
I. Introduction

A new interconnection network that has recently
attracted substantial attention is the star graph (Akers and
Krishnameurthy, 1989; Akers et al., 1987).  The star
graph, being a member of the class of Cayley graphs, has
been shown to possess appealing features, including a
small number of nodes, a small diameter, partitionabilty,
symmetry, and a high degree of fault tolerance.  Ac-
cordingly, much research has been done on the star
graph’s topological properties (Day and Tripathi, 1994;
Qiu et al., 1994), embedding capability (Jwo et al., 1991;
Nigam et al., 1990; Tseng et al., 1997, 1999), communica-
tion capability (Nigam et al., 1990; Mendia and Sarkar,
1992; Akl et al., 1993; Mišić et al., 1994; Qiu et al., 1994;
Fragopoulou and akl, 1996; Sheu et al., 1995), and fault-
tolerance (Bagherzadeh et al., 1993; Latifi, 1993; Jova-
nović and Mišić, 1994; Tseng et al., 1997; Chen and Sheu,
2000).

One critical issue in evaluating a network is the
graph embedding problem.  Given a guest graph G and a
host graph H, the problem is to find a mapping from each
node of G to one of H, and a mapping from each edge of
G to one path in H.  This problem has long been used to
model the problem of arranging a parallel algorithm in a
parallel architecture.  The graph embedding problem has
been heavily studied for various host graphs.  Rings are
common guest graphs with many applications.  With a star
graph as the host graph, it has been shown that any ring of
even length is embedable (Jwo et al., 1991).  Results for

embedding multi-dimensional meshes into a star graph
can be found in Jwo et al. (1991) and Qiu et al. (1994).

Fault tolerance is an important issue, especially
when the size of the star graph system increases, since a
large system is required in order to continue to perform
operations after failure of one or more processors/links.
In this paper, we consider the problem of embedding a
ring into a faulty star graph.  This paper will focus on the
node-fault model.  In this model, faulty nodes are assumed
to neither perform calculations nor route data.  Further,
our model can be extended to an edge-fault model in the
following way.  An edge fault is assumed to exist when
one of the nodes incident upon it is assumed to be faulty.
If some components fail in a star graph, it is desirable for
the faulty components to be isolated from the rest of the
network so that embedding will still be possible.  The sim-
ilar problem of fault-tolerant ring embedding in hyper-
cubes has also been studied by Chan and Lee (1991).

The fault-tolerant ring embedded scheme was initial-
ly proposed by Tseng et al. (1997).  They presented a top-
down embedding approach to constructing a ring contain-
ing at least n! – 4f nodes in Sn if there are f ≤ n – 3 faulty
nodes.  In contrast to the top-down embedding approach
(Tseng et al., 1997), our embedding scheme uses a bot-
tom-up approach.  This embedding approach is also sig-
nificant since the main concept behind it is to build a con-
catenation tree to concatenate small sub-rings into large
rings.  To do this, a tree-based concatenation scheme is
introduced.  The significant feature of this approach is the
embedding of a ring whose length is at least n! – 2f into
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Sn, where f ≤ n – 3.  The result is an improvement over
previous methods proposed by Tseng et al. (1997), and it
leads to a near optimal result because the star graph is a
bipartite graph (Akers et al., 1987).  Notably, it is an opti-
mal result when f = 1.

The rest of this paper is organized as follows.  The
preliminary and basic ideas are introduced in Section II.
A base-ring embedding scheme is presented in Section III.
A generalized technique for ring embedding into a faulty
star graph is addressed in Section IV.  Finally, conclusions
are drawn in Section V.

II. Preliminary

This section will introduce the host graph model and
some basic ideas necessary for our embedding scheme.

1. Star Graph

An n-dimensional star graph, also referred to as an
n-star or Sn, is an undirected graph consisting of n! nodes
(or vertices) and (n – 1)n!/2 edges.  To each node is u-
niquely assigned a label x1x2

…xn, which is the concatena-
tion of a permutation of n distinct symbols {x1, x2, …, xn}.
Without loss of generality, let these n symbols be {1, 2, ...,
n}.  Given any node label x1

…xi
…xn, let the permutation

function gi, 2 ≤ i ≤ n, be such that gi(x1
…xi

…xn) =
xi

…x1
…xn (i.e., exchange xl and xi, and keep the other

symbols unchanged).  In Sn, for any node x, there is an
edge joining x and node gi(x), and the direction of this
edge is along dimension i.  Each node in Sn is connected
to n – 1 adjacent nodes by n – 1 edges.  Each Sn contains n
disjoint Sn–1’s.  An S4 is illustrated in Fig. 1.

