ ︸
Reg�D�

1 CONTINUE 2 CONTINUE 3 CONTINUE

The following reuse exploiting steps can be integrated in the vector compilers.

If the type is “o.” /* output dependence */
Omit the Store operation of register Reg�S� to A�f �In��.

else /* input or true dependence */
Omit the Load operation from A�g�In�� to register Reg�D�.
Replace Reg�D� by Reg�S� in assembly program.

endif

(2) The partial reuse with reuse distance of zero iteration

The exploitation of output dependence with partial reuse is not discussed here since
the benefit is not significant in implementation. The partial reuse is exploited only
if the dependence type is input or true dependence. Let us consider the following
fragments of loop with partial reuse.

(a) type “t” (b) type “i”
DO 1 J = 1; 64 DO 2 J = 1; 64
A�2 x 65; J�︸ ︷︷ ︸

Reg�S�

= · · · · · · = A�2 x 65; J�︸ ︷︷ ︸
Reg�S�

+ A�1 x 64; J�︸ ︷︷ ︸
Reg�D�

op : : :

· · · = A�1 x 64; J�︸ ︷︷ ︸
Reg�D�

op : : : 2 CONTINUE

1 CONTINUE

Compilers should verify the vectorized dimension of dependence structure to pre-
dict the missing elements during the running iterations ranging from 1 to 64. In this
example, the set of missing elements is M = �A�1; J� � 1 ≤ J ≤ 64� = A�1; 1 x 64�.
The compilers then assign a vector register, say Reg�M�, to prefetch the missing
elements and prepare the right shift operation to support one missing element for
use in each running iteration. The following reuse exploiting steps can be included

improving memory traffic 195

in the compilers to handle this case of reuse:

Insert a prefetch statement “Load M into vector register Reg�M�” before the
loop head.

Omit the operation “Load A�g�In�� to Reg�D�” in loop body.
Replace the arithmetic operation “op” by the following operations:

Lshift Reg�S��1�; Reg�D�.
Set mask to 0 · · · 01.
Operate/0 Reg�D� with · · ·
Operate/1 Reg�M� with · · ·
Rshift Reg�M��1�; Reg�M�.
Set mask to 1 · · · 11.

For those reuses with missing distance 2, we may prepare two vector registers; each
preloads 64 elements with a stride value 2. Another approach to save the number
of vector registers is that compilers may prepare one vector register to preload two
times of 64 elements. In each time, the 64 elements are prefetched for supporting
32 iterations. In order to avoid the exhaustive use of vector registers, we do not
consider the number of missing elements larger than 2 in each running iteration.
Similar discussion can be made in the case that the missing elements are in the
highest positions of vector register, that is, M = �A�65; J� � 1 ≤ J ≤ 64�.

(3) The total reuse with reuse distance of one iteration

The following reuse exploiting steps can be integrated in the compilers:

If the type is “o.” /* output dependence */
Omit the Store operation of register Reg�S� to A�f �In��.

else /* input or true dependence */
Insert “Load A�g�In0 �� to Reg�D�” before loop head,

where In0 is the first running iteration index in loops.
Omit the Load operation from A�g�In�� to register Reg�D� in loop body.
Insert statement “rotate Reg�S� to Reg�D�” in loop tail.

endif

(4) The partial reuse with reuse distance of one iteration

Let us consider the following fragments of program.

