
The Journal of Supercomputing, 17, 205–227, 2000
© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Efficient Address Generation for Affine
Subscripts in Data-Parallel Programs
KUEI-PING SHIH kpshih@tkvr.tku.edu.tw

Department of Computer Science and Information Engineering, Tamkang University, Tamsui, Taipei, Taiwan

JANG-PING SHEU sheujp@csie.ncu.edu.tw

Department of Computer Science and Information Engineering, National Central University,
Chung-Li 32054, Taiwan

CHIH-YUNG CHANG changcy@email.au.edu.tw

Department of Computer and Information Science, Aletheia University,
Tamsui, Taipei, Taiwan

Final version accepted February 29, 2000

Abstract. Address generation for compiling programs, written in HPF, to executable SPMD code is an
important and necessary phase in a parallelizing compiler. This paper presents an efficient compilation
technique to generate the local memory access sequences for block-cyclically distributed array references
with affine subscripts in data-parallel programs. For the memory accesses of an array reference with affine
subscript within a two-nested loop, there exist repetitive patterns both at the outer and inner loops. We
use tables to record the memory accesses of repetitive patterns. According to these tables, a new start-
computation algorithm is proposed to compute the starting elements on a processor for each outer
loop iteration. The complexities of the table constructions are O�k + s2�, where k is the distribution
block size and s2 is the access stride for the inner loop. After tables are constructed, generating each
starting element for each outer loop iteration can run in O�1� time. Moreover, we also show that the
repetitive iterations for outer loop are Pk/ gcd�Pk; s1�, where P is the number of processors and s1

is the access stride for the outer loop. Therefore, the total complexity to generate the local memory
access sequences for a block-cyclically distributed array with affine subscript in a two-nested loop is
O�Pk/ gcd�Pk; s1� + k+ s2�.

Keywords: address generation, affine subscripts, data distribution, distributed-memory multicomputers,
data-parallel languages, multiple induction variables (MIVs), single program multiple data (SPMD)

1. Introduction

Distributed-memory multicomputers are widely used for applications in scientific
and engineering fields. However, programming on multicomputers is a vital dis-
advantage to such platforms owing to the absence of a global shared memory.
Fortunately, data-parallel languages, such as Fortran D [5, 22], Vienna Fortran [2, 3]
and High Performance Fortran (HPF) [9, 14], provide a global name space and data
distribution directives for programmers to specify the data placement on distributed-
memory multicomputers. Although data-parallel languages make programming on
distributed-memory multicomputers much easier, the tasks to distribute computa-



206 shih, sheu and chang

tion and data onto processors and to manage communication among processors are
left to parallelizing compilers. Hence, the efficiency of parallelizing compilers is the
key factor affecting the performance on distributed-memory multicomputers.

Generally, data-parallel languages support three regular data distributions:
block, cyclic, and block-cyclic data distributions. The address generation prob-
lems for compiling array references with block or cyclic distributions have been
studied thoroughly [6, 13, 15, 22]. The more general problems for compiling
array references with block-cyclic distribution also have been studied extensively
[4, 8, 10, 12, 16, 20, 21, 23]. Recently, several efforts on compiling array refer-
ences with affine array subscripts are proposed [1, 11, 12, 17, 18, 23]. Affine array
subscript means the array subscript is a linear combination of multiple induction
variables (MIVs). In [1], the authors use a linear algebra framework to generate
communication sets for affine array subscripts. Complex loop bounds and local
array subscripts of the generated code will incur significant overhead. A table-based
approach is proposed in [23]. The authors classify all blocks into classes and use a
class table to record the memory accesses of the first repetitive pattern. By using
the class table, they derived the communication sets for non-local accessed data
among processors. Both [1] and [23] are addressing the compilation of array refer-
ences with affine subscripts within a multi-nested loop. However, these methods are
not very efficient, in particular for dealing with the case within a two-nested loop.

In [19], they have made an empirical study of program characteristics that are
important to parallelizing compiler writers. From their report, one-dimensional
array references with affine subscripts occur quite often in real programs. The report
shows that one-dimensional array references account for 56 percent among array
references examined and 60 percent are affine subscripts for one-dimensional array
references checked. It means that one-dimensional array references are very usual
and affine subscripts in one-dimensional array references occur quite frequently.
Moreover, two-nested loops are also very common in real programs. Therefore, in
a two-nested loop, one-dimensional array references with affine subscripts should
be paid more attention. The generation of local memory access sequence for one-
dimensional array references with affine subscripts within a two-nested loop is very
important.

For compiling array references with affine subscripts, some researchers pay
their attention on the array reference enclosed within a two-nested loop to find
a better result [11, 12, 18]. Based on FSM (Finite State Machine) approach [4],
Kennedy et al. proposed another approach to solving the compilation of array ref-
erences with affine subscripts within a two-nested loop [11, 12]. They proposed an
O�Pk� algorithm to find the local starting element on a processor, where P is the
number of processors and k is the distribution block size. For the global starting
element, they found that the repetitive iterations for the outer loop are Pk itera-
tions. Hence, the total complexity to generate the local memory access sequence
for an array reference with affine subscript within a two-nested loop is O�P2k2�.
On the other hand, Ramanujam et al. proposed an improved work to find the
local starting elements on each processor [18]. Since a traverse step is incurred,
the complexity of their proposed algorithm is O�k�. Thus the total complexity of
Ramanujam’s algorithm turned out to be O�Pk2�.



efficient address generation 207

In this paper, we propose a new and more efficient algorithm to find the local
starting element. A preprocessing step is required before we compute the start-
ing elements. The complexity of the preprocessing step is O�k + s2�, where s2 is
the access stride for the inner loop. After the preprocessing step is done, the time
complexity to generate each starting element on a processor just needs O�1�. In
addition, we also find that the outer loop repetitive iterations are Pk/ gcd�Pk; s1�
iterations, where s1 is the access stride for the outer loop. Therefore, the total com-
plexity of our proposed approach is O�Pk/ gcd�Pk; s1� + k + s2�, which is asymp-
totical to O�Pk + s2�. Strictly, our proposed approach is better than the existing
methods when s2 < Pk2. In general, the inner loop access stride s2 is much smaller
than the value of Pk. Hence, the term s2 can be omitted. Thus, we may say that
the proposed algorithm is an O�Pk� algorithm. As a result, the proposed approach
is more efficient than the existing methods. The approach can find the starting ele-
ment, if any; otherwise, the approach can also report that there exists no starting
element for that iteration on that processor. The technique proposed in this paper
can be applied in compiler design for generating executable SPMD code.

