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Abstract. This paper addresses the problem of communication-free partition of iteration spaces and
data spaces along hyperplanes. To finding more possible communication-free hyperplane partitions, we
treat statements within a loop body as separate schedulable units. Instead of using the information
about data dependence distance or direction vectors, our technique explicitly formulates array refer-
ences as transformations from statement-iteration spaces to data spaces. Based on these transforma-
tions, the necessary and sufficient conditions for communication-free partition along hyperplanes to be
feasible have been proposed. This approach can be applied to all programs with an imperfectly nested
loop or sequences of imperfectly nested loops, whose array references are affine functions of outer loop
indices or loop invariant variables. The proposed approach is more practical than existing methods in
finding the data and computation distribution patterns that can cause the processor to execute
fully-parallel on multicomputers without any interprocessor communication.

Keywords: Communication-free, data communication, distributed-memory multicomputers, hyper-
plane partition, parallelizing compilers

1. Introduction

Local memory access is much faster than memory access involving interprocessor
communication on distributed-memory multicomputers. If data and computation
are not properly distributed across processors, heavy interprocessor communication
will result. The problem of data distribution is of critical importance to the

w xefficiency of parallel programs in distributed memory multicomputers. Mace 14
proved that finding optimal data storage patterns for parallel processing is NP-
complete, even when limited to one- and two-dimensional arrays. In addition, Li

w xand Chen 11, 12 showed that the problem of finding the optimal data alignment is
also NP-complete.

* Corresponding author: Jang-Ping Sheu, Department of Computer Science and Information Engineer-
ing, National Central University, Chung-Li 32054, Taiwan.
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Thus, in previous work, a number of researchers have developed parallelizing
compilers that require programmers to specify data storage patterns. Based on
programmer-specified data partition, parallelizing compilers can automatically gen-
erate parallel programs with appropriate message passing constructs for multicom-

wputers. Projects using this approach include the Fortran D compiler project 4, 5,
x w x w x w x18 , the SUPERB project 21 , the Kali project 9, 10 , and the DINO project 17 .

w xFor the same purpose, the Crystal project 11, 12 and the Id Nouveau compiler
w x16 deal with functional languages and generate parallel programs with message
passing constructs. The parallel programs generated by most of these systems are

Ž . w xin the SPMD Single-Program Multiple Data 8 model.
Recently, automatic data partitioning technique has been an attractive research

topic in the field of parallelizing compilers. Many researchers have developed
systems which help programmers deal with the problem of data distribution by
automatically determining the data distribution at compile time. The PARADIGM

w x w xproject 3 and the SUIF project 1, 19 both have the same goal. These systems can
automatically determine appropriate data distribution patterns in order to mini-
mize the communication overhead and generate the SPMD code with appropriate
message passing constructs for distributed memory multicomputers.

Since excessive interprocessor communication will offset the benefit of paral-
lelization even if the program in question has a high degree of parallelism,
parallelizing compilers must pay more attention to the distribution of computation
and data across processors in order to reduce or even eliminate the communication
overhead. Communication-free partition, therefore, has become an interesting and
worthwhile area of research for distributed-memory multicomputers. In recent
years, much research has focused on partitioning iteration spaces andror data
spaces to reduce interprocessor communication to achieve high-performance com-
puting.

w xRamanujam and Sadayappan 15 considered the problem of communication-free
partition of data spaces along hyperplanes for distributed memory multicomputers.
They presented a matrix-based formulation of the problem of determining the
existence of communication-free partitions of data arrays. Their approach only
proposes array decompositions and does not take the iteration space partitions into
consideration. In addition, they concentrate on fully parallel nested loops and focus
on two-dimensional data arrays.

w x w xHuang and Sadayappan 7 generalized the approach proposed in 15 . They dealt
with the issue of communication-free hyperplane partition by explicitly modeling
the iteration and data spaces, and provided the feasibility conditions for communi-
cation-free hyperplane partition. However, they did not deal with imperfectly
nested loops. Moreover, their approach is restricted to loop-level partition; i.e., all
statements within a loop body must be scheduled together as an indivisible unit.

w xChen and Sheu 2 partitioned iteration spaces first according to the data
dependence vectors obtained by analyzing all the reference patterns in a nested
loop, and then grouped all data elements accessed by the same iteration partition.
Two communication-free partitioning strategies, nonduplicate data and duplicate
data strategies, were proposed in their paper. Nevertheless, they require that the
loop contain only uniformly generated references, and that the problem domain be
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restricted to a single perfectly nested loop. They also treated all statements within
a loop body as an indivisible unit.

w xLim and Lam 13 used affine processor mappings for statements to assign
statement-iterations to processors and to maximize the degree of parallelism
available in programs. Their approach does not treat the loop body as an indivisible
unit and can assign different statement-iterations to different processors. However,
they considered only statement-iteration space partition and did not address the
issue of data space partition. Furthermore, their uniform affine processor map-
pings can cause a large number of processors to be idle if the affine mappings are
nonunimodular transformations.

In this paper, communication-free partition of statement-iteration spaces and
data spaces along hyperplanes is considered. We explicitly formulate array refer-
ences as transformations from statement-iteration spaces to data spaces. Based on
these transformations, we then present the necessary and sufficient feasibility
conditions for communication-free hyperplane partitions. Currently, most of the
existing partitioning schemes take an iteration instance as a basic schedulable unit
that can be allocated to a processor. However, when the loop body contains
multiple statements, it is difficult to make the loop execute in a communication
free manner by allocating iteration instances among processors. The probability of
communication-free execution using these methods is very low. For finding more
possible communication-free hyperplane partitions, we treat statements within a
loop body as separate schedulable units. Our method does not consider either the

w xiteration space or the data space, but both of them. As in 13 , our method can be
extended to handle more general loop models and can be applied to programs with
imperfectly nested loops and affine array references.

The rest of the paper is organized as follows. In Section 2, we introduce
notations and terminology used throughout the paper. Section 3 describes the
characteristics of statement-level communication-free hyperplane partition. The
technique of statement-level communication-free hyperplane partition for a per-
fectly nested loop is presented in Section 4. The necessary and sufficient conditions
for the feasibility of communication-free hyperplane partition are also given.
Extension to general case for sequences of imperfectly nested loops is described in
Section 5. Finally, conclusions are given in Section 6.

2. Preliminaries

This section explains the statement-iteration space and the data space. It also
defines the statement-iteration hyperplane and the data hyperplane.