(a) type “t” (b) type “i”
DO 1 J = 2; 65 DO 2 J = 2; 65
· · · = A�1 x 64; J − 1�︸ ︷︷ ︸

Reg�D�

op : : : · · · = A�1 x 64; J − 1�︸ ︷︷ ︸
Reg�D�

op : : :

A�2 x 65; J�︸ ︷︷ ︸
Reg�S�

= A�1 x 64; J − 1�︸ ︷︷ ︸
Reg�D�

· · · = A�2 x 65; J�︸ ︷︷ ︸
Reg�S�

+ A�1 x 64; J − 1�︸ ︷︷ ︸
Reg�D�

op : : : op : : :

196 chang, chen and sheu

· · · = A�1 x 64; J − 1�︸ ︷︷ ︸
Reg�D�

op : : : · · · = A�1 x 64; J − 1�︸ ︷︷ ︸
Reg�D�

op : : :

1 CONTINUE 2 CONTINUE

In this example, the set of missing elements is M = �A�1; J − 1� � 2 ≤ J ≤ 65� =
A�1; 1 x 64�. The following reuse exploiting steps can be integrated in the compilers:

Insert a prefetch statement “Load M into vector register Reg�M�” before the
loop head.

Insert an initial load statement “Load A�g�In0 �� to Reg�D�” before the loop head.
Omit the operation “Load A�g�In�� to Reg�D�” in loop body.
Replace the arithmetic operation “op” by the following operations:

Set mask to 0 · · · 01.
Operate/1 Reg�M� with · · ·
Insert statement “Rshift Reg�M��1�; Reg�M�.”
Operate/0 Reg�D� with · · ·
Set mask to 1 · · · 11.
Insert statement “Lshift Reg�S��1�; Reg�D�” to loop tail.

The consideration of missing distance larger than one is the same as partial reuse
with distance zero. Consider the example of loop L2 introduced in Section 2.
Program PRA can be obtained by applying case (4) transformation to loop L2.

When there are two or more partial reuses, it seems that exploiting each partial
reuse needs to pay the cost of two vector shift and three mask setting instructions
on saving one vector load. In fact the consecutive pairs of mask setting instructions
can be saved. All the arithmetic operations can be done by sharing the first pair of
mask setting instructions. Thus, only one pair of mask setting instructions is needed
for two or more consecutive partial reuse exploiting.

For a given vectorized program, compilers may firstly analyze the dependence
relation and evaluate the dependence vector. Then the partial and total reuses with
reuse distance zero or one iteration gap can be explicitly exploited in assembly
code by the described transformation algorithm. In the next section, performance
analysis for the proposed reuse exploiting technique is presented. The performance
improvement by applying the proposed reuse exploiting strategy on real applications
is also discussed.

4. Performance analysis

The advantage of total reuse exploitation is obvious since the Load/Store opera-
tions can be saved without any extra overhead. The performance improvement of
total reuse exploitation is measured on Convex C3840 supercomputer. Two ver-
sions of assembly code are compared. For the first version, we take original pro-
gram written in Fortran 77 as the input source of vector compiler of Convex. The
vectorized assembly code automatically generated by vector compiler of Convex is
referred to the original version. To generate the second version, we exploit the total

improving memory traffic 197

reuse opportunities existed in the input source by applying cases (1) and (3) algo-
rithms proposed in Section 3. Then, we obtain another version referred to the reuse
exploited version.

Loops selected as the source can be roughly cataloged into three classes. The first
class is the vector benchmark that is extracted from NETLIB of NCHC (National
Center for High Performance Computing). The selected benchmark consists of 107
subroutines of loops that are originally designed for testing the vectorization capa-
bility of PFC [1]. In total, 65 subroutines can be vectorized by vector compiler of
Convex. The 65 subroutines are considered as the source and the execution time of
two versions, the original version and the reuse exploited version, is compared. In
total, 11 subroutines are improved by applying the proposed scheme.

The second class, selected as source, consists of several subroutines of BLAS2
(Basic Linear Algebra Subprograms) which perform the matrix/vector operations.
All subroutines of BLAS2 are designed in libraries for calls in most vector comput-
ers. The subroutines of BLAS2 used as the source are also stored in NETLIB of
NCHC. In addition, the third class consists of several application programs. Most
of these programs are selected from the numerical computation programs [13, 16].
We list the abbreviation of the application programs in Table 1.