The rest of the paper is organized as follows. Section 2 formulates the prob-
lem and describes the conventional techniques to generate local memory access
sequences for compiling the array references with affine subscripts within a two-
nested loop. An efficient approach to finding the starting elements from a given
global start is proposed in Section 3. The generations of tables used in finding the
starting elements are presented in Section 4. The performance analyses and com-
parisons with the existing work are demonstrated in Section 5. Section 6 concludes
the paper.

2. Address generation for affine subscripts

Compiling array references with block-cyclic distributions to generate an efficient
SPMD (Single Program Multiple Data) code is one important and necessary phase
in a parallelizing compiler. The address generation problem is quite complex espe-
cially when array references involve multiple induction variables (MIVs). In this
section, we deal with the problem of generating local memory access sequences for
compiling array references with multiple induction variables. We first describe the
problem and then propose an efficient technique to solve the problem.

2.1. Problem formulation

Specifically, Figure 1 illustrates the program model considered in this paper. Array
A is distributed onto P processors with cyclic(k) distribution. The array reference
contains two induction variables i1 and i2. The access strides of the array reference
with respect to i1 and i2 are s1 and s2, respectively. The access offset of the array
reference is o. Figure 2 is an example amenable to the program model shown in
Figure 1, where P = 4, k = 4, s1 = 37, s2 = 2, o = 0, and n2 = 9. The gray-
colored elements are the array elements accessed by the array reference in the



208 shih, sheu and chang

Figure 1. HPF-like program model considered in the paper.

two-nested loop. The MIV address generation problem is to generate the local
addresses of these gray-colored elements for some processor. Although the example
is very uncommon, for comparison, we use the same example with [11, 18]. Actually,
the values of s1 and s2 are not proportional to the difficulty of the problem.

2.2. Table-based address generation for affine subscripts

Consider the program model shown in Figure 1. For each outer loop iteration, the
MIV address generation problem is reduced to an SIV address generation problem.
Thus we can utilize the FSM approach [4] to generate the local memory access
sequence for that SIV problem. Generating the local memory access sequence for
an MIV problem can, therefore, be easily solved by enumerating the local memory
access sequence for each outer loop iteration until reaching the outer loop bound.

For example, consider the example illustrated in Figure 2. Let i1 = 0. Thus, we
can just focus our attention only on the inner loop. The MIV address generation
problem is reduced to the SIV problem, i.e., to generate the local addresses of
the accessed elements for the array reference A�2i2�. Thus a finite state machine
(FSM) can be built to enumerate the local memory access sequences for the SIV
problem. The initial state of the FSM depends on the position of the starting array

Figure 2. An MIV address generation example, where P = 4, k = 4, s1 = 37, s2 = 2, o = 0, and n2 = 9.



efficient address generation 209

element in a block. For instance, when i1 = 0, the starting element on processor p0
is 0 and its position in a block is 0; thus the initial state of the FSM for the case
when i1 = 0 is at state 0. In addition to the initial state of the FSM, we also need
to know the local address of the starting element since FSM only records the local
memory gaps between successive array elements allocated on the processor. FSM
has no enough information to show where to start in terms of local address. For
example, when i1 = 0, the local address of the starting element 0 on processor p0
is 0. It means that, to use the FSM to generate the local memory access sequence
for the case of i1 = 0, the initial state of the FSM is at state 0 and the beginning
of the sequence starts from 0. Therefore, when i1 = 0, the local memory access
sequence for processor p0 is 0; 2; 4; and so on. Similarly, it is done likewise for
each outer loop iteration i1 = 1; 2; 3; : : : ; n1.

In fact, there is no need to iterate all of the outer loop iterations from 0 to n1. We
have found that iterating Pk/ gcd�Pk; s1� outer loop iterations is sufficient because
there is a repetitive pattern for the outer loop. Having this discovery can save a lot
of time due to the avoidance of recomputation for repetitive patterns. Moreover,
it can also reduce the table size which is used for recording the starting elements
for outer loop iterations. The following theorem demonstrates that the repetitive
period of the outer loop is Pk/ gcd�Pk; s1� iterations.

Theorem 1. For the program model shown in Figure 1, the memory accesses of the
array reference have a repetitive pattern for the outer loop and its repetitive period is
Pk/ gcd�Pk; s1� iterations.

Proof. Consider the program model shown in Figure 1. As well known, the
memory accesses of the array reference have a repetitive pattern. Although the
access offset can affect the shape of the repetitive pattern, the repetitive property
does not change with the access offset. Therefore, without loss of generality, the
inner loop access stride s2 and the access offset o can be ignored when we consider
the memory accesses for the outer loop iterations.

Since array A is block-cyclically distributed onto P processors with block size k,
intuitively, an accessed element can be at any position of Pk. Here, we prove that
only Pk/ gcd�Pk; s1� positions the accessed elements can be at, not every Pk posi-
tion. In other words, the positions of the accessed elements would be repeated after
Pk/ gcd�Pk; s1� iterations.

The position of an accessed element can be represented as �s1i mod Pk�. Suppose
i and i′ are two iterations that their accessed elements have the same position. We
would like to show that i − i′ = tPk/ gcd�Pk; s1�, for some t ∈ Z, where Z is the
set of integers. As the accessed elements of i and i′ have the same position, we
have �s1i mod Pk� = �s1i′ mod Pk�. That is, s1i ≡ s1i′ �mod Pk�. According to
[7, Equation (4.39)], we have i ≡ i′ �mod Pk/ gcd�PK; s1��. As a result, we have
i− i′ = tPk/ gcd�Pk; s1�, for some t ∈ Z. The theorem is therefore obtained.