2.1. Statement-iteration space and data space

Let Q, Z, and Zq denote the set of rational numbers, the set of integers and the set
of positive integer numbers, respectively. The symbol Z d represents the set of
d-tuple of integers. Traditionally, the iteration space is composed of discrete points
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where each point represents the execution of all statements in one iteration of a
w xloop 20 . Instead of viewing each iteration as indivisible, an iteration can be

divided into statements that are enclosed in the iteration; i.e., each statement is a
schedulable unit and has its own iteration space. We use another term, statement-
iteration space, to denote the iteration space of a statement in a nested loop.

The following example illustrates the notion of iteration spaces and statement-
iteration spaces:

Example 1. Consider the following nested loop L :1

do i s 1, N1

do i s 1, N2

w xs : A i , yi y i y 11 1 1 2

w x w xs A i y i y 1, yi q i q 1 q B i q i , i q 2 i y 11 2 1 2 1 2 1 2 LŽ .1w xs : B i y i q 1, i y 2 i q 12 1 2 1 2

w x w xs A i y 1, i y i ) B i q i y 1, i q i y 22 1 2 1 2 1 2

enddo
enddo

Figure 1 illustrates the iteration space and statement-iteration spaces of loop L1
Ž .for N s 5. In Figure 1 a , a circle means an iteration and includes two rectangles

which are black and gray. The black rectangle indicates statement s , and the gray1
Ž . Ž .one indicates statement s . In Figure 1 b and Figure 1 c , each statement is an2

individual unit, and the collection of statements forms two statement-iteration
spaces. I

The representation of statement-iteration spaces, data spaces and the relations
among them is described as follows. Let SS denote the set of statements in the
targeted problem domain, and let DD be the set of array variables that are
referenced by SS . Consider statement s g SS , which is enclosed in a d-nested loop.

Ž . dThe statement-iteration space of s, denoted by SIS s , is a subspace of Z and is
Ž . �w xt < 4defined as SIS s s I , I , . . . , I LB F I F UB , for 1 F i F d , where I is the1 2 d i i i i

loop index variable, and LB and UB are the lower and upper bounds of the loopi i
index variable I , respectively. The superscript t is a transpose operator. Thei

w xtcolumn vector I s I , I , . . . , I is called a statement-iteration in statement-itera-s 1 2 d
Ž .tion space SIS s , LB F I F UB , for i s 1, 2, . . . , d. On the other hand, from thei i i

geometric point of view, an array variable also forms a space, and each array
element is a point in the space. To exactly describe an array variable, we use data

Ž .space to represent an n-dimensional array ¨ , which is denoted by DS ¨ , where
w x¨ g DD. An array element ¨ D , D , . . . , D has a corresponding data index in the1 2 n

Ž . wdata space DS ¨ . We denote this data index by a column vector D s D , D ,¨ 1 2
xt. . . , D .n

The relations between statement-iteration spaces and data spaces can be built
via array reference functions. An array reference function is a transformation from a
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Ž .Figure 1. Loop L ’s iteration space and its corresponding statement-iteration spaces, assuming1
Ž . Ž . Ž . Ž . Ž .N s 5. a IS L , iteration space of loop L . b SIS s , statement-iteration space of statement s .1 1 1 1

Ž . Ž .c SIS s , statement-iteration space of statement s .2 2

statement-iteration space into a data space. Like most of the existing methods, we
require the array references to be affine functions of outer loop indices or loop
invariant variables. Suppose statement s is enclosed in a d-nested loop and has an

warray reference pattern ¨ a I q a I q ??? qa I q a , a I q a I1,1 1 1,2 2 1,d d 1,0 2,1 1 2,2 2
xq ??? qa I q a , . . . , a I q a I q ??? qa I q a , where a are inte-2, d d 2,0 n,1 1 n,2 2 n,d d n,0 i, j

ger constants for 1 F i F n and 0 F j F d; then the array reference function can
be written as

Ref s ,¨ I s F s ,¨ ? I q f s ,¨ ,Ž .s s

where

a ??? a a1,1 1,d 1,0
. . . .s ,¨ s ,¨. . . .F s , and f s .. . . .

a ??? a an ,1 n ,d n ,0

We term F s,¨ the array reference coefficient matrix and f s,¨ the array reference
Ž .constant ¨ector. If data index D g DS ¨ is referenced in statement-iteration¨

Ž . s,¨ Ž . wI g SIS s , then Ref I s D . Take the array reference pattern A i y 2 j q 3ks s ¨
xy 4, 4 i q 3 j y 2k q 1 as an example. The array reference coefficient matrix and

s, A 1 y2 3w x w xconstant vector of A i y 2 j q 3k q 4, 4 i q 3 j y 2k q 1 are F s and4 3 y2
s, A y4w xf s , respectively.1
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We define statement-iteration hyperplanes and data hyperplanes in the next
subsection.

2.2. Statement-iteration hyperplane and data hyperplane

Ž .A statement-iteration hyperplane on statement-iteration space SIS s , denoted by
Ž . w x Ž . Ž . �w xt <C s , is a hyperspace 6 of SIS s and is defined as C s s I , I , . . . , I d Ih 1 2 d 1 1

4q d I q ??? qd I s c , where d , . . . , and d g Q are the coefficients of the2 2 d d h 1 d
statement-iteration hyperplane and c g Q is the constant term of the hyperplane.h

Ž . � < 4 w xThe formula can be abbreviated as C s s I D ? I s c , where D s d , . . . , dh s s h 1 d
is the statement-iteration hyperplane coefficient vector. Similarly, a data hyperplane

Ž . Ž . Ž .on data space DS ¨ , denoted by F ¨ , is a hyperspace of DS ¨ and is defined as
Ž . �w xt < 4F ¨ s D , D , . . . , D u D q u D q ??? qu D s c , where u , . . . , and ug 1 2 n 1 1 2 2 n n g 1 n

g Q are the coefficients of the data hyperplane and c g Q is the constant term ofg
Ž .the hyperplane. In the same way, the formula also can be abbreviated as F ¨ sg

� < 4 w xD Q ? D s c , where Q s u , . . . , u is the data hyperplane coefficient vector.¨ ¨ g 1 n

Hyperplanes that include at least one integer point are considered in this paper.
Statement-iteration hyperplanes and data hyperplanes are used to characterize

communication-free partition. We discuss some of these characteristics in the next
section.

3. Characteristics of communication-free hyperplane partition

A program execution is communication-free if all operations on each of all
processors access only data elements allocated to that processor. A trivial partition-
ing strategy allocates all statement-iterations and data elements to a single proces-
sor. The program execution of this trivial partition is communication-free. How-
ever, we are not interested in such single processor program execution because it
does not exploit the potential of parallelization and it conflicts with the goal of
parallel processing. Hence, in this paper, we consider only nontrivial partition,
specifically, hyperplane partition.