The experimental results of execution time and speedup for these classes of
programs are summarized in Table 2. Only subroutines of benchmark that have
total reuse opportunities are listed in the table. Compared with the original ver-
sion, the total reuse exploitation reduces the number of loads from shared memory
to vector registers and frees the load/store functional units for other use. For a
column-major based compiler such as Fortran, successive elements of array data
are stored in memory in a column-major fashion. Assume that there is a declara-
tion A�128; 128� in a vectorized program. Consider two references A�1; 1 x 128�
and A�1 x 128; 1� that are respectively vectorized in the second and the first dimen-
sion. The time cost for moving 128 elements A�1; 1�;A�1; 2�; : : :, and A�1; 128�
from memory to vector register is much more than one for moving 128 elements
A�1; 1�;A�2; 1�; : : :, and A�128; 1�. This is because that elements A�1; 1 x 128�
have a memory stride of 128 whereas elements A�1 x 128; 1� have a memory stride

Table 1. Applications and their abbreviations

Application Abbreviation

Fourier least-squares approximation [13] FLSA
Jacobi method for solution of linear equations [13] Jacobi
Barycentric form of Lagrange interpolation [13] BFLI
Accumulating a sum (A. Sum) [16] ASum
Solving linear equation by Gaussian elimination (loop 1) [16] SLEGE1
Solving linear equation by Gaussian elimination (loop 2) [16] SLEGE2
Computing the uniform norm of matrix A and A inverse [16] Uniform norm
Gauss-Seidel iterations [16] GSI
Comparing compound Simposon’s and Newton-Cotes CSNCI

integration [16]
Computing the value of a filtered discrete Fourier transform [16] FDFT

198 chang, chen and sheu

Table 2. Comparisons of original version and reuse exploited version for benchmark, libraries and
applications

Original Reuse exploited
Loop programs Problem size version (ms) version (ms) Speedup

Benchmark
S022 1024× 1024 8.5 5.3 1.6
S023 1024× 1024 12.8 9.5 1.3
S029 1024× 1024 7.5 0.3 25
S030 1024× 1024 23.88 3.64 6.56
S044 1048576 5.55 3.0 1.85
S045 1048576 8.51 5.10 1.66
S047 1024× 1024 7.12 5.72 1.24
S048 1024× 1024 6.99 5.75 1.22
S049 1024× 1024 6.96 5.63 1.23
S084 1024× 1024 23.9 1.58 15.1
S100 1024× 1024 219 153 1.43

BLAS2
SGEMV 1024× 1024 6 5 1.2
SGBMV 1024× 1024 6 5 1.2
DGEMV 1024× 1024 11.5 9.8 1.17
DGBMV 1024× 1024 12.1 9.9 1.2

Applications
FLSA 1024× 1024 32.1 5.1 6.29
Jacobi 1024× 1024 16 13 1.23
BFLI 1024× 1024 31 27 1.15
ASum 1024 3.8 2.6 1.46
SLEGE1 1024× 1024 7.8 6.5 1.2
SLEGE2 1024× 1024 55 7 7.85
Uniform norm 1024× 1024 74 58 1.27
GSI 1024× 1024 6.3 4.8 1.31
CSNCI 1024× 1024 53 5.7 9.29
FDFT 1024× 1024 57 5 11.4

one. A vector load operation for elements with a larger stride will spend much
more time than vector load operation for elements with a stride one [5]. Exploit-
ing the reuse opportunity of a reference that is vectorized in the second dimension
will save a vector load operation and have a significant improvement in time cost.
This effect can be found in speedup of benchmarks S030, S084, FLSA, SLEGE2,
CSNCI, and FDFT.