According to the above description, evidently, determining the local address of
the starting element for each outer loop iteration is the primary step to solve the
MIV address generation problem. The problem to find the local address of a starting



210 shih, sheu and chang

element for each outer loop iteration will be described in the next section. A new
approach to generating the local addresses of the starting elements will be presented
in the next section as well.

3. Generating starting elements for s > k

It is obvious that for a given outer loop iteration the memory accesses just depend
on the inner loop access stride s2. Therefore, in this section, we use s to indicate the
inner loop access stride s2 except otherwise notified. The method to find the starting
elements can be found in [11, 18]. In case of s ≤ k, complexity for finding starting
elements in [11, 18] is O�1�. However, in case of s > k, complexities for finding
starting elements in [11] and [18] are O�Pk� and O�k�, respectively. We propose a
new method to find the starting elements in case of s > k and the time complexity
of the algorithm is O�1�. The case of s > k occurs very often. Cyclic distribution is a
special case of a block-cyclic distribution (cyclic(1) distribution) and the distribution
block size is 1. Therefore, the access strides are always larger than the distribution
block size. The problem in case of s > k deserves to be paid more attention. The
problem and its solution are described as follows.

3.1. Problem description

We have given an overall description of the MIV address generation problem in
Section 2.2. Finding the starting element on a processor from a given outer loop
iteration plays an important role in dealing with the MIV address generation prob-
lem. We formally describe the induced problem as follows. Let the initial accessed
element for some fixed outer loop iteration be a global start and G denote the local
address of the global start. Specifically, given a global start G, the processor p where
G is allocated and the processor q which we would like to find its starting element,
the problem is to figure out Sq, the local address of the starting element, for proces-
sor q. For example, consider the example shown in Figure 2. The gray-colored ele-
ments are the elements accessed by the array reference, in which the deep-colored
shaded elements are the global starts corresponding to every outer loop iteration
and the light-colored shaded elements on each processor are the starting elements
corresponding to every global start. Suppose a given global start is 37 whose local
address is 9 on processor p1. The starting elements on processors p0, p2, and p3 are
49, 41, and 45, respectively, in terms of global addresses. The problem is to figure
out the local addresses of these starting elements. That is, 13, 9, and 9, respectively.
Finally, we want to build a table to record the local addresses for those shaded
elements on processor q.

For simplicity, we first describe a special case, which assumes that the access
stride s is relatively prime to the distribution block size k. That is, gcd�s; k� = 1.
The extension to general case is presented later.



efficient address generation 211

Figure 3. An SIV example assuming that array elements are distributed onto 4 processors with cyclic(4)
distribution and the access stride of the array reference is 5.

3.2. Preprocessing

Given a global start G, we propose a new approach to find the local address of the
starting element Sq for processor q in case of s > k. Since the proposed approach
is a table-based approach, it is necessary to pre-compute a few tables in order to
evaluate the starting elements for a given global start. In this section, we describe
the characteristics of these tables and how they are used in the proposed approach.
The constructions of these tables will be introduced in Section 4.

3.2.1. C2P and P2C tables. As is well-known, there is a repetitive pattern for the
accessed elements on blocks. By [23], all blocks can be classified into s/ gcd�s; k�
classes according to the positions of the accessed elements on a block.1 Note that
blocks of the same class have the same format. Let C = s/ gcd�s; k�. A repetitive
pattern contains blocks from class 0 to class C − 1. In addition, since s > k, there is
at most one accessed element on a block. Therefore, we can use a table to record the
position of the only accessed element for every class. The blocks with no accessed
element are recorded by “−.” We denote the table C2P table. With the table we
can easily and efficiently get the position of an accessed element on a block from
the class number of the block.

Consider Figure 3 as an example, in which it assumes that array elements are
distributed over 4 processors with cyclic(4) distribution and the access stride is 5.
Without loss of generality, the access offset is set to 0 for simplifying discussion. The
accessed elements on classes 0, 1, 2, and 3 are at positions 0, 1, 2, and 3, respectively.
Therefore, the values of C2P(0), (1), (2), and (3) are 0, 1, 2, and 3, respectively.
Moreover, there is no accessed element in class 4. So, C2P(4)=“−.” Thus we can
obtain the C2P table for this example and it has been shown in Figure 4(a).



212 shih, sheu and chang

Figure 4. Tables used in starting elements findings for the example shown in Figure 3.

We can get the position of an accessed element on a block according to the class
number of a block by using C2P table. By contrast, if the position of the accessed
element on a block is given, can we get the class number of that block efficiently?
Intuitively, we can get the class number of a block according to the position of the
accessed element on the block by means of C2P table. However, it requires a search
operation. Thus, we use a table to record the class number according to the position
of the accessed element on a block. With the table we can get the class number of
a block according to the position of the accessed element on that block directly and
efficiently.

Since a block can have at most one accessed element in case of s > k and the
blocks with the same position of the accessed element are classified into the same
class, a position can have at most one class number to correspond to. As a result,
it is feasible to use a table to record the corresponding class number by a given
position of an accessed element. Let such table be named P2C table. To illustrate,
we explain the P2C table for the example shown in Figure 3. Obviously, for posi-
tions 0; 1; 2, and 3, the corresponding class numbers are 0; 1; 2, and 3, respectively.
Consequently, P2C = �0; 1; 2; 3�, which is shown in Figure 4(b). It is worth men-
tioning that since we have assumed that gcd�s; k� = 1, it is sure that each position
has an accessed element to map to. Thus, each position has a class number to cor-
respond to. However, it is not true any more if gcd�s; k� 6= 1. It should be paid
more attention when we are dealing with the general problem.