Let Γ = {1, 2, …, n, *}, where * denotes a don’t care
symbol.  Every substar of Sn can be uniquely labeled by a
string of symbols in Γ, such that the only repeated symbol
is *.  Formally, a k-dimensional substar, Sk or k-substar, is
denoted as a string G = x1x2

…xn, and the number of *
symbols in string G is k, where xl = * and xi ∈ Γ , 2 ≤ i ≤ n.
The substar represented by G is a subgraph of Sn, contain-
ing all the vertices obtained from G by replacing each *
with digits {1, 2, …, n}.  These vertices are connected by
the original links in Sn.  For instance, **3*1 is a 3-dimen-
sional substar containing the set of nodes {54321, 45321,
52341, 25341, 42351, 24351}.  Throughout this paper, a
k-substar is said to be faulty if there exists at least one
faulty node in the k-substar, where 1 ≤ k ≤ n.  Otherwise,
the k-substar is said to be fault-free.

We will now describe two useful notations, j-split
and D-split operations, for the partition scheme.  Let G =
x1x2

…xj
…xn be a k-substar with xj = *.  The j-split opera-

tion is applied on G, 2 ≤ j ≤ n, which is used to partition G
along the j-dimension into k copies of (k – 1)-substars,
each obtained from G by replacing xj with a legal non-*

symbol.  Let D = {dl, d2, …, dm}, m ≤ k, be a set of dimen-
sions such that xdi

= *, i = 1 … m.  Then the D-split opera-
tion is set to perform m times of j-split operations on G,
where j ∈ D, as follows.  We begin by applying a d1-split
operation on G, to the result of which we then apply a d2-
split operation, to the result of which we then apply a d3-
split operation, etc, until there is k(k – 1)…(k – m + 1)
number of (k – m)-substars.  Notice that the value of j can
not be 1 since if j = 1, then the partitioning result does not
retain a complete set of substars.

Given any two k-substars, G = x1x2
…xi

…xn and H =
y1y2

…yi
…yn are said to be adjacent if and only if the

labels of G and H differ in exactly one dimension, where 1
< i ≤ n.  If G and H are adjacent, the difference between G
and H, denoted as dif(G,H), is the symbol of G at the posi-
tion where G and H differ.  For example, substar G =
***13 is adjacent to H = ***12 and H' = ***23, but not
adjacent to H" = ***32.  The difference between H and G,
or dif(H,G) = 2, and the difference between H' and G, or
dif(H',G) = 2.  Given a sequence of adjacent k-substars
[G0, G1, …, Gt–1], a (k,t)-ring must be defined first before
we can construct our ring.  A sequence of k-substars [G0,
G1, …, Gt–1] is denoted as a (k,t)-ring if substar Gi is adja-
cent to its neighboring G(i–1) mod t and G(i+1) mod t, and
dif(G(i–1) mod t,Gi) ≠ dif(G(i+1) mod t,Gi), for any i = 0…t–1.
For example, [****2, ****4, ****5, ****1, ****3] is a
(4,5)-ring, but [***32, ***12, ***13, ***23, ***21,
***31] is not a (3,6)-ring since dif(***12, ***13) =
dif(***23, ***13) = 2.

2. Concatenation Operation

This subsection will define a basic operation, re-
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Fig. 1. A star graph S4.



ferred to as the concatenation operation.  We will initially
give a lemma for the concatenation operation.

Lemma 1. Given a (k,t)-ring = [G0, G1, …, Gt–1], where t
= 3 or 4, there are at most (k – 1)! pairs of edge disjoint
cycles with length 2t such that each cycle is constructed
by

P0 ↔ P1 ↔ P2 ↔ …P2i–1 ↔ P2i ↔ P2i+1 ↔ P2i+2

↔ P2t–1 ↔ P0,

where neighboring nodes P2i and P2i+1 ∈ Gi and 0 ≤ i ≤
t–1.

Proof. Given a (k,t)-ring, let three k-substars, Gi–1 =
x1x2

…xn, Gi = y1y2
…yn, and Gi+1 = z1z2

…zn, be neighbor-
ing substars.  Let α = dif(Gi–1,Gi), α' = dif(Gi,Gi–1), β =
dif(Gi+1,Gi), and β' = dif(Gi,Gi+1), where α ≠ β.  There are
(k – 1)! pairs of nodes of P2i = αy2

…yn of Gi directly con-
nected to corresponding nodes of P2i–1 = α'x2

…xn of Gi–1,
and there are (k – 1)! pairs of nodes of P2i+1 = βy2

…yn of
Gi directly connected to corresponding nodes of P2i+2 =
β'z2

…zn of Gi+1.  Intuitively, there are (k – 1)! pairs of
nodes of P2i = αy2

…β…yn connected to nodes of P2i+1 =
βy2

…α…yn when gi is applied, where yi = α. If t = 3, then
(k – 1)! cycles are formed by P0 ↔gi gi(P0) ↔

gn gn(gi(P0)) ↔
gi

gi(gn(gi(P0))) ↔
gn gn(gi(gn(gi(P0)))) ↔

gi gi(gn(gi(gn(gi(P0)))))
↔gn P0, where 2 ≤ i ≤ n – 1.  Note that gn is one of the feasi-
ble selections.  For simplicity, in the following discussion,
we will only use gn to determine the construction of a ring.
This must be correct because each cycle is isomorphic
to a cycle as shown in Fig. 2(c) and is denoted as
(P0,i,n,i,n,i,n,P0).  When t = 4, (k – 1)! cycles exist within
the path (P0,i,n,j,n,i,n,j,n,P0), where i ≠ j and 2 ≤ i,j ≤ n –
1.  Intuitively, the path (P0,i,n,j,n,i,n,j,n,P0) is isomorphic
to one cycle, as illustrated in Fig. 2(d).