In the partial reuse exploitation, compilers use vector shift operations to save
Load operations. The time cost of vector shift operation is less than one of the load
operation since that the vector-to-vector operation is faster than memory-to-vector
operation. The time cost of load operation depends on various factors including
the data format defined in program, the stride of data accessing determined by
vectorization, the number of Load/Store function units in system, the number of
consecutive load and store operations in program, the number of memory banks for
load interleaving, and whether the operation followed by load can be chained or
not. In Convex C3840, there is one load/store functional unit supported by system.

improving memory traffic 199

The memory is organized as 32 banks for interleaving. The comparison for vector
shift and load operation in time cost is made in Convex C3840 by using the following
4 types of program to show that vector shift operation is cost effective.

(1) Pure load
Perform J from 2 to 129 on the following operation:

Load A�2 x 129; J� to VR0 /* use shift and preloading operations
to compare with */

(2) A load of the same array followed by another load of partial reuse array
Perform J from 2 to 129 on the following operations:

Load A�1 x 128; J� to VR0
Load A�2 x 129; J� to VR1 /* use shift and preloading operations

to compare with */

(3) A load of partial reuse elements followed by a store operation
Perform J from 2 to 129 on the following operations:

Load A�2 x 129; J − 1� /* use shift and preloading operations
to VR0 to compare with */

Store A�1 x 128; J� from VR1

(4) Two consecutive loads followed by a store
Perform J from 2 to 129 on the following operations:

Load B�2 x 129; J� to VR0
Load A�2 x 129; J − 1� /* use shift and preloading operations

to VR1 to compare with */
Store A�1 x 128; J� from VR2

The reason why we take these 4 types of program to measure the comparison in
time cost for vector shift and vector load operations in application programs is
described in the following. Consider the following program that contains a partial
reuse introduced by an input dependence vector.

DO 1 J = 2; 129
: : :
OP1: Load A�1 x 128; J� to VR0
: : :
OP2: Load A�2 x 129; J� to VR1
: : :

1 CONTINUE

If there are many arithmetic or logical operations OPs between OP1 and OP2, the
occupying of load functional unit by performing OP1 has no effect to OP2. Then,
exploiting partial reuse that uses vector shift and preloading operations instead of
OP2 can be measured by program type (1). On the other hand, if the OP2 has a
bottleneck on the lacking of load/store functional unit, the exploitation of partial
reuse can be measured by program type (2).

200 chang, chen and sheu

If the partial reuse occurs in a true dependence vector in which vector elements
used by a statement are partially generated by another statement, the similar dis-
cussion can be made and we may measure them by program types (1), (3), or (4).
Two classes, one is vectorized in the first dimension and another is vectorized in the
second dimension, of the above 4 program types are measured in Convex C3840
supercomputer. We compare the above 4 program types with the corresponding par-
tial reuse exploited program. Each program is running 50,000 times controlled by
an outermost loop to scale their execution time measured in seconds. The compar-
isons in time cost for load operation (original program noted by origin) and vector
shift and preloading operations (partial reuse exploited program noted by p.r.e.)
are depicted in Table 3. As shown in Table 3, performance improvement on loops
vectorized in the second dimension is more significant than one vectorized in the
first dimension due to the fact that the time cost of load operation is higher when
stride is lengthened.

In what follows, two examples are considered to illustrate that the combination of
total reuse and partial reuse exploitation has significant improvement in execution
time. Consider the following example.

DO 1 I = 2;129
A�I; 2 x 129� =A�I − 1; 3 x 130�

+A�I − 1; 2 x 129� ∗ B�I; 2 x 129� (L3)
1 CONTINUE

In loop L3, there exists total reuse between references A�I; 2 x 129� and A�I −
1; 2 x 129� and partial reuse between references A�I; 2 x 129� and A�I − 1; 3 x 130�.
Loop L3 is first compiled to assembly code, noted by Noreuse.s, by compiler of
Convex C3840 supercomputer. Then, we modify the assembly code Noreuse.s into
a total reuse exploited assembly code, noted by Total.s, according to the transla-
tion algorithm of case (3) discussed in Section 3. Finally, we further rewrite the
Total.s into TotPar.s by the translation algorithm of case (4) discussed in Section 3
such that both the total and partial reuses are exploited. The performance improve-
ments of Total.s and TotPar.s, compared with Noreuse.s, are 31.5% and 53.8%
respectively.