3.2.2. Act and Jump tables. As previously described, a block contains at most one
accessed element when the access stride is larger than the block size. Thus, we name
a block which has an accessed element to map to as an active block; otherwise, it is
termed an empty block. On a processor, the tables Act and Jump that we would like
to introduce below are used for skipping over the empty blocks to an active block.
One important observation here is that, from a processor’s viewpoint, blocks on a
processor have a repetitive pattern in terms of classes. It is important to have such
a remark since we can obtain the class number of the next block on a processor
from current block if the class number of the current block is known. Based on the
discovery, we can use one table to record the class number of the next active block
from the current block on a processor and another to record the number of empty
blocks which we have to skip over to get the next active block if the current block is
an empty block. The two tables are named Act and Jump, respectively. The rules to
construct the two tables are as follows. If the current block is not an empty block,
we do not need to skip any block. Thus, the value in Act table for that block is
recorded by its class number and that in Jump table is recorded by 0. Otherwise,
it implies that the current block is an empty block. Then the value in Act table for



efficient address generation 213

that block is recorded by the class number of the next active block on the processor
and that in Jump table is recorded by the number of blocks that we have to skip
over. If we can not find any active block, both the values in Act and Jump tables
are recorded by “−.” It is worth mentioning that the repetitive pattern of the blocks
on processors will be the same except the initial block for all processors. Therefore,
although Act and Jump tables are constructed from viewpoint of processors, these
two tables do not change with different processors.

For the example shown in Figure 3, consider processor p0 for illustration. Since
the blocks of classes 0, 1, 2, and 3 are active blocks, the values of these entries
in Act table are the class numbers of their own and those entries in Jump table
records 0. On the other hand, the block of class 4 is an empty block. It needs to
skip one block to the next active block, i.e., the block of class 3. Thus the fourth
entry in Act table is 3, the class number of the next active block and that in Jump
table is 1 as we need to skip one block to the next active block. As a result, for this
example, Act = �0; 1; 2; 3; 3� and Jump = �0; 0; 0; 0; 1�, which have been shown in
Figure 4(c) and (d), respectively.

3.3. The algorithm

With these tables we can evaluate the starting element Sq from a given global
start G in O�1� time complexity. Figure 5 illustrates the algorithm to evaluate the
starting element from a given global start. We term the algorithm Start Computation
algorithm.

The basic concept of the Start Computation algorithm is as follows. The contin-
uous blocks from processor 0 to P − 1 are said to be on the same course [4]. The
fact that the corresponding entries on the blocks at the same course have the same
local index is very important in Start Computation algorithm. Figure 6 illustrates
the basic idea of the Start Computation algorithm. Let posg denote the position of
G in a block on processor p and poss denote the position of Sq in a block on proces-
sor q. The element denoted by gray-colored G on processor q is the corresponding
entry to G on the same course. Thus, the two elements have the same local index,
that is, G. As a result, if the distance between Sq and the gray-colored G is figured
out, Sq can be obtained accordingly. Let b denote the block on processor q which
is immediately greater than the block which G is located on. Figure 6(a) is the case
that q > p, posg < poss, and b is the active block. Since q > p, b must be at the
same course with the block where G is located. Moreover, as b is an active block,
Sq must be on b. By the tables described in Section 3.2, we can easily obtain posg
and poss. Therefore, Sq = G + poss − posg. It is similar for the other cases.

The Start Computation algorithm is based on the concept described above. Let’s
go back to the algorithm. The details of the algorithm is explained as follows. Given
G, the local address of a global start, and p where G is allocated, Step 1 is to
calculate the position of G on a block, that is, posg. Step 2 is to measure the distance
between processors p and q, which is then stored in pdist. In Step 3, P2C(posg) can
get the class number of the block which the global start G is on. Since the blocks
mapped onto processors are in a round-robin fashion in terms of classes; thus,
Step 3 can get the class number of the block on processor q, which is denoted



214 shih, sheu and chang

Figure 5. Start Computation algorithm for the case of s > k.

as c. According to C2P table, C2P(c) can get the position of the accessed element
on the block of class c, if ever. Therefore, Step 4 can obtain the position of the
starting element Sq on a block if it exists, i.e., poss. If poss does not equal “−,” it
means that the current block is an active block and poss denotes the position of the
starting element. We can go directly to Step 12 to evaluate the distance between
the starting element Sq and the global start G. The distance between Sq and G is
denoted as dist. If q > p, it is the case shown in Figure 6(a). The local address
of the starting element on processor q, Sq, is equal to G plus dist, just as Step 16
shows. Otherwise, it implies that q < p and this is the case shown in Figure 6(b).
We still need to add one block size to the distance since the starting element must
be at one more course than the course where the global start is located. Those are
what Steps 13–15 do. As a result, the local address of the starting element can be
obtained, just as Step 16 shows.

On the other hand, if poss = “−,” it means that the current block is an empty
block, that is, the cases illustrated in Figure 6(c) and 6(d). We can use Act table to
obtain the class number of the next active block. If Act�c� = “−,” it implies that
there exists no active block on the processor. Certainly, there is no starting element
on the processor. Otherwise, which means that we can find an active block on the
processor, we can get the number of blocks needed to skip over the current block to



efficient address generation 215

Figure 6. The basic concept of the Start Computation algorithm. (a) The case that q > p, posg < poss ,
and the current block is an active block. (b) The case that q < p, posg < poss , and the current block is
an active block. (c) The case that q > p, posg < poss , and the current block is an empty block. (b) The
case that q < p, posg < poss , and the current block is an empty block.

the next active block and the position of the accessed element on that active block
from Jump and Act tables, respectively. Thus, we have Steps 5–11. For simplicity,
in Step 12 the operation Jump ∗k is executed for all cases. It makes no difference
for the cases shown in Figures 6(a) and 6(b) since the entry in Jump table is 0 if
the current block is an active block.

Let us consider Figure 7 as an example, where it assumes that P = 4, k = 4,
s1 = 37, s2 = 5, o = 0, and n2 = 7. Consider a global start 37, whose local address
is 9 on processor p1. We first find the starting element for processor p2. The input of
the Start Computation algorithm is G = 9, p = 1, q = 2, k = 4, P = 4, s = 5�= s2�,
and C = 5�= s/ gcd�s; k��. The tables used for the example are the same as shown
in Figure 4. Following the Steps from 1 to 4 in the algorithm we can obtain that
posg = 1, pdist = 1, c = 2, and poss = 2. Since poss does not equal “−,” we
go directly to Step 12 and we obtain that dist = 1. Due to the invalidation of
the condition in Step 13, we go directly to Step 16 and we have S2 = 10, which
corresponds to the array element 42 in terms of global address.