For example, consider a (4,3)-ring = [****2, ****4,
****1] such that dif(****2, ****4) = 2, dif(****4, ****2)
= 4, dif(****1, ****4) = 1, and dif(****4, ****1) = 4.
There are six pairs of disjoint cycles, 1***2 ↔gi 4***2 ↔g5

2***4 ↔gi 1***4 ↔g5 4***1 ↔gi 2***1 ↔g5 1***2, where 2 ≤
i ≤ 4.  For a further example, a (4,4)-ring = [****2,
****4, ****1, ****3] is illustrated in Fig. 2(b).

Now, we can precisely define the concatenation op-
eration.  Using the concatenation operation, we can embed
a larger ring in a faulty Sn, using a bottom-up approach.
From Lemma 1, there are (k – 1)! pairs of disjoint cycles
in (k,3)-ring and (k,4)-ring.  The definition of (k,t)-ring is
a general definition.  For a specified exact subring used in
the our ring construction, it is customary to use the term
Rk,t to represent the exact sub-ring.  Note that Rk,t is any
one of (k – 1)! ring pairs in (k,t)-ring.  The detailed defini-

tion of Rk,t is as follows.  Let each cycle of (k,3)-ring and
(k,4)-ring be denoted as Rk,3 and Rk,4, respectively.  Note
that Rk,3 or Rk,4 are used to construct a larger ring by con-
catenating three or four disjoint existed sub-rings.  The
larger ring also retains the total number of nodes in all of
these sub-rings.  The operation is described as follows.
Assume that there are three disjoint rings R1, R2, and
R3; we can combine R1, R2, and R3 into one larger ring.
As shown in Fig. 3(a), assume that there is Rk,3 =
{P0,P1,P2,P3,P4,P5,P0} between three rings such that P0
↔ P1, P2 ↔ P3, and P4 ↔ P5 are edges of R1, R2, and R3,
respectively.  Intuitively, there is one other path from P0
to P1, denoted as   ıP0P1, with length  R1 – 1, since R1 is a
ring.  Similarly, the paths    ıP2P3 and    ıP4P5 can be construct-
ed in R2 and R3.  Then a larger ring whose path length is
 R1 +  R2 +  R3 can be established by   ıP0P1

↔ ıP2P3
↔ 

ıP4P5
↔ P0.  Such a concatenating operation uses one Rk,3

to concatenate three disjoint rings.  Similarly, we can use
one Rk,4 to concatenate four disjoint rings, as shown in
Fig. 3(b).

Now, we will give an important lemma for our em-
bedding scheme.

Lemma 2. Assume that there are three and four adjacent
substars Sk’s, in each of which  is embedded a ring with k!
nodes, k ≥ 4.  At least Rk,3 and Rk,4 may exist, which can
concatenate three and four existing disjoint rings into a
larger ring, respectively.

Proof. Intuitively, as shown in Fig. 3(a), if k = 4, then
there exist at least six distinct Rk,3 which can be used to
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Fig. 2. Six pairs of disjoint cycles in (a) a (4,3)-ring, (b) a (4,4)-ring, and
a distinct cycle in (c) a 3-star and in (d) a 4-star.



perform the concatenation operation.  Furthermore, if k >
4, then (k – 1)! Rk,4 exists.  As shown in Fig. 3(b), if k = 4,
since R0 can be directly adjacent to R1 and R2, or to R1 and
R3, to R2 and R3, each condition has 6 possible R3,4 which
can be used to perform the concatenation operation, so in
total there exist 18 possible R3,4.  Clearly, if k > 4, then
there exist 3(k – 1)! possible Rk,4 which can be used to
perform the concatenation operation.

3. Concatenation Tree

Before introducing the embedded scheme, a con-
catenation tree Tσ will be introduced based on lemma 2.
Concatenation tree Tσ is used to concatenate m disjoint
rings into a ring without node loss, where the tree height σ
=  log4(m) .  To simplify our description of how to con-
struct a Tσ, we will give an assumption for the concatena-
tion operation as follows.  Given any three or four disjoint
rings, there exists a feasible Rk,3 or Rk,4 which can be used
to form a large ring without any node loss.  In what fol-
lows, we will present an embedding scheme which satis-
fies our assumption.  Using this embedding scheme, we
can correctly construct our embedding ring.  Initially, we
define a function Ns(m) as follows.  First, if m < 9, then
Ns(m) produces a number sequence as shown in Fig. 4(a).
Secondly, if m ≥ 9, then Ns(m) produces a number se-
quence which satisfies the following conditions: (1) all the
elements are arranged in descending order, (2) the total
number of elements is equal to m, and (3) each element is
equal to 3 or 4.  For instance, 44333 is a number sequence.
The function Ns(m) is defined as follows.