Table 3. Comparisons of 4 program types with and without partial reuse exploited

1th dim. vectorized 2nd dim. vectorized

Origin p.r.e. Improvement Origin p.r.e. Improvement
(sec) (sec) (%) (sec) (sec) (%)

Type (1) 16.50 15.53 5.88 24.96 15.60 37.50
Type (2) 33.39 30.54 8.54 55.87 37.68 32.56
Type (3) 35.07 33.27 5.13 49.23 40.10 18.55
Type (4) 52.42 48.27 7.91 78.81 60.61 23.09

improving memory traffic 201

We also consider the example of the sequential SOR loop program (borrowed
from [8, 14, 15]) as shown in follows.

DO 1 I = 2; n− 1
DO 2 J = 2;m− 1

A�I; J� = 0:2 ∗ �A�I − 1; J� +A�I; J − 1�
+A�I; J� +A�I + 1; J� +A�I; J + 1��

2 CONTINUE
1 CONTINUE

Two dependence vectors (0, 1) and (1, 0) can be found as shown in Figure 3. The
sequential loop program can be vectorized into the following loop form by apply-
ing loop skewing together with loop interchange techniques [14, 15] or supernode
partitioning [8].

DO 1 J = 4; n+m− 2
C$DIR FORCE VECTOR
DO 2 I = max�2; J −m+ 1�;min�n− 1; J − 2��

A�I; J − I� = 0:2 ∗ �A�I − 1; J − I� +A�I; J − I − 1�
+A�I; J − I� +A�I + 1; J − I�
+A�I; J − I + 1�� �L4�

2 CONTINUE
1 CONTINUE

where C$DIR FORCE VECTOR denotes the compiler directive instruction that
specifies the vectorization of loop I. Dependence vectors (0, 1) and (1, 0) originally
existing in sequential SOR program are thus respectively transformed into (0, 1)
and (1, 1) in L4 as shown in Figure 4. Since the vector length of Convex C3840 is
128, we apply strip mining [17] technique to partition loop I into several bands with
size 128 ∗ �m − 2�. Within each band, vector operations can be performed along

Figure 3. Dependence among iterations of sequential SOR algorithm.

202 chang, chen and sheu

Figure 4. Dependence among iterations of vectorized SOR program.

dimension J as shown in Figure 4. The total and partial reuse opportunities can be
found between two contiguous vector operations.

Previous studies [2, 8] can exploit the total reuse opportunity with a reuse distance
of one iteration. The partial reuse that occurs in the same statement cannot be
exploited by applying their reuse exploitation scheme. The proposed techniques in
this paper can exploit not only the total reuses but also the partial reuses existed
in original loop program. In addition, all the partial reuses existing in the same or
different statements can be exploited by applying our proposed techniques.

We perform loop L4 on Convex C3840 in three different versions of assembly
code. The first version of assembly code, denoted by Sor.s, is generated by compil-
ing L3 on vector compiler of Convex C3840. The Convex compiler fails to exploit
both the total and partial reuses existed in L4. Then, we apply techniques pro-
posed in [2, 8] to exploit the total reuse opportunity in L4 and generate the second
version, denoted by SorTot.s, of assembly code of L4. The third version, denoted
by SorTotPa.s, is generated by applying our translation algorithm of cases 3 and 4
discussed in Section 3 to exploit both the total and partial reuses existed in L4.
Three versions, Sor.s, SorTot.s, and SorTotPa.s, of assembly code are running on

improving memory traffic 203

Figure 5. Execution time of three versions of SOR algorithm.