The formal definition of a communication-free hyperplane partition is as follows.
Let partition group, G,

G s D C s j D F ¨Ž . Ž .sg SS h ¨ g DD g

be the set of hyperplanes that should be assigned to one processor. The definition
of a communication-free hyperplane partition is given in the following.

Definition 1 Hyperplane partitions of statement-iteration spaces and data spaces
are said to be communication-free if and only if for any partition group G s

Ž . Ž .D C s j D F ¨ ,sg SS h ¨ g DD g

;I g C s , Ref s ,¨ I g F ¨ , ;s g SS , ¨ g DD. IŽ . Ž . Ž .s h s g
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As mentioned above, statement-iterations which access the same array element
should be allocated to the same statement-iteration hyperplane. Therefore, it is
important to determine which statement-iterations that access the same array
element. The following lemma states the necessary and sufficient condition under
that two statement-iterations will access the same array element.

Lemma 1 For some statement s g SS and its referenced array ¨ g DD, I and I X ares s
Ž . s,¨two statement-iterations on SIS s and Ref is the array reference function from

Ž . Ž .SIS s into DS ¨ as defined abo¨e. Then

Ref s ,¨ I s Ref s ,¨ I X m I X y I g Ker F s ,¨ ,Ž . Ž . Ž . Ž .s s s s

Ž . w xwhere Ker S denotes the null space of S 6 .

Ž . s,¨ Ž . s,¨ Ž X. s,¨ Ž . s,¨ s,¨Proof: « : Suppose that Ref I s Ref I . Since Ref I s F ? I q f ,s s s s
it follows that

Ref s ,¨ I s Ref s ,¨ I XŽ . Ž .s s

« F s ,¨ ? I q f s ,¨ s F s ,¨ ? I X q f s ,¨
s s

« F s ,¨ ? I X y I s 0Ž .s s

« I X y I g Ker F s ,¨ .Ž . Ž .s s

Ž X . Ž s,¨ .Thus I y I g Ker F .s s
Ž . Ž X . Ž s,¨ . Ž Ž s,¨ ..¥ : Conversely, suppose that I y I g Ker F and dim Ker F s n,s s

� 4 Ž s,¨ .n g Z. Let a , a , . . . , a be a basis of Ker F ; then vectors belonging to1 2 n
Ž s,¨ . � 4Ker F can be represented as a linear combination of vectors in a , a , . . . , a .1 2 n

Ž X . Ž s,¨ . Ž X .Since I y I g Ker F , it follows that I y I s c a q c a q ??? qc a ,s s s s 1 1 2 2 n n
where c , c , . . . , c g Z. Hence, I X s I q c a q c a q ??? qc a . Then,1 2 n s s 1 1 2 2 n n

Ref s ,¨ I X s F s ,¨ ? I X q f s ,¨Ž .s s

s F s ,¨ ? I q c a q c a q ??? qc a q f s ,¨Ž .s 1 1 2 2 n n

s F s ,¨ ? I q F s ,¨ ? c a q c a q ??? qc a q f s ,¨Ž .s 1 1 2 2 n n

s F s ,¨ ? I q f s ,¨
s

s Ref s ,¨ I .Ž .s

s,¨ Ž . s,¨ Ž X.Thus Ref I s Ref I . Is s

We illustrate Lemma 1 using the following example.

w xExample 2. Consider the array reference A i q j, i q j . The array reference
s, A 1 1 s, A s, A tw x Ž . � w x <coefficient matrix, F , is . The null space of F is Ker F s r 1, y1 r1 1
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Ž s,¨ .Figure 2. Those statement-iterations whose differences are in Ker F will access the same array
element.

4 w xtg Z . By Lemma 1, any two statement-iterations with a difference of r 1, y1 will
access the same array element, where r g Z. In Figure 2, statement-iterations with
the same gray color denote that they access the same array element and their

Ž s,¨ .differences are in Ker F . As Figure 2 shows, the statement-iterations
�Ž . Ž . Ž .4 w x1, 3 , 2, 2 , 3, 1 all access the same array element A 4, 4 . I

We explain the significance of Lemma 1 and show how this lemma can help to
find communication-free hyperplane partitions. Communication-free hyperplane
partition requires that those statement-iterations which access the same array
element be allocated to the same statement-iteration hyperplane. According to
Lemma 1, two statement-iterations access the same array element if and only if the
difference of these two statement-iterations belongs to the kernel of F s,¨. Hence

Ž s,¨ .Ker F should be a subspace of the statement-iteration hyperplane. Since there
may exist many different array references, in partitioning a statement-iteration
space, we must consider all the array references which appear in the statement.

Ž s,¨ .Thus, the space spanned from Ker F for all array references appearing in the
same statement should be a subspace of the statement-iteration hyperplane. The
dimension of a statement-iteration hyperplane is one less than the dimension of
the statement-iteration space. If there exists a statement s such that the dimension

Ž s,¨ . Ž .of the spanning space of Ker F is equal to the dimension of SIS s , then the
spanning space cannot be a subspace of a statement-iteration hyperplane. There-
fore, there exists no nontrivial communication-free hyperplane partition. From the
above observation, we obtain the following theorem.

Theorem 1 If 's g SS such that

dim span D Ker F s ,¨ s dim SIS s ,Ž . Ž .Ž .Ž .Ž .¨ g DD

then there exists no non trï ial communication-free hyperplane partition for SS and
DD. I
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Example 3. Consider matrix multiplication:

do i s 1, N
do j s 1, N

do k s 1, N
w x w x w x w xs : C i , j s C i , j q A i , k ) B k , j

enddo
enddo

enddo

In the above program, there are three array variables, A, B, and C, with three
distinct array references involved in statement s. The three array reference

s, A s, B s,C 1 0 0 0 0 1 1 0 0w x w x w xcoefficient matrices, F , F , and F , are , , and , respectively.0 0 1 0 1 0 0 1 0

Ž s, A. � w xt < 4 Ž s, B . � w xt < 4Thus, Ker F s r 0, 1, 0 r g Z , Ker F s r 1, 0, 0 r g Z , and1 1 2 2
Ž s,C . � w xt < 4 Ž s, A. Ž s, B. Ž s,C . 3Ker F s r 0, 0, 1 r g Z . Ker F , Ker F , and Ker F span Z , which3 3

has the same dimensionality as the statement-iteration space. By Theorem 1,
matrix multiplication has no nontrivial communication-free hyperplane partition.