Ns(m): The number of number sequences is equal to r =  m/4 .  Let
the first m – 3r elements be equal to 4, and let all of the
remaining elements be equal to 3.

For example, if m = 17, then r =  17/4 = 5, so the number
sequence is 44333.  If there are m disjoint rings, and if the
length of each ring is li, where 1 ≤ i ≤ m, then Tσ is recur-
sively constructed according to the following steps.

C1: If m = 3 or 4, then we use one Rk,3 or Rk,4 to concatenate three or

four distinct sub-rings into one and then stop the construction
operation.

C2: If 5 ≤ m ≤ 8, then we let r =  (m–1)/3 and use r Rk,3 to produce r
rings.  If the number of remaining rings is m – 2r = 3 or 4, then
we perform C1.  For instance, if m = 7, then we use two Rk,3 to
construct two disjoint rings, so there are three distinct rings.

C3: We produce a number sequence Ns(m) if m ≥ 9.  If each element
of the number sequence is equal to 3 or 4, then we apply r =  m/4
concatenation operations by using Rk,3 or Rk,4 to form r disjoint
rings.  We repeatedly perform steps C1 to C3 after setting m to be
r.  For instance, Ns(17) produces 44333, so we obtain five disjoint
rings.

After the above steps are completed, a Tσ is estab-
lished through a bottom-up method.  Our ring embedding
scheme is implemented based on the construction of Tσ as
follows.  All m disjoint rings are viewed as leaf nodes of
Tσ while every three and four leaf nodes, determined by
Ns(m), can form a ring.  This operation correspondingly
forms a branch/parent node (an upper level of the tree)
from three or four leaf nodes.  The concatenation opera-
tions begins at the last level of Tσ.  Then m1 disjoint rings
are formed, where m1 < m.  The construction operations
are continued and produce m2 disjoint rings, where m2 =
Ns(m1).  This constructs the upper level of Tσ.  Thus, m1

disjoint rings produce m2 disjoint rings, where m2 < m1.
Concatenation operations are repeatedly executed until the
number of rings is equal to one.  Therefore, a ring with
length = Σi = 1,mli can be constructed.  For example, given
17 disjoint rings, a 3-level Tσ tree is shown in Fig. 4(b).
Notice that we assume that the root of Tσ is in level 0.

III. Embed Base-Ring in Faulty Sn
When n Is Smaller Than 6

In the following sections, we will study the follow-
ing problem: given an Sn with f faulty nodes, find a ring
that is as large as possible without passing any faulty
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Fig. 3. (a) Rk,3 and (b) Rk,4 concatenate three and four disjoint rings into
larger rings, respectively.
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Fig. 4. (a) Tσ trees, where 3 ≤ m ≤ 8, and (b) Tσ trees, where m ≥ 9 and σ
=  log4(m) .



node.  Our main result shows that for any f ≤ n – 3, a ring
at least n! – 2f in length can be found.  This result is an
improvement over the results of Tseng et al. (1997).  We
will divide the discussion into the following cases, de-
pending on the value of n.  Note that the path length in a
ring is exactly equal to the number of nodes used in the
ring.

We will present a lemma for the partitioning scheme
used in the faulty Sn with f ≤ n – 3.  In Lemma 3 we will
show that, given an Sn with f ≤ n – 3 faulty nodes, there
always exists a D-split operation on Sn, as defined in
Section II.1, such that each S4 contains at most one faulty
node.  A ring which is embedded in a faulty Sk, 4 ≤ k ≤ n,
with at most f = k – 3 faults is denoted as an Xk-ring.  The
length of this Xk-ring is at least k! – 2f.  Initially, our base
embedding is implemented to embed a ring, namely X4-
ring, in S4 with at most one fault.  Our algorithm is a
recursive algorithm which repeatedly constructs an Xk+1-
ring on Sk+1 if all the Xk-rings of k + 1 Sk’s are built in
advance.

Lemma 3. In an Sn, n ≥ 4, with f ≤ n – 3 faulty nodes,
there always exists a D-split operation,  D = n – 4, on Sn

which results in 4-substars, each containing at most
one faulty node (Tseng et al., 1997).

For example, consider an S7 with the faulty set F =
{1234567, 1342567, 4312567, 4321657}.  We will exam-
ine it from position 7 to position 2.  A 7-split will not
work since all the faulty nodes will fall into one 6-substar.
Therefore, we apply a 6-split, which partitions F into the
subsets F1 = {1234567, 1342567, 4312567} and F2 =
{4321657}.  Next, we need to partition F1.  However, a 5-
split will not work, so we apply a 4-split, which partitions
F1 into the subsets F11 = {1234567} and F12 = {1342567,
4312567}.  Finally, a 3-split can partition F12 into two
subsets.  Therefore, a D-split with D = (6, 4, 3) is the
desired split.