Convex C3840 supercomputer to evaluate the improvement of the proposed strate-
gies. We set the value of n to 210 and vary the value of m ranging from 210 to 214.
As shown in Figure 5, the larger the value of m we set, the more the improve-
ment we gain. This is due to the fact that the number of load operations saved
by exploiting total and partial reuses is increased when value of m is increased.
Compared to Sor.s, in average, the improvements of the SorTot.s and SorTotPa.s
are respective 18:54% and 26:19% in execution time. The exploitation of partial
reuse in SorTotPa.s additionally saves 7.65% of total execution time compared to
SorTot.s.

5. Conclusions

In this paper, we develop compilation techniques to exploit the total and partial
vector reuses. By analyzing data dependence relation of a vectorized loop program,
we derive the set of missing elements of a partial reuse and prefetch the set into
vector register for use in time. By applying the vector shift operation, we exploit
the partial reuse opportunities such that vector load operations can be saved. An
assembly-level translation algorithm is developed to transform the vectorized loop
program into reuse exploited form. Techniques discussed in this paper are simple,
systematic, and easy to be implemented or integrated with conventional vector com-
pilers, assembler, or translator. Performance analysis and experimental results show
that the proposed methods make significant improvements in execution time and
bus traffic between vector registers and memory.

204 chang, chen and sheu

Acknowledgments

This work was supported by the National Science Council of the Republic of China
under grant NSC 88-2213-E-156-002.

References

1. R. Allen and K. Kennedy. PFC: a program to convert Fortran to parallel form. In Proceedings of
IBM Conference on Parallel Computing and Scientific Computation, 1982.

2. R. Allen and K. Kennedy. Vector register allocation. IEEE Transactions on Computers,
41(10):1290–1317, 1992.

3. D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for subscripted variables. In
Proceedings of the ACM SIGPLAN’90 Conference on Programming Language Design and Implemen-
tation, pp. 53–65, June 1990.

4. H. Cheng. Vector pipelining, chaining, and speed on the IBM 3090 and Cray X-MP. IEEE Computer,
10:31–46, 1989.

5. Convex. CONVEX FORTRAN Optimization Guide. CONVEX Computer Corporation, Richardson,
TX, 1990.

6. F. Dahlgren and P. Stenstrom. Evaluation of hardware-based stride and sequential prefetching in
shared-memory multiprocessors. IEEE Transactions on Parallel and Distributed Systems, pp. 385–398,
April 1996.

7. D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory management by global
program transformation. Journal of Parallel and Distributed Computing, 5(5):587–616, 1988.

8. F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the Fifteenth Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 319–329, January 1988.

9. L. S. Liu, C. W. Ho, and J. P. Sheu. On the parallelism of nested for-loops using index shift method.
In Proceedings of the 1990 International Conference on Parallel Processing, Vol. II, pp. 119–123,
August 1990.

10. N. Manjikian. Compiling loop fusion with prefetching on shared-memory multiprocessors. In
Proceedings of 1997 International Conference on Parallel Processing, pp. 78–82, 1990.

11. N. Mitchell, L. Carter, J. Ferrante, and K. Hogstedt. Quantifying the multi-level nature of tiling
iterations. In The 10th International Workshop on Languages and Compilers for Parallel Computing,
pp. 1–15, 1997.

12. D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for supercomputers. Communica-
tions of the ACM, 29(12):1184–1201, 1986.

13. S. M. Pizer and V. L. Wallace. To Compute Numerically Concepts and Strategies. Little, Brown and
Company, Boston, 1993.

14. M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proceedings of the
ACM SIGPLAN’91 Conference on Programming Language Design and Implementation, pp. 30–44,
June 1991.

15. M. J. Wolfe. More iteration space tiling. Proceedings of the ACM International Conference on Super-
computing, pp. 655–664, November 1989.

16. S. Yakowitz and F. Szidarovszky. An Introduction to Numerical Computations. 2nd ed. Macmillan
Publishing Company, New York, 1989.

17. H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers. Addison-Wesley
Publishing Company, Reading, Mass., 1990.