On the same input except q = 0, we take the finding of the starting element
on processor p0 as another example. After executing Step 4, we have posg = 1,
pdist = 3, c = 4, and poss = “−.” Since poss equals “−,” which means that the block



216 shih, sheu and chang

Figure 7. Layout of array elements on processors for the case of s2 > k, another MIV example, where
P = 4, k = 4, s1 = 37, s2 = 5, o = 0, and n2 = 7.

contains no accessed element, we go to Step 6. According to Act and Jump tables,
there is an active block at one block after the current empty block on processor
p0. By Step 9, we have poss = 3. After Step 12, we have dist = 6. As q < p, dist
still needs to add 4, a block size. It turns out that dist = 10. Thus, S0 = 19, which
corresponds to the array element 67 in terms of global address.

Clearly, the time complexity of Start Computation algorithm is O�1�. The com-
plexity analyses of the tables used in the algorithm and the performance compar-
isons against the existing methods will be discussed in Section 5.

3.4. Extension to the general case

In previous discussions, we have described the starting element findings for the
cases of s > k and gcd�s; k� = 1. Actually, the assumption of gcd�s; k� = 1 can be
removed by easily extension of the proposed approach. The extension is described
as follows.

In Section 3.2.1, we have described the C2P and P2C tables. In P2C table
description, we have mentioned that if gcd�s; k� = 1, each position must have an
accessed element to map to. However, if gcd�s; k� 6= 1, each position may have
no accessed element to map to. Let’s take Figure 8 as an example for illustra-
tion, where Figure 8 assumes that array elements are block-cyclically distributed
onto 4 processors with cyclic(4) distribution and the access stride s for the array
reference equals 6. Figure 8(a) shows the layout of array elements on processors
and Figure 8(b) illustrates the tables used for the starting element findings. In this
example, all blocks can be classified into 3 classes. C2P= �0; 2;−�. The accessed
elements only occurs at positions 0 and 2, and they are corresponding to classes
0 and 2, respectively. That is, P2C�0� = 0 and P2C�2� = 2. As for the positions 1



efficient address generation 217

Figure 8. An SIV example assuming that array elements are distributed onto 4 processors with cyclic(4)
distribution and the access stride of the array reference is 6. (a) Layout of array elements on processors.
(b) Tables used for starting element findings.

and 3, there is no accessed element at these positions. Therefore, there is no proper
class number to map to for these positions.

Actually, in our proposed approach, we let the array element A�0� be a base
point. The accessed elements are assumed to start from the base point and then
each strides s. It implies that a block with an accessed element at position 0 is always
classified into class 0, and vice versa. Therefore, the tables described above can be
reused. In other words, if the block size k and the access stride s are unchanged,
the classification of blocks is also unchanged. As a result, for the positions which
no accessed elements is at, we let their values in P2C table be the values of their
previous entries. Nevertheless, according to C2P table, each class number has its
real position to correspond to. Consequently, there is a difference between the real
position and the assumed position. Therefore we use another table to record the
difference in order to make use of C2P table for every case. The table is denoted
as Offset table.

Take the example shown in Figure 8 for illustration. The C2P and P2C tables
for this example are (0; 2;−) and (0; 0; 1; 1), respectively. Since position 1 has no
suitable class number to correspond to, we assign the class number corresponded
by position 0 to position 1, i.e., class 0. Although position 1 corresponds to class 0,
the real position of the accessed element on the block of class 0 is at position 0



218 shih, sheu and chang

according to C2P table. Thus there is a 1-difference between the assumed position
and the real position. As a result, Offset�1� = 1. Similarly, Offset�3� = 1. There
is no problem on positions 0 and 2 since they have their suitable class numbers to
correspond to. Consequently, Offset table for this example is (0; 1; 0; 1).

In addition to the above modifications, the algorithm described in Section 3.3
also needed to be modified. The modification is very slight. We only need to modify
the line 12 of the algorithm shown in Figure 5. It is modified to

12: dist = poss − posg + Jump�c� ∗ k+Offset�posg�:

The modification is to add the offset between the real position and the assumed
position to obtain the correct distance.

In this section, we have described how to find the starting element from a given
global start. The approach is table-based. Table generations are described in the
following section.

4. Tables constructions

In the previous section we have described the technique to find the starting element
Sq from a given global start G by means of five tables, C2P, P2C, Offset, NextAct,
and Jump tables. In this section we will present the methods to construct these
tables.

4.1. C2P, P2C, and Offset tables constructions

C2P table is a table to record the position of the accessed element in every class.
Figure 9 illustrates the algorithm to construct the C2P table, which is termed
C2P Construction algorithm. In this algorithm, Step 1 sets C2P(0) to 0. We use
a variable p to denote the position of an accessed element on a block. Initially p
is set to s, the access stride, to denote the next accessed element. Then we scan
the blocks of all classes first from the block of class 1. For each block, p subtracts
a block size k. If p < k, it implies that the accessed element is on this block and
the position of this accessed element is at p. The value of this entry in C2P table is
set to p. Afterward p will add another access stride s to denote the next accessed
element. Otherwise (p ≥ k), it implies that the block is an empty block. Thus the
value of the entry in C2P table is set to “−.” In this fashion we can obtain the C2P
table. The complexity to generate the C2P table is O�C�, where C is the number of
classes.

P2C table records the class number according to the position of the accessed
element on a block. Offset table records the difference between the real position
and the assumed position. P2C table is constructed by means of C2P table. Offset
table is constructed by means of C2P table. However, Offset and P2C tables can be
constructed simultaneously. Figure 10 shows the methods to construct the P2C and
Offset tables. The algorithm is termed P2C and Offset Constructions algorithm.



efficient address generation 219

Figure 9. C2P Construction algorithm.