An Sn can be decomposed into n(n – 1)…(k + 2)
Sk+1’s by applying a D-split operation in Sn.  Each Sk+1 can
be further decomposed into (k + 1) Sk’s by applying a j-
split in Sk+1.  After applying a split operation on a Sk+1,
there are k + 1 copies of Sk.  Assume that in each Sk can be
embedded a Xk-ring.  In the following, we will describe
how to recursively construct an Xk+1-ring from k + 1 exist-
ing Xk-rings, where n > k ≥ 4.  By repeatedly applying the
above process, an Xn-ring in Sn with faults can be estab-
lished.  Our embedding scheme is a bottom-up process;
that is, a larger embedding ring in Sk is constructed by
means of smaller embedded sub-rings in all Sk–1’s.

1. Construct a Ring in S4 with One Fault

We will first explain how to construct an X4-ring on

S4 with one fault node.  Note that, if S4 has no faults, a
ring can be constructed (Jwo et al., 1991; Nigam et al.,
1990; Tseng et al., 1997).  Assume that a faulty node of S4

is X = uvwx.  Apply a 4-split operation on S4 to obtain 3-
substars ***u and ***v, ***w and ***x.  Denote D =
g4(X) ∈ ***u as a dangling node, which is a nonfaulty
node but is not used to form this X4-ring.  All of the
remaining nodes of S4, except for the faulty node X and
dangling node D, are used to form the X4-ring as shown in
Fig. 5.  The X4-ring is established starting from nodes U =
g2(X) and V = g3(X), where nodes X, U and V ∈ ***x.  A
path ∈ ***x is constructed by (U, 3,2,3,2, V).  Dangling
node D and nodes U' = g2(D) and V' = g3(D) are located in
***u, and a path ∈ ***u with length 5 is connected by
means of (U', 3,2,3,2, V').  The neighboring node U" =
g4(U) of node U can form a ring ∈ ***v with length 6 by
means of (U", 3,2,3,2,3, g2(U")).  Similarly, the neighbor-
ing node V" = g4(V) of node V can form a ring ∈ ***w
with length 6 by means of (V", 2,3,2,3,2, g3(V")).  Since
node g2(U") connects with U' and g3(V") connects with V',
an X4-ring with length 22 is built.  Let g2(U") = g2(g4(U))
= g2(g4(g2(X))), and let U' = g2(D) = g2(g4(X)).  Intuitively,
g4(g2(g4(g2(X)))) is equal to g2(g4(X)); then nodes g2(U")
and U' are neighboring along dimension 4.  Similarly,
nodes g3(V") and V' are neighboring along dimension 4.
Therefore, our X4-ring with length 22 is constructed.  Two
properties of the process used to construct the X4-ring are
stated as follows.

A1: All nodes of 3-substars ***v and ***w are used to form an X4-
ring.  One node is not used to form an X4-ring on 3-substars ***x
(faulty node uvwx) and ***u (dangling node xvwu), respectively.

A2: There are six edges in total on 3-substars ***v (and ***w).  There
are two pairs of links between u**v with x**v of ***v (and
between u**w with x**w of ***w), but one pair of links between
u**v with x**v is not used in constructing an X4-ring. (This guar-
antees that we can correctly construct a larger ring.)

For instance, given an S4 with F = {4231}, node
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Fig. 5. An X4-ring on S4 with faulty node 4231.



1234 = g4(4231) is a dangling node.  Nodes 4231 and
1234 are unused, and ***1, ****2, ***3, and ****4 are
obtained by applying 4-split on S4.  Note that all the nodes
of ***2 and ***3 are used.  The X4-ring is constructed
starting from nodes 2431 and 3241.  A path ∈ ***1 from
node 2431 to 3241 is constructed as 2431 ↔ 3421 ↔
4321 ↔ 2341 ↔ 3241.  Intuitively, dangling node 1234,
node 2134 = g2(1234) and node 3214 = g3(1234) are all
located in ***4, and a path ∈ ***4 with length 5 is con-
structed by means of (2134, 3,2,3,2, 3214).  Neighboring
node 1432 of 2431 ∈ ***2 forms a ring with length 6 by
means of (1432, 3,2,3,2,3, 4132).  Moreover, neighboring
node 1243 of 3241 ∈ ***3 forms a ring with length 6 by
means of (1243, 2,3,2,3,2, 4213).  Node 4132 connects
with 2134, and 4213 connects with 3214, so an X4-ring is,
therefore, established.  Therefore, we have the following
lemma.

Lemma 4. A base embedding an X4-ring with length 22
exists on S4 with one fault.1

2. Construct a Base-Ring in S5 with Two Faults

Based on Lemma 3, after applying a feasible D-split
operation on Sn, we can determine that each Sk contains at
most k – 3 faulty nodes, and that each Sk contains at least
three fault-free Sk–1, where 4 ≤ k ≤ n.  For example, each
S5 has at most two faulty nodes and at least three fault-free
S4’s.  In the following, we will describe how to correctly
establish a base-ring, an X5-ring, from five X4-rings by
using two R4,3.