I

Theorem 1 can be useful for determining nested loops that have no nontrivial
communication-free hyperplane partition. Furthermore, when a nontrivial commu-
nication-free hyperplane partition exists, Theorem 1 can also be useful for finding
the hyperplane coefficient vectors. We state this result in the following corollary.

Ž .Corollary 1 For any communication-free statement-iteration hyperplane C s sh
� < 4I D ? I s c , the following two conditions must hold:s s h

Ž . Ž Ž s,¨ .. Ž .1 span D Ker F : C s ,¨ g DD h
Ž . t Ž Ž Ž s,¨ ...H2 D g span D Ker F ,¨ g DD

where SS H denotes the orthogonal complement space of SS .

Proof: By Lemma 1, two statement-iterations access the same data element using
array reference F s,¨ if and only if the difference between these two statement-iter-
ations belongs to the kernel of F s,¨. Therefore, the kernel of F s,¨ should be

Ž .contained in the statement-iteration hyperplane, C s . This should be true for allh
Ž Ž s,¨ ..array references appearing in the same statement. Hence, span D Ker F¨ g DD

Ž .: C s . The first condition is obtained.h
Ž . � < 4 Ž . tSince C s s I D ? I s c , D is the normal vector of C s . That is, D ish s s h h

Ž . Ž . torthogonal to C s . Condition 1 implies that D is orthogonal to the subspaceh
Ž Ž s,¨ .. tspan D Ker F . Thus, D belongs to the orthogonal complement of¨ g DD

Ž Ž s,¨ .. w xspan D Ker F 6 . I¨ g DD

Corollary 1 gives the range of the communication-free statement-iteration hy-
perplane coefficient vectors. It can be used to find communication-free statement-
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iteration hyperplane coefficient vectors. On the other hand, the range of the
communication-free data hyperplane coefficient vectors is also given as described
below.

As mentioned before, the relations between statement-iteration spaces and data
spaces can be established via array references. Moreover, the statement-iteration
hyperplane coefficient vectors and data hyperplane coefficient vectors are related.
The following lemma expresses the relation between these two kinds of hyperplane

w xcoefficient vectors. A similar result was given in 7 .

Lemma 2 For any statement s g SS and its referenced array ¨ g DD, Ref s,¨ is the
Ž . Ž . Ž . � < 4 Ž .array reference function from SIS s into DS ¨ . C s s I D ? I s c and F ¨h s s h g

� < 4s D Q ? D s c are communication-free hyperplane partitions if and only if D s¨ ¨ g
a Q ? F s,¨, for some a , a / 0.

Ž . Ž . � < 4 Ž . � < 4Proof: « : Suppose that C s s I D ? I s c and F ¨ s D Q ? D s ch s s h g ¨ ¨ g
are communication-free hyperplane partitions. Let I X and IY be two distincts s
statement-iterations which belong to the same statement-iteration hyperplane,

Ž . X Y s,¨ Ž X . X s,¨ Ž Y .C s . If D and D are two data indices such that Ref I s D and Ref Ih ¨ ¨ s ¨ s
s DY, from the above assumptions, DX and DY should belong to the same¨ ¨ ¨

Ž .hyperplane, F ¨ .g
X Y Ž .Because I and I belong to the same statement-iteration hyperplane, C s , its s h

follows that D ? I X s c and D ? IY s c . Therefore,s h s h

D ? I X s D ? IY
s s

« D ? I X y IY s 0.Ž .s s

X Y Ž .On the other hand, since D and D belong to the same data hyperplane, F ¨ ,¨ ¨ g
we can see that Q ? DX s c and Q ? DY s c . Thus,¨ g ¨ g

Q ? DX s Q ? DY
¨ ¨

« Q ? DX y DY s 0Ž .¨ ¨

« Q ? Ref s ,¨ I X y Ref s ,¨ IY s 0Ž . Ž .Ž .s s

« Q ? F s ,¨ ? I X y IY s 0Ž .Ž .s s

« Q ? F s ,¨ ? I X y IY s 0.Ž . Ž .s s

Since I X and IY are any two statement-iterations on the statement-iterations s
Ž . Ž X Y .hyperplane C s , I y I is a vector on the statement-iteration hyperplane.h s s

Ž X Y . Ž s,¨ . Ž X Y .Furthermore, both D ? I y I s 0 and Q ? F ? I y I s 0; hence we cans s s s
conclude that D and Q ? F s,¨ are linearly dependent. This implies D s a Q ? F s,¨,

w xfor some a , a / 0 6 .
Ž . Ž . � < 4 Ž . � < 4¥ : Suppose C s s I D ? I s c and F ¨ s D Q ? D s c are hyper-h s s h g ¨ ¨ g

Ž . Ž . s,¨plane partitions for SIS s and DS ¨ , respectively, and that D s a Q ? F , for
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Ž . Ž .some a , a / 0. We claim that C s and F ¨ are communication-free partition.h g
Ž . s,¨ Ž .According to Definition 1, what we have to do is to prove ;I g C s , Ref I gs h s

Ž .F ¨ .g
Ž .Let I be any statement-iteration on statement-iteration hyperplane C s . Thens h

D ? I s c . From the assumption that D s a Q ? F s,¨, we haves h

a Q ? F s ,¨ ? I s cŽ . s h

1
s ,¨« Q ? F ? I s cŽ .s ha

1
s ,¨ s ,¨ s ,¨« Q ? F ? I q f s c q Q ? fŽ .s ha

1
s ,¨ s ,¨« Q ? Ref I s c q Q ? f .Ž .s ha

Ž . s,¨ s,¨ Ž . Ž .Let c s 1ra c q Q ? f ; then Ref I g F ¨ . We have shown that ;I gg h s g s
Ž . s,¨Ž . Ž . Ž . Ž .C s , Ref I g F ¨ . It then follows that C s and F ¨ are com-h s g h g

munication-free partition. I

By Lemma 2, the statement-iteration hyperplane coefficient vector D can be
decided if the data hyperplane coefficient vector Q has been determined. If F s,¨ is
invertible, the statement-iteration hyperplane coefficient vectors can be decided
first; then the data hyperplane coefficient vectors can be derived by Q s

X Ž s,¨ .y1 X Xa D F , for some a , a / 0. The range of the communication-free data
hyperplane coefficient vectors can be derived from this lemma. Corollary 1 shows
the range of the statement-iteration hyperplane coefficient vectors. The next
corollary provides the range of the data hyperplane coefficient vectors.