Figure 10. P2C and Offset Constructions algorithm.

In this algorithm Step 1 first initializes P2C table to “−.” Steps 2 and 3 set the
initial values of P2C and Offset tables to 0. Steps 4–8 are to set the P2C table for
those entries that have values in C2P table. For those entries that have not been
set in previous steps, it implies that these entries have no suitable class numbers to
correspond to. These entries should be set to the values of their previous entries.
Therefore we scan P2C table from the beginning. We use a counter to count the
distance between the real position and the assumed position. If the scanned entry



220 shih, sheu and chang

Figure 11. (a) A one-group circular sequence. (b) A multi-groups circular sequence.

has a value, it implies the entry has a corresponding class number. Thus the entry
in Offset table is set to 0 and the counter is reset to 0. Otherwise, it implies that
the position has no corresponding class number. We reset the entry to the value of
its previous entry and the entry in Offset table is set to the value of the counter.
Steps 9–19 do what we have described above. The complexity to generate the P2C
and Offset tables is O�C + k�.

4.2. Act and Jump tables constructions

In Section 3.2.2 we have mentioned that, from a processor’s viewpoint, blocks on
processors have a repetitive pattern in terms of classes. Moreover, the repetitive
pattern of the blocks on processors will be the same except the initial block for
all processors. To explain specifically, let us take a look at the example shown in
Figure 3. The blocks on processor p0 are in classes 0; 4; 3; 2; 1, and then repeat
again from class 0. A similar situation also happens on processors p1, p2, and p3.
The sequence of class numbers on p1 is 1; 0; 4; 3; 2, that for p2 is 2, 1; 0; 4; 3, and
that for p3 is 3; 2; 1; 0; 4. It is interesting that the sequence of class numbers on
each processor is the same except the initial class number on each processor. That
is, the sequence of class numbers on each processor can be viewed as the sequence
0; 4; 3; 2; 1 and the initial class numbers for p0, p1, p2, and p3 are 0; 1; 2, and 3,
respectively. We use the notation �0; 4; 3; 2; 1� to denote the circular sequence. The
circular sequence contains only one group. We call the circular sequence one-group
circular sequence. Figure 11(a) illustrates the one-group circular sequence for this
example. By the way, the circular sequence for the example shown in Figure 8 is
(0; 1; 2). It is also a one-group circular sequence.

It should be addressed that it is possible that the sequence of class numbers
on each processor may be different and there may be more than one group in a
circular sequence. Nevertheless, all class numbers have appeared in the circular
sequence. Moreover, groups are mutually disjoint and a processor can belong to
one and only one group. We use the example shown in Figure 12 to illustrate the
phenomenon. There are 4 classes in this example. The sequence of class numbers
for p0, p2, and p4 is 0, 2, and that for p1, p3, and p5 is 1, 3. The circular sequence
can be represented as �0; 2��1; 3�. Obviously, the circular sequence is a two-groups
circular sequence. One group is �0; 2� and another is �1; 3�. �0; 2� and �1; 3� are



efficient address generation 221

Figure 12. An SIV example assuming that array elements are distributed onto 6 processors with cyclic(3)
distribution and the access stride of the array reference is 12.

Figure 13. Circular Sequence Generation algorithm.

mutually disjoint. Processors p0, p2, and p4 belong to the group �0; 2� and p1, p3,
and p5 belong to the group �1; 3�. Figure 11(b) illustrates the multi-groups circular
sequence for this example.

Since the constructions of Act and Jump tables are based on the circular
sequence, we first demonstrate the generation of a circular sequence. Figure 13
demonstrates the algorithm to generate the circular sequence. The algorithm is
termed Circular Sequence Generation algorithm. In this algorithm we use a set
to represent the classes that have not been visited. Initially, all classes are in the
set. It first chooses one class to start a new group and delete the class from the
set. It then finds the next class in the group by �c + P�modC. If the class has not
been visited, that is, the class belongs to the set, it adds the class to the group and
deletes the class from the set. It repeats until the class has been visited. If the class
has been visited, it implies that the group is finished. It adds the group to the cir-
cular sequence and then restarts from the very beginning by choosing another class
in the set to begin another new group. The algorithm terminates while the set is
empty. The complexity of the Circular Sequence Generation algorithm is O�C�.

On a processor, Act table is to record the class number of the active block from
the current block. Jump is to record the number of empty blocks which we have



222 shih, sheu and chang

Figure 14. Act and Jump Constructions algorithm.

to skip over to reach an active block from the current block. The two tables can
be constructed together. The constructions of the two tables are based on the cir-
cular sequence and C2P table. Figure 14 illustrates the algorithm to construct Act
and Jump tables, which is termed Act and Jump Constructions algorithm. We use a
stack to help construct these two tables. The stack is used for storing the class num-
bers of the empty blocks. First of all, we initialize all the entries in Act and Jump
tables to “−” and also initialize a stack. Afterward, we scan the circular sequence
one group by one group and for each group one class by one class. If the scanned
class corresponds to an empty block, the class is pushed into the stack. Otherwise,
it implies the block is an active block. By the construction rules in Section 3.2.2,
the corresponding entry in Act table is set to the class number of its own and the
entry in Jump table is set to 0. Moreover, the previous classes pushed in the stack



efficient address generation 223

are popped out from the stack under this condition. In other words, once we find
an active block, we pop the stack one by one until the stack is empty, set each entry
in Act table for each popped class to the class number of the active block, and set
each entry in Jump table for each popped class to the order of the popped class in
the stack.

The algorithm can work correctly except the last scanned class in a group cor-
responds to an empty block. Otherwise, it needs more consideration. If the last
scanned class in a group corresponds to an empty block, we use the values in the
Act and Jump tables of the first class in the group for the unpopped classes. If the
value in Act table of the first class is not set, it implies that we can not find an
active block in the group. By the construction rules, all the entries in Act and Jump
tables should be recorded by “−.” In this algorithm, we just need to empty the stack
since we have set them to “−” at the initial step. On the other hand, if the value
in Act table of the first class has ever been set, then we pop the stack also one by
one until the stack is empty. For each popped class, the entry in Act table for the
popped class is set to that for the first class in the group and the entry in Jump is
set to that for the first class plus the order of the popped class in the stack.