We will initially describe the conditions of an X5-
ring with two faults.  The embedded ring will be con-
structed from five possible base embedding X4-rings.  If
an S5 has two faults, it can be decomposed into five S4’s,
which have at most two S4’s with one fault each.  Based
on Lemma 4, a base embedded X4-ring is constructed on
each S4.  Assume that an X5-ring is constructed by means
of a substar sequence = [G0, G1, G2, G3, G4], where G0 =
****b0, G1 = ****b1, G2 = ****b2, G3 = ****b3, and G4 =
****b4.  The substar sequence must satisfy the following
conditions.

B1: [G0, G1, G2] and [G2, G3, G4] are (4,3)-rings.

B2: Substars G0, G2, and G4 are nonfaulty substars.  Each substar, G1

or G3, contains one fault.

Based on the properties of Al and A2, we can select feasi-
ble substars G0, G2, and G4 to guarantee that an X5-ring
can be constructed.  First, assume that there exist two
faulty nodes f = uvwxb1 ∈ G1 and f ' = u'v'w'x'b3 ∈ G3.  By
Al, all the nodes of 3-substars ***vbl and ***wb1 of G1

(***v'b3 and ***w'b3 of G3) are used to form its X4-ring.
By A2, in G1, links between u**vb1 and x**vb1 of
(u**wb1 and x**wb1) of G1 are unused.  Similarly, one of
two links between u'**v'b3 and x'**v'b3 (u'**w'b3 and
x'**w'b3) of G3 is unused.  Therefore, adjacent substars of
G1 and G3 are determined by satisfying the B3 or B4 con-
ditions.

B3: Substars G0 and G2 are not simultaneously equal to ****u and
****x.

B4: Substars G2 and G4 are not simultaneously equal to ****u' and
****x'.

After determining the location relationship between
substars G0, G2, and G4, we then set two (4,3)-rings to be
[G0, G1, G2] and [G2, G3, G4].  Clearly, an X5-ring can be
constructed by using these two R4,3.  The length of the X5-
ring is equal to 5! – 4.  For example, an X5-ring in a faulty
S5 with two faults is illustrated in Fig. 6.

Lemma 5. An X5-ring with length 5! – 2f exists in S5 with
f faults, where f ≤ 2.

Proof. According to the above descriptions, an X5-ring
with length 5! – 4 exists on S5 with two faults.  Similarly,
if an S5 contains one fault, then a ring with length 5! – 2 is
constructed from one X4-ring and four non-faulty rings in
fault-free S4’s by means of two R4,3.
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1 The result is optimal for the case f = 1 since a star graph is bipartite.

3***1 3***2

2***31***3

4***2

2***4

4***3

3***4

5***3

3***5

1***5

5***1

Fig. 6. Constructing an X5-ring on faulty S5 with two faults using two
R4,3’s.



IV. Embed a Ring on a Faulty Sn When
n ≥ 6

In Section III.2, one feasible X5-ring in a 5-substar
was constructed.  All possible constructed X5-rings are
used to form a large ring.  In this section, we will present a
generalized approach to embedding a long-ring with n! –
2f nodes in an Sn based on using the concatenation tree Tσ,
where σ =  log4(n – 3) and n ≥ 6.

Given any Sn with n – 3 faults, there exist at least
three fault-free Sn–1’s and at most n – 3 faulty Sn–1’s.  As
described above, an Sn can be decomposed into n copies
of Sn–1 in which each pair of Sn–1 is adjacent.  Each faulty
Sn–1 is assumed to contain an Xn–1-ring in the worse case.
Note that an Xn-ring is established if we can correctly con-
nect n – 3 Xn–1-rings with three fault-free Sn–1’s.  For the
induction hypothesis, assume the existence of an Xn–1-ring
in an Sn–1.  We will show how to correctly embed an Xn-
ring concatenated by n – 3 Xn–1-rings and three fault-free
(unembedded) Sn–1’s in Sn.  This embedding process is
divided into two steps:

(1) Connect n – 3 Xn–1-rings by means of three fault-
free Sn–1’s such that n – 3 disjoint rings are ob-
tained (D1 and D2 operations),

(2) Concatenate the final n – 3 disjoint rings into one
large ring without node loss by using a concatena-
tion tree (D3 and D4 operations).

Step 1 is initially stated as follows.  Given n – 3 faul-
ty Sn–3’s, then n – 3 Xn–1-rings are assumed to be con-
structed on each faulty Sn–3.  The goal is to produce n – 3
distinct rings, denoted as X̃n–1-rings, and to connect these
n – 3 X̃n–1-rings with three fault-free Sn–1’s.  Two opera-
tions are performed to construct n – 3 Xn–1-rings as fol-
lows.