Ž . � < 4Corollary 2 For any communication-free data hyperplane F ¨ s D Q ? D s c ,g ¨ ¨ g
the following condition must hold:

Xtt s ,¨Q g D Ker F ,Ž .Ž .ž /sg SS

where SS
X denotes the complement of SS .

Proof: This paper considers nontrivial hyperplane partition, which requires that D
be a nonzero vector. By Lemma 2, D s a Q ? F s,¨. Therefore, Q ? F s,¨ is not equal

t ŽŽ s,¨ . t.to 0. This implies that Q f Ker F . The condition should be true for all s,
t Ž ŽŽ s,¨ . t.. ts g SS . Hence, Q f D Ker F . It follows that Q belongs to the comple-sg SS

Ž ŽŽ s,¨ . t.. t Ž ŽŽ s,¨ . t..Xment of D Ker F , i.e., Q g D Ker F . Isg SS sg SS
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Example 4. Consider the following loop:

do i s 1, N
do j s 1, N

w x w xs : A i , j s B i , i1

w x w xs : B i , j s A j, j2

enddo
enddo

The nested loop is communication-free if and only if the statement-iteration
hyperplane coefficient vectors for s and s and data hyperplane coefficient vectors1 2

w x w x w x w xfor ¨ and ¨ are D s r, 0 , D s 0, r , Q s r, 0 , and Q s 0, r , respectively,1 2 1 2 1 2
� 4where ¨ s A, ¨ s B, and r g Q y 0 . We will show that D and D satisfy the1 2 1 2

Corollary 1 as follows:

ts ,¨1 <w x � 4span D Ker F s c 0, 1 c g Q y 0 ,Ž .Ž . � 4¨ g DD 1 1

H ts ,¨1 <w x � 4« span D Ker F s r , 0 r g Q y 0 ,Ž .Ž . � 4Ž .¨ g DD 1 1

Htt s ,¨1w x« D s r , 0 g span D Ker FŽ .Ž .Ž .1 ¨ g DD

ts ,¨2 <w x � 4?span D Ker F s c 1, 0 c g Q y 0 ,Ž .Ž . � 4¨ g DD 2 2

H ts ,¨2 <w x � 4« span D Ker F s 0, r r g Q y 0 ,Ž .Ž . � 4Ž .¨ g DD 2 2

Htt s ,¨2w x« D s 0, t g span D Ker F .Ž .Ž .Ž .2 ¨ g DD

The test of Corollary 2 for Q and Q is as follows:1 2

tts ,¨1 <w x � 4D Ker F s c 1, y1 c g Q y 0 ,Ž . � 4Ž .sg SS 3 3

X tts ,¨1 <w x � 4« D Ker F s r , r r / yr , r , r g Q y 0 ,Ž . � 4Ž .ž /sg SS 3 4 3 4 3 4

Xt tt s ,¨1w x« Q s r , 0 g D Ker FŽ .Ž .ž /1 sg SS

tts ,¨ 2 <w x � 4?D Ker F s c 1, y1 c g Q y 0 ,Ž . � 4Ž .sg SS 4 4

X tts ,¨ 2 <w x � 4« D Ker F s r , r r / yr , r , r g Q y 0 ,Ž . � 4Ž .ž /sg SS 5 6 5 6 5 6

Xt tt s ,¨ 2w x« Q s r , 0 g D Ker F . IŽ .Ž .ž /2 sg SS

The next section describes the communication-free hyperplane partitioning
technique. The necessary and sufficient conditions for communication-free hyper-
plane partition for a single perfectly nested loop will be presented.
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4. Communication-free hyperplane partition for a perfectly nested loop

Each data array has a corresponding data space. However, a nested loop with
multiple statements may have multiple statement-iteration spaces. In this section,
we will consider additional conditions on multiple statement-iteration spaces for
communication-free hyperplane partition. These conditions are also used in deter-
mining statement-iteration hyperplanes and data hyperplanes.

� 4 � 4 qSuppose SS s s , s , . . . , s and DD s ¨ , ¨ , . . . , ¨ , where m, n g Z . The1 2 m 1 2 n
number of occurrences of array variable ¨ in statement s is r , where r g Zq

j i i, j i, j

� 4j 0 , i s 1, 2, . . . , m and j s 1, 2, . . . , n. If s does not reference ¨ , r is set to 0.i j i, j

The previous representation of an array reference function can be modified slightly
to describe the array reference of statement s to variable ¨ in the k-th occurrencei j

s i,¨ jŽ .as Ref I , where 1 F k F r . The related representations will be changedk s i, ji
s i,¨ jŽ . si,¨ j s i,¨ jaccordingly, for example, Ref I s F ? I q f s D .k s k s k ¨i i j

In this section, a partition group that contains a statement-iteration hyperplane
for each statement-iteration space and a data hyperplane for each data space is

Ž . Ž .considered. Suppose that the data hyperplane in data space DS ¨ is F ¨ sj g j

� < 4 si,¨ jŽ .D Q ? D s c , for all j, 1 F j F n. Since D s Ref I , for i s 1, 2, . . . , m,¨ j ¨ g ¨ k sj j j j i

j s 1, 2, . . . , n and k s 1, 2, . . . , r and Q ? D s c , we havei, j j ¨ gj j

Q ? D s cj ¨ gj j

m Q ? F si ,¨ j ? I q f si ,¨ j s cŽ .j k s k gi j

m Q ? F si ,¨ j ? I s c y Q ? f si ,¨ j .Ž . Ž .j k s g j ki j

Let

si ,¨ j w xD s Q ? F , 1i j k

si ,¨ j w xc s c y Q ? f . 2Ž .h g j ki j

As a result, those statement-iterations that access the data on the data hyperplane
Ž . � < 4F ¨ s D Q ? D s c will be located on the statement-iteration hyperplaneg j ¨ j ¨ gj j j

Ž . � <Ž si,¨ j. Ž si,¨ j.4C I s I Q ? F ? I s c y Q ? f .h s s j k s g j ki i i j

To simplify the presentation, we assume that all variables ¨ appear in everyj
statement s . To satisfy the requirement that each statement-iteration spacei
contains a unique statement-iteration hyperplane, the following two conditions
should be met:

Ž . si,¨ j s i,¨ jX Ž X X. X
X Xi ; i, Q ? F s Q ? F , j / j k k / k , for j, j s 1, 2, . . . , n; k sj k j k