5. Performance analyses and comparisons

In Section 3 we have described the algorithm to find the starting element from a
given global start. Simultaneously, the tables used to facilitate the starting element
findings are also presented. In Section 4 we have also demonstrated the methods
to construct these tables. In this section we analyze the tables construction algo-
rithms in theoretical. The comparisons of our proposed method against the existing
methods are presented as well.

5.1. Performance analyses

C2P Construction algorithm shown in Figure 9 is to construct a C2P table. Let C
be the number of classes, where C = s/ gcd�s; k� [23]. The algorithm terminates
when all classes are visited once. Obviously, the time complexity of this algorithm
is O�C�. As for the space, a C2P table requires C entries to store the position of
the accessed element for every class.

P2C and Offset tables are constructed together. The algorithm to construct these
two tables is shown in Figure 10. In Step 3 of this algorithm, the initial step requires
O�k�. Steps 4–8 require O�C� and Steps 10–19 require another O�k�. Thus the
algorithm to construct P2C and Offset tables runs O�C + k� in complexity. On the
other hand, the spaces used by P2C and Offset are both k.

Jump table can be constructed in conjunction with the construction of Act table.
However, to construct Act and Jump tables, we need first to generate a circular
sequence, which has been described in Section 4.2. Circular Sequence Generation
algorithm is to generate a circular sequence. In this algorithm we use a set struc-
ture to maintain the classes which have not been visited. The algorithm terminates



224 shih, sheu and chang

Table 1. Time and space complexities
analyses for tables constructions

Complexity

Table Time Space

C2P O�C� C
P2C O�C + k� k
Offset k
Act O�C� C
Jump C

when the set is empty. It visits each class one and only one time. Therefore, the
time complexity of Circular Sequence Generation algorithm is O�C�. Even though
we use a set structure in this algorithm, it does not increase the time complexity.
However, it is an implementation issue. We do not discuss the details in this paper.

Act and Jump tables are constructed by Act and Jump Constructions algorithm
shown in Figure 14. The algorithm scans the circular sequence one group by one
group and for each group one class by one class. We have mentioned that a circular
sequence contains all classes. The algorithm visits each class at most twice. As a
result, the time complexity of the algorithm is O�C�. Both Act and Jump tables
need C space.

Table 1 summarizes the complexities in time and space for constructing these
tables.

5.2. Performance comparisons

We compare our method with two existing methods. One is proposed by Kennedy
et al. [11] and another is proposed by Ramanujam et al. [18]. The method proposed
by Kennedy et al. is denoted Kennedy’s, the one proposed by Ramanujam et al. is
denoted Ramanujam’s, and our proposed method is denoted ours. All the three
methods (Kennedy’s, Ramanujam’s, and ours) are to generate the local memory
access sequence for an array reference in one-level mapping with affine subscripts
within a two-nested loop.

As described in Section 2.2, the solution to the MIV address generation prob-
lem contains two phases. The first phase is to iterate outer loop iterations. Once
the outer loop iteration is fixed, the MIV address generation problem is reduced
to an SIV address generation problem. Therefore, the second phase is to solve the
reduced SIV problem. In the second phase, the FSM approach [4] is adopted. How-
ever, before using the FSM approach, we need to solve another induced problem—
starting element findings. We term the findings as start computation.

In Kennedy’s method, the first phase needs to iterate Pk outer loop iterations.
In the second phase the start computation requires O�1� complexity for the case
of s2 ≤ k. If s2 > k, it needs O�Pk� in time complexity. In this case they have
to pre-compute two vectors (l- and r-vectors). It requires O�1�. Therefore, the
total complexity to solve the MIV address generation problem is O�P2k2�. In



efficient address generation 225

Table 2. Performance comparisons of our method against the existing methods

Kennedy’s Ramanujam’s Ours

Start computation O�1� O�1� O�1�
in case of s ≤ k

Preprocessing O�1� O�1� O�s2 + k�
Start computation O�Pk� O�k� O�1�

in case of s > k
Number of iterations Pk Pk Pk

gcd�Pk;s1�
needed for outer loop

Total O�P2k2� O�Pk2� O

(
Pk

gcd�Pk;s1�
+ s2 + k

)

Ramanujam’s method, the first phase also needs to iterate Pk outer loop iterations.
In the second phase the start computation is O�1� if s2 ≤ k. Otherwise, s2 > k, the
start computation is O�k� in complexity. Similarly, they also need to pre-compute
the l- and r-vectors. As a result, the total complexity is O�Pk2�.

In our method, by Theorem 1, the first phase needs to iterate only Pk/ gcd�Pk; s1�
outer loop iterations. In the second phase, we do not propose any method to deal
with the start computation while s2 ≤ k. However, it can be solved by adopting
either Kennedy’s or Ramanujam’s method. Therefore, it requires O�1� in complex-
ity. In the case of s2 > k, we propose a new start computation technique. The tech-
nique needs only O�1� in complexity for each starting element finding. However,
we need to construct some tables to facilitate the starting element findings. The
tables constructions requires O�C + k�, where C is the number of classes and C =
s2/ gcd�s2; k�. Hence the worst case of the tables constructions is O�s2 + k� in com-
plexity. Consequently, the total complexity of our method is O�Pk/ gcd�Pk; s1� +
s2 + k�.

Table 2 summarizes the performance comparisons of our method against the
existing methods. Clearly, our proposed approach is better than the existing methods
when s2 < Pk2. However, the inner loop access stride s2 is, in general, much smaller
than the value of Pk. Hence, the dominated term would be the value of Pk. Thus,
we can say that the proposed algorithm is an O�Pk� algorithm. As a result, the
proposed approach is more efficient against the existing methods.