D1: Let X̂n–1-rings be Xn–1-rings with the following modification.
Each X̂n–1-ring is constructed by performing concatenation opera-
tions on each Xn–1-ring with three Sn–2’s by using an Rn–2,4, where
each Sn–2 belongs to a distinct fault-free Sn–1.  This yields n – 3
disjoint X̂n–1-rings.  (See the example shown in Fig. 7(a).) This
ring must be connected since these three distinct Sn–2’s are used
for the first time.

D2: Let X̃n–1-rings be X̂n–1-rings with the following modification.  For
each original fault-free Sn–1, there are two remaining unembedded
(n – 2)-substars.  Choose one X̂n–1-ring from D1, and connect it to
these two (n – 2)-substars by using a feasible Rn–2,3. (See the
example shown in Fig. 7(b).) Similarly, this ring must be connect-
ed since these distinct Sn–2’s are used for the first time.

For example, as shown in Fig. 7, three X5-rings are
constructed in *****1, *****2, *****3.  Substars *****4,
*****5, and *****6 are fault-free.  Consider an X5-ring
existing in *****1 with one edge selected from ****21
such that an R4,4 is established from {****21, ****24,
****25, ****26}.  Notice that this R4,4 can be from either

{****21, ****24, ****26, ****25} or {****21, ****25,
****24, ****26}.  Similarly, three X̂5-rings are estab-
lished.  For 4-stars ****14, ****15, and ****16, we
respectively construct three R4,3 {****14, ****54,
****64}, {****15, ****45, ****65}, and {****16,
****46, ****56} to concatenate six unembedded substars,
****54, ****64, ****15, ****45, ****16, and ****46, in
order to construct  X̃5-rings.

The following lemma indicates the correctness of the
construction of n – 3 disjoint  X̃n–1-rings.

Lemma 6. There are n – 3 disjoint  X̃n–1-rings in an Sn with
at most n – 3 faulty nodes.

Proof. Without loss of generality, consider that there are n
– 3 faulty Sn–1’s, and that into each one has already been
embedded an  X̂n–1-ring.  On each  X̂n–1-ring is performed a
concatenation operation with three (n – 2)-substar by
means of an Rn–2,4, where each (n – 2)-substar belongs to
one of three fault-free (n – 1)-substars.  Suppose that three
fault-free Sn–1’s are *

n–1a, *
n–1b, and *

n–1c; then all the
other Sn–1’s can be denoted as *

n–1x, where x ∈ {1, …, n}
– {a, b, c}.  A (n – 1)-split operation is applied on each of

*
n–1a, *

n–1b, and *
n–1c, so each one has n – 1 Sn–2’s.  At

least one Rn–2,4 can be found from [*
n–2wx, *

n–2wy1,

*
n–2wy2, *

n–2wy3], where y1 ≠ y2 ≠ y3 and y1, y2, and y3 ∈
{a, b, c}.  One edge is selected from a substar *

n–2wx,
where an Xn–1-ring is in a faulty substar *

n–1x.  All the
edges of substars *

n–2wa, *
n–2wb, and *

n–2wc are fault-free
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Fig. 7. Constructing three (a)  X̂5-rings and (b)  X̃5-rings in a faulty S6.



and are not used now.  Let two neighboring substars of

*
n–2wx be *

n–2wy1 and *
n–2wy3, where (y1,y3) = (a,b) or

(a,c) or (b,c).  Owing to the fact that there are 3*(n – 3)!
possible selections if there are no faults, there must exist
one edge between one pair of z1*

n–3wx and z2*
n–3wx,

where (z1,z2) = (a,b) or (a,c) or (b,c).  Therefore, n – 3 dis-
joint  X̂n–1-rings can be constructed.  In addition, for each
original fault-free (n – 1)-substar, there are two remaining
unembedded (n – 2)-substars.  Therefore, n – 3 disjoint
X̃n–1-rings are made using an Rn–2,4.  This completes the
proof.

We will now describe step 2.  Given n – 3  X̃n–1-rings
from Lemma 6, let σ =  log4(n – 3) , and let a concatena-
tion tree Tσ be constructed and used to hierarchically con-
catenate n – 3  X̃n–1-rings into a larger ring.  This concate-
nation operation is divided into two steps as follows.

D3: Tree Tσ is used to concatenate n – 3  X̃n–1-rings as follows.  During
construction of a Tσ, we first perform a concatenation operation
on level σ by using a sequence number determined by Ns(n – 3)
so as to produce s disjoint rings.  This operation is executed on
one of three fault-free Sn–1.

D4: The concatenation operation is repeatedly performed on levels σ
– 1, σ – 2, …, and 1, and applied on two other original fault-free
Sn–1’s in turn.  Each operation is determined by an Ns(s') function,
where s' is the current number of rings.  Note that s' represents the
total number of rings in level i, where i ∈ σ – 1, σ – 2, …, and 1.
Each concatenation operation is performed by finding feasible
Rn–2,3’s or Rn–2,4’s in order to concatenate three or four rings into
one.

To prove the correctness of the embedding, we will
give an important lemma as follows.