1, 2, . . . , r and kX s 1, 2, . . . , r .i, j i, j9

Ž . Ž si,¨ j. Ž si,¨ jX. Ž X X. X
X Xii ; i, c y Q ? f s c y Q ? f , j / j k k / k , for j, j s 1, 2, . . . , n;Xg j k g j kj j

k s 1, 2, . . . , r and kX s 1, 2, . . . , r X .i, j i, j
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Ž .Condition i infers the following two equivalent equations:

si ,¨ j s i ,¨ j w xQ ? F s Q ? F , 3j k j 1

for i s 1, 2, . . . , m; j s 1, 2, . . . , n and k s 2, 3, . . . , r .i, j

s i ,¨ j s i ,¨1 w xQ ? F s Q ? F , 4j 1 1 1

Ž .for i s 1, 2, . . . , m; j s 2, 3, . . . , n. Condition ii leads to the following two equa-
tions, and vice versa:

si ,¨ j s i ,¨ j w xQ ? f s Q ? f , 5j k j 1

for i s 1, 2, . . . , m; j s 1, 2, . . . , n and k s 2, 3, . . . , r .i, j

s i ,¨1 si ,¨ j w xc s c y Q ? f q Q ? f , 6g g 1 1 j 1j 1

for i s 1, 2, . . . , m; j s 2, 3, . . . , n.
w xEquation 6 can be used to evaluate the data hyperplane constant terms while

some constant term is fixed, say c . Furthermore, we obtain the following results.g1

For some j, c should be the same for all i, 1 F i F m. Therefore,g j

si ,¨1 si ,¨ j s1 ,¨1 s1 ,¨ j w xc y Q ? f q Q ? f s c y Q ? f q Q ? f , 7g 1 1 j 1 g 1 1 j 11 1

w xfor i s 2, 3, . . . , n and j s 2, 3, . . . , n. Equation 7 further infers the following
equation:

si ,¨ j s1 ,¨ j s i ,¨1 s1 ,¨1 w xQ ? f y f s Q ? f y f 8Ž . Ž .j 1 1 1 1 1

for i s 2, 3, . . . , m and j s 2, 3, . . . , n.
After describing the conditions for satisfying the communication-free hyperplane

partitioning constraints, we have the following theorem.

� 4 � 4Theorem 2 Let SS s s , s , . . . , s and DD s ¨ , ¨ , . . . , ¨ be the sets of state-1 2 m 1 2 n
ments and array ¨ariables, respectï ely. Ref si,¨ j is the array reference function fork
statement s which accesses array ¨ariables ¨ at the k-th occurrence in s , wherei j i

Ž . � < 4i s 1, 2, . . . , m; j s 1, 2, . . . , n and k s 1, 2, . . . , r . C I s I D ? I s c is thei, j h s s i s hi i i i

Ž . Ž . � <statement-iteration hyperplane in SIS s , for i s 1, 2, . . . , m. F D s D Q ? Di g ¨ ¨ j ¨j j j

4 Ž . Ž . Ž .s c is the data hyperplane in DS ¨ , for j s 1, 2, . . . , n. C I and F D areg j h s g ¨j i j

communication-free hyperplane partitions if and only if the following conditions hold:

Ž . si,¨ j s i,¨ jC1 ; i, Q ? F s Q ? F , for j s 1, 2, . . . , n; k s 2, 3, . . . , r .j k j 1 i, j
Ž . si,¨ j s i,¨1C2 ; i, Q ? F s Q ? F , for j s 2, 3, . . . , n.j 1 1 1
Ž . si,¨ j s i,¨ jC3 ; i, Q ? f s Q ? f , for j s 1, 2, . . . , n; k s 2, 3, . . . , r .j k j 1 i, j

Ž . Ž si,¨ j s1,¨ j. Ž si,¨1 s1,¨1.C4 Q ? f y f s Q ? f y f , for i s 2, 3, . . . , m; j s 2, 3, . . . , n.j 1 1 1 1 1
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Ž . t Ž m ri, j Ž si,¨ j. t..XC5 ; j, Q g D D Ker F .j is1 ks1 k
Ž . si,¨ j � 4 � 4C6 ; i, D s Q ? F , for some j, k, j g 1, 2, . . . , n ; k g 1, 2, . . . , r .i j k i, j
Ž . t Ž Ž n r i, j Ž si,¨ j...HC7 ; i, D g span D D Ker F .i js1 ks1 k
Ž . si,¨1 si,¨ j �C8 ; j, j s 2, 3, . . . , n, c s c y Q ? f q Q ? f , for some i, i g 1, 2,g g 1 1 j 1j 1

4. . . ,m .
Ž . Ž si,¨ j. � 4 � 4C9 ; i, c s c y Q ? f , for some j, k, j g 1, 2, . . . , n , k g 1, 2, . . . , r . Ih g j k i, ji j

Theorem 2 can be used to determine whether a nested loop is communication-
free. It can also be used as a procedure for finding a communication-free

Ž . Ž .hyperplane partition systematically. Conditions C1 to C4 in Theorem 2 are used
Ž .to find the data hyperplane coefficient vectors. Condition C5 can be used to

check whether the data hyperplane coefficient vectors found in the preceding steps
are within the legal range. Following the determination of the data hyperplane
coefficient vectors, the statement-iteration hyperplane coefficient vectors can be

Ž . Ž .obtained using Condition C6 . Similarly, Condition C7 can be used to check
whether the statement-iteration hyperplane coefficient vectors are within the legal
range. The data hyperplane constant terms and statement-iteration hyperplane

Ž . Ž .constant terms can be obtained using Conditions C8 and C9 , respectively. If one
of the conditions is violated, the whole procedure will stop and verify that the
nested loop has no communication-free hyperplane partition.

w x w xOn the other hand, combining Eqs. 3 and 5 together, a sufficient condition of
communication-free hyperplane partition can be derived as follows:

Q F si ,¨ j y F si ,¨ j , F si ,¨ j y F si ,¨ j , . . . , F si ,¨ j y F si ,¨ j ,Žj 2 1 3 1 r i , j

f si ,¨ j y f si ,¨ j , f si ,¨ j y f si ,¨ j , . . . , f si ,¨ j y f si ,¨ j s 0,.1 2 1 3 1 r i , j

for i s 1, 2, . . . , m and j s 1, 2, . . . , n. To satisfy the constraint that Q is a nonzero
row vector, the following condition should be satisfied:

Rank F si ,¨ j y F si ,¨ j , . . . , F si ,¨ j y F si ,¨ j ,Ž 1 2 1 r i , j

s i ,¨ j s i ,¨ j s i ,¨ j s i ,¨ j w xf y f , . . . , f y f - dim DS ¨ , 9Ž .Ž ..1 2 1 r ji , j

for i s 1, 2, . . . , m and j s 1, 2, . . . , n. Note that this condition is similar to the
w xresult in 7 for loop-level hyperplane partition. We conclude with the following

corollary.