6. Conclusions

In this paper, we have presented an efficient approach to the evaluation of the
starting element for some processor from a given global start, which is a key step
to solve the MIV address generation problem in data-parallel programs, assuming
array is block-cyclically distributed and its access subscript is affine. The approach
is a table-based approach. The constructions of these tables require O�s2 + k� in
time complexity, where k is the distribution block size and s2 is the access stride
of the inner loop. With these tables, the Start Computation algorithm can run in
O�1� time. In addition, we have shown that there exists a repetitive pattern for
every Pk/ gcd�Pk; s1� outer loop iterations. Therefore, the MIV address generation



226 shih, sheu and chang

problem can be solved in O�Pk/ gcd�Pk; s1� + k+ s2� time, where P is the number
of processors and s1 is the access stride of the outer loop. Currently, the complexity
of the best approach for this problem is O�Pk2� [18] in the literature. Hence, the
proposed approach is better than the known methods if s2 < Pk2. In general, s2 is
much smaller than Pk in real applications. Thus, the dominated term would be Pk.
As a result, our proposed approach is much better than the existing methods.

Since the problem model considered in the paper is focused on one-level map-
ping, in the near future, we would like to extend the approach to two-level map-
ping. Moreover, we also hope to apply the address generation approach to evaluate
communication sets. It is a challenge problem since it would incur data depen-
dences. The preservation of execution order needs the utmost care and attention.
The address generation and communication sets evaluation for general affine sub-
scripts are also under investigation.

Acknowledgments

This work was supported by National Science Council of the Republic of China
under grants NSC 89-2213-E-008-023 and NSC 89-2213-E-156-001.

Note

1. All blocks can be numbered in terms of class according to the rule: bmodC, where b is the block
number of that block and C is the number of classes.

References

1. C. Ancourt, F. Coelho, F. Irigoin, and R. Keryell. A linear algebra framework for static HPF code
distribution. In The Fourth International Workshop on Compilers for Parallel Computers, pp. 117–132,
Delft, The Netherlands, December 1993.

2. B. M. Chapman, P. Mehrotra, and H. P. Zima. Programming in Vienna Fortran. Scientific Program-
ming, 1(1), 1992.

3. B. M. Chapman, P. Mehrotra, and H. P. Zima. Vienna Fortran—a Fortran language extension for
distributed memory multiprocessors. In J. Saltz and P. Mehrotra, ed., Language, Compilers and Run-
time Environments for Distributed Memory Machines, pp. 39–62, 1992.

4. S. Chatterjee, J. R. Gilbert, F. J. E. Long, R. Schreiber, and S.-H. Teng. Generating local addresses
and communication sets for data parallel programs. Journal of Parallel and Distributed Computing,
26(1):72–84, 1995.

5. G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. W. Tseng, and M. Wu. Fortran D
language specification. Technical Report TR-91-170, Department of Computer Science, Rice Uni-
versity, December 1991.

6. M. Gerndt. Automatic parallelization for distributed-memory multiprocessing systems. Ph.D. thesis,
University of Bonn, December 1989.

7. R. L. Graham, D. E. Knuth, and O. Patashink. Concrete Mathematics. Addison Wesley, Reading,
Mass., 1989.

8. S. K. S. Gupta, S. D. Kaushik, C.-H. Huang, and P. Sadayappan. On compiling array expressions for
efficient execution on distributed-memory machines. Journal of Parallel and Distributed Computing,
32(2):155–172, 1996.



efficient address generation 227

9. High Performance Fortran Forum. High Performance Fortran Language Specification, November 1994.
(Version 1.1).

10. S. Hiranandani, K. Kennedy, J. Mellor-Crummey, and A. Sethi. Compilation techniques for block-
cyclic distributions. In Proceedings of ACM International Conference on Supercomputing, pp. 392–403,
July 1994.

11. K. Kennedy, N. Nedeljković, and A. Sethi. Efficient address generation for block-cyclic distributions.
In Proceedings of ACM International Conference on Supercomputing, pp. 180–184, July 1995.

12. K. Kennedy, N. Nedeljković, and A. Sethi. A linear-time algorithm for computing the memory
access sequence in data-parallel programs. In Proceedings of the Fifth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp. 102–111, July 1995.

13. C. Koelbel. Compile-time generation of regular communication patterns. In Proceedings of Super-
computing’91, pp. 101–110, Albuquerque, NM, November 1991.

14. C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel. The High Performance Fortran
Handbook. MIT Press, Cambridge, Mass., 1994.

15. C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for distributed execution.
IEEE Transactions on Parallel and Distributed Systems, 2(4):440–451, 1991.

16. S. P. Midkiff. Local iteration set computation for block-cyclic distributions. In Proceedings of Inter-
national Conference on Parallel Processing, Vol. II, pp. 77–84, August 1995.

17. S. P. Midkiff. Computing the local iteration set of a block-cyclically distributed reference with
affine subscripts. In Proceedings of the sixth Workshop on Compilers for Parallel Computers, Aachen,
Germany, December 1996.

18. J. Ramanujam, S. Dutta, and A. Venkatachar. Code generation for complex subscripts in data-
parallel programs. In Languages and Compilers for Parallel Computing, Minneapolis, MN, August
1997.

19. Z. Shen, Z. Li, and P.-C. Yew. An empirical study of Fortran programs for parallelizing compilers.
IEEE Transactions on Parallel and Distributed Systems, 1(3):356–364, 1992.

20. J. M. Stichnoth, D. O’Hallaron, and T. Gross. Generating communication for array statements:
Design, implementation, and evaluation. Journal of Parallel and Distributed Computing, 21:150–159,
1994.

21. A. Thirumalai and J. Ramanujam. Efficient computation of address sequences in data paral-
lel programs using closed forms for basis vectors. Journal of Parallel and Distributed Computing,
38(2):188–203, 1996.

22. C. W. Tseng. An optimizing Fortran D compiler for MIMD distributed-memory machines. Ph.D.
thesis, Rice University, 1993.

23. W.-H. Wei, K.-P. Shih, and J.-P. Sheu. Compiling array references with affine functions for data-
parallel programs. Journal of Information Science and Engineering, 14(4):695–723, 1997.