Lemma 7. Given three or four adjacent substars Sk’s into
each of which is assumed to be embedded a ring that is k!
nodes in length.  There must at least exist two pairs of
Rk,3’s or Rk,4’s to simultaneousely concatenate these three
or four subrings (each one is existed in a Sk) into a large
one, where k ≥ 4.

Proof. Recall Lemma 1; if k = 4, then there exist at least 6
possible Rk,3 is which can be used to perform the concate-
nation operation.  In the worse case, three substar S3’s can
destroy at most three possible R4,3’s, so there at least will
exist one possible R4,3.  This case can be verified, for k >
4, because that the growth in the total number of Rk,3’s (by
a factorial factor of k) is higher than the growth of the
number of destroyed Rk,3’s (by a linear factor of k).
Similarly, this reason also applies to the case of Rk,4.  This
completes the proof.

That is, we have the following result.

Corollary 1. Given any fault-free substar Sk, it is possible

to perform Rk,3 or Rk,4 twice to concatenate subrings.

For example, Fig. 6 shows an X5-ring that is con-
structed by means of a ring located in substar ****3,
which uses two R4,3’s to concatenate four other subrings.
Based on Corollary 1, we can show the correctness of the
following result.

Lemma 8. There exists a σ-level concatenation tree Tσ
which can be used to concatenate n – 3 disjoint  X̃n–1-rings
into a larger ring, where σ =  log4(n – 3) and n ≥ 6.

Proof. In the D3 operation, a concatenation operation is
executed on level σ by means of a sequence number deter-
mined by Ns(n – 3) to produce s disjoint rings.  Note that
these s disjoint rings must be carefully constructed as fol-
lows.

D3’: Let  X̂'n–1-rings be  X̂n–1-rings if the concatenation operation can
be applied on level σ on the rightmost Sn–1.  Otherwise, let  X̂'n–1-
rings can be reconstructed by means of a new Rn–2,4 (the same
condition as in D1).

Note that all of the Sn–2’s in the rightmost Sn–1 satisfy
Corollary 1.  Therefore, the concatenation operation can
produce s disjoint rings in the rightmost Sn–1 as shown in
Fig. 8.

In the D4 operation, the concatenation operation
then is applied on levels σ – 1, σ – 2, …, and 1.  These
concatenation operations are, in turn, performed on the
other two Sn–1’s as follows.  Notably, all the Sn–2’s of these
two Sn–1’s will also satisfy Corollary 1.  We can explain
this as follows.  Initially, in the D1 and D2 operations, all
the Sn–2’s of the two Sn–1’s have already used one Rn–2,3 or
Rn–2,4.  In the following, we will show how to perform the
concatenation operations on levels σ – 1, σ – 2, …, and 1
on these Sn–2’s such that these Sn–2’s will use Rn–2,3 or
Rn–2,4 once only.

For ease of presentation, an example will be used to
illustrate the above operation for the case n = 18.  After
executing a D3 or D3’ operation, 15 disjoint  X̃n–1-rings
will be correctly combined into 5 larger subrings in the
rightmost S17 as shown in Fig. 8.  A R16,3 is selected in the
second S17 in order to concatenate 3 subrings.  Note that
this R16,3 is selected from three groups, which are located
in the second S17.  Each group has three or four embedded
rings, and each one has already used the concatenation
operation once (as in the D1 operation).  After this, three
subrings are formed.  Therefore, an R16,3 is chosen in the
third S17 in order to concatenate the final 3 subrings into
one ring.  Note that this R16,3 is selected from three dis-
tinct groups in the third S17.  Similarly, each one has three
or four embedded rings, and each one already has used the
concatenation operation once (as in the D1 and D2 opera-
tions).  Therefore, a final ring can be constructed by using

A Ring Embedding in Faulty Star Graph

–359–



a constructed T3.
In general, Rn–2,3’s or Rn–2,4’s are selected from three

or four groups of substars in the second and third Sn–1’s in
turn.  Notice that in each group there at least exists one
embedded ring which only uses the concatenation opera-
tion once.  This is because the number of embedded rings
which use one concatenation operation will increase dur-
ing each concatenation step in levels σ – 1, σ – 2, …, and
1.  Clearly, it is guaranteed that all of the connected sub-
rings satisfy Corollary 1.  Therefore, we can concatenate n
– 3 disjoint  X̃n–1-rings into a larger ring by constructing
Tσ, where σ =  log4(n – 3) and n ≥ 6.

Theorem 1. An Sn with f faults can embed an Xn-ring
whose length is at least n! – 2f, where f ≤ n – 3.

V. Conclusions

In this paper, we have proposed an improved method
for finding a long ring in a faulty star graph Sn.  The star
graph can establish a ring with n! – 4f nodes in a star
graph with f faulty nodes, where f ≤ n – 3, as proposed by

Tseng et al. (1997).  Our improved method constructs a
long ring with n! – 2f nodes.  The result is a great im-
provement over the method of  Tseng et al. (1997).  Work
is currently underway to develop a method to embed a
larger ring in a faulty star graph when the number of
faulty nodes is more than n – 3.
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