� 4 � 4Corollary 3 Suppose SS s s , s , . . . , s and DD s ¨ , ¨ , . . . , ¨ are the set of1 2 m 1 2 n
statements and array ¨ariables, respectï ely. F si,¨ j and f si,¨ j are the array referencek k

� 4 �coefficient matrix and constant ¨ector, respectï ely, where i g 1, 2, . . . , m , j g 1, 2,
4 � 4. . . , n , and k g 1, 2, . . . , r . If communication-free hyperplane partition exists, theni, j

w xEq. 9 must hold. I

Theorem 1 and Corollary 3 can be used to check for the absence of communica-
tion-free hyperplane partition for a nested loop because these conditions are
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sufficient but not necessary. Theorem 1 is the statement-iteration space dimension
test, and Corollary 3 is the data space dimension test. To determine the existence
of a communication-free hyperplane partition, we need to check the conditions in
Theorem 2. We will use the following example to explain how communication-free
hyperplanes of statement-iteration spaces and data spaces are found.

Example 5. Reconsider loop L1. Since m s 2 and n s 2, the set of statements SS

� 4 � 4is s , s , and the set of array variables DD is ¨ , ¨ , where ¨ s A and ¨ s B.1 2 1 2 1 2
The number of occurrences of array variables is r s 2, r s 1, r s 1, and1,1 1,2 2,1
r s 2. From Section 2.1, the array reference coefficient matrices and constant2,2
vectors for statements s and s are as listed below, respectively:1 2

1 0 1 y1 1 1s ,¨ s ,¨ s ,¨1 1 1 1 1 2F s , F s , F s ,1 2 1y1 y1 y1 1 1 2

0 y1 0s ,¨ s ,¨ s ,¨1 1 1 1 1 2f s , f s , f s ,1 2 1y1 1 y1

1 y1 0 1 1 1s ,¨ s ,¨ s ,¨2 2 2 1 2 2F s , F s , F s ,1 1 21 y2 1 y1 1 1

1 y1 y1s ,¨ s ,¨ s ,¨2 2 2 1 2 2f s , f s , f s .1 1 21 0 y2

Ž Ž 2 r i, j Ž si,¨ j... Ž Ž ..Since dim span D D Ker F s 1 is less than dim SIS s s 2, forjs1 ks1 k i
i s 1, 2. By Theorem 1, a communication-free hyperplane partition may exist for
loop L . Again, using Corollary 3, the loop can be tested for the possible existence1
of a nontrivial communication-free hyperplane partition. For array variable ¨ , the1
following inequality is satisfied:

Rank F s1 ,¨1 y F s1 ,¨1 , f s1 ,¨1 y f s1 ,¨1 s 1 - dim DS ¨ s 2.Ž .Ž . Ž .1 2 1 2 1

Similarly, with respect to the array variable ¨ , the following inequality is obtained:2

Rank F s2 ,¨ 2 y F s2 ,¨ 2 , f s2 ,¨ 2 y f s2 ,¨ 2 s 1 - dim DS ¨ s 2.Ž .Ž . Ž .1 2 1 2 2

w xAlthough Eq. 9 holds for all array variables, it still can not ensure that the loop
has a nontrivial communication-free hyperplane partition.

Using Theorem 2, we can further check loop L1 for the existence of a nontrivial
communication-free hyperplane partition. In the mean time, the statement-itera-
tion and data hyperplanes will be derived if they exist. Recall that the dimensions

Ž . Ž .of data spaces DS ¨ and DS ¨ are two, and that Q and Q can be assumed to1 2 1 2
w x w xbe u , u and u , u , respectively. The conditions listed in Theorem 2 will be11 12 21 22

checked to determine the hyperplane coefficient vectors and constants. By Condi-
Ž .tion C1 in Theorem 2, the following equations are obtained:

i s 1, j s 1, and k s 2: Q ? F s1 ,¨1 s Q ? F s1 ,¨1 ,1 2 1 1

i s 2, j s 2, and k s 2: Q ? F s2 ,¨ 2 s Q ? F s2 ,¨ 2 .2 2 2 1
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Ž .By Condition C2 in Theorem 2, we have

i s 1 and j s 2: Q ? F s1 ,¨ 2 s Q ? F s1 ,¨1 ,2 1 1 1

i s 2 and j s 2: Q ? F s2 ,¨ 2 s Q ? F s2 ,¨1 .2 1 1 1

Ž .By Condition C3 in Theorem 2,

i s 1, j s 1, and k s 2: Q ? f s1 ,¨1 s Q ? f s1 ,¨1 ,1 2 1 1

i s 2, j s 2, and k s 2: Q ? f s2 ,¨ 2 s Q ? f s2 ,¨ 2 .2 2 2 1

Ž .By Condition C4 in Theorem 2,

i s 2 and j s 2: Q ? f s2 ,¨ 2 y f s1 ,¨ 2 s Q ? f s2 ,¨1 y f s1 ,¨1 .Ž . Ž .2 1 1 1 1 1

w x w xSubstituting u , u and u , u for Q and Q , respectively, the above11 12 21 22 1 2
equations form a homogeneous linear system. Solving this homogeneous lin-

Ž . Ž .ear system, we obtain the general solution u , u , u , u s 2 r, r, 3r, y2 r ,11 12 21 22
� 4 w x w xwhere r g Q y 0 . Therefore, Q s 2 r, r and Q s 3r, y2 r . Next, we will1 2

Ž .check whether Q and Q satisfy Condition C5 or not. From Condition1 2
Ž . Ž m ri,1 ŽŽ si,¨1. t.. � w xt < � 44C5 : D D Ker F , we obtain c 1, 1 c g Q y 0 . This impliesis1 ks1 k 1 1

Ž m ri,1 ŽŽ si,¨1. t..X �w xt < � 44 tthat D D Ker F s r , r r / r , r , r g Q y 0 . Thus, Q sis1 ks1 k 1 2 1 2 1 2 1
w x t Ž m r i ,1 ŽŽ s i ,¨ 1 . t ..X t w x t Ž m2 r , r g D D Ker F . Similarly, Q s 3 r , y2 r g Dis 1 ks 1 k 2 is 1

r i,2 ŽŽ si,¨ 2 . t..X t t Ž .D Ker F . Since Q and Q satisfy Condition C5 , they are legal.ks1 k 1 2
From Loop L1, the two statement-iteration hyperplane coefficient vectors can

Ž .be determined using Condition C6 in Theorem 2:

D s Q ? F s1 ,¨1 s Q ? F s1 ,¨1 s Q ? F s1 ,¨ 2 s r , yr ,Ž .1 1 1 1 2 2

D s Q ? F s2 ,¨ 2 s Q ? F s2 ,¨1 s Q ? F s2 ,¨ 2 s r , r .Ž .2 2 1 1 1 2 2

Note that the statement-iteration hyperplane coefficient vectors may be obtained
using many different equations; e.g., D can be obtained using Q ? F s1,¨1, Q ? F s1,¨1,1 1 1 1 2

s1,¨ 2 Ž . Ž .or Q ? F . Conditions C1 and C2 in Theorem 2 ensure that all the equations2 1
lead to the same result.

Ž .In the next step, we use Condition C7 to check whether D and D are legal or1 2
not. The check of legality is similar to Example 4. We have that D and D are1 2
legal. Next, we will determine the data hyperplane constant terms. Because the
hyperplanes are related to each other, once a hyperplane constant term is deter-
mined, the other constant terms will be determined accordingly. Assuming that cg1

Ž . Ž .is known, c , c , and c can be determined using Conditions C8 and C9 asg h h2 1 2

follows:

c s c y Q ? f s1 ,¨1 q Q ? f s1 ,¨ 2 s c y Q ? f s2 ,¨1 q Q ? f s2 ,¨ 2 s c q 3r ,g g 1 1 2 1 g 1 1 2 1 g2 1 1 1

c s c y Q ? f s1 ,¨1 s c y Q ? f s1 ,¨1 s c y Q ? f s1 ,¨ 2 s c q r ,h g 1 1 g 1 2 g 2 1 g1 1 1 2 1
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c s c y Q ? f s2 ,¨ 2 s c y Q ? f s2 ,¨1 s c y Q ? f s2 ,¨ 2 s c q 2 r .h g 2 1 g 1 1 g 2 2 g2 2 1 2 1

Similarly, statement-iteration and data hyperplane constant terms can be evaluated
Ž . Ž .using many different equations. However, Conditions C3 and C4 in Theorem 2

ensure that they all lead to the same values.
It is clear that there exists at least one set of nonzero statement-iteration and

data hyperplane coefficient vectors such that the conditions listed in Theorem 2
are all satisfied. By Theorem 2, this fact implies that the nested loop has a
nontrivial communication-free hyperplane partition. The partition group is defined
as the set of statement-iteration and data hyperplanes that are allocated to a

Ž .processor. The partition group for this example is as follows. G s C I jh s1 1
Ž . Ž . Ž .C I j F D j F D , whereh s g ¨ g ¨2 2 1 1 2 2

<w xC I s I r , yr ? I s c q r ,� 4Ž .h s s s g1 1 1 1 1

<w xC I s I r , r ? I s c q 2 r ,� 4Ž .h s s s g2 2 2 2 1

<w xF D s D 2 r , r ? D s c ,� 4Ž .g ¨ ¨ ¨ g1 1 1 1 1

<w xF D s D 3r , y2 r ? D s c q 3r .� 4Ž .g ¨ ¨ ¨ g2 2 2 2 1

Given loop bounds 1 F i F 5 and 1 F i F 5, for r s 1, the constant term c1 2 g1

corresponding to statement-iteration hyperplane coefficient vectors D and D1 2
range from y5 to 3 and from 0 to 8, respectively. The intersecting part of these
two ranges means that the two statement-iteration hyperplanes have to be coupled
together onto a processor. Only one statement-iteration hyperplane, either D or1
D , is allocated to a processor. The constant terms c , c , and c are evaluated to2 g h h2 1 2

obtain the following values:

y2 F c F 11, y4 F c F 4, and 2 F c F 10.g h h2 1 2

The corresponding parallelized program is as follows:

doall c s y5, 8
do i s max c y 3, 1 , min c q 1, 5Ž . Ž .1

i s yi q c q 22 1

w xB i y i q 1, i y 2 i q 11 2 1 2

w x w xs A i y 1, i y i ) B i q i y 1, i q i y 22 1 2 1 2 1 2

enddo
do i s max c q 2, 1 , min c q 6, 5Ž . Ž .1

i s i y c y 12 1

w xA i , yi y i y 11 1 2

w x w xs A i y i y 1, yi q i q 1 q B i q i , i q 2 i y 11 2 1 2 1 2 1 2

enddo
enddoall
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Figure 3 illustrates the communication-free hyperplane partitions for a particu-
lar partition group, where r s 1 and c s 2. Ig1

The communication-free hyperplane partitioning technique for a perfectly nested
loop has been discussed in this section. Our method treats statements within a loop
body as separate schedulable units and considers both iteration and data spaces at
the same time. Partitioning groups are determined using affine array reference
functions directly, instead of using data dependence vectors.

Figure 3. Communication-free statement-iteration hyperplanes and data hyperplanes for a partition
Ž . Ž . Ž . Ž .group of loop L , where r s 1 and c s 2. a Statement-iteration hyperplane of SIS s . b1 g 11

Ž . Ž . Ž . Ž .Statement-iteration hyperplane of SIS s . c Data hyperplane of DS A . d Data hyperplane of2
Ž .DS B .
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5. Communication-free hyperplane partition for sequences of imperfectly
nested loops

The conditions presented in Section 4 for communication-free hyperplane partition
can be applied to the general case for sequences of imperfectly nested loops. In a
perfectly nested loop, all statements are enclosed at the same depth of the nested
loop; i.e., the statement-iteration space of each statement has the same dimension-
ality. The statement-iteration spaces of two statements in imperfectly nested loops
may have different dimensions. Since each statement-iteration is a schedulable unit
and the partitioning technique is independent of the dimensionality of statement-
iteration spaces, Theorem 2 can be directly applied to sequences of imperfectly
nested loops. The following example demonstrates the use of the technique applied
to sequences of imperfectly nested loops.

Example 6. Consider the following sequences of nested loops L :2

do i s 1, N1

do i s 1, N2

w x w xs : A i q i , 1 s B i q i q 1, i q i q 21 1 2 1 2 1 2

w xqC i q 1, y2 i q 2 i , 2 i y i q 11 1 2 1 2

do i s 1, N3

w xs : B i q i q 1, i q i q 12 1 3 2 3

w xs A 2 i q 2 i , i q i1 3 2 3

w xqC i q i q 1, yi q i q 1, i y i q 11 2 2 3 1 2

enddo
enddo LŽ .2

enddo
do i s 1, N1

do i s 1, N2

do i s 1, N3

w x w xs : C i q 1, i , i q i s A 2 i q 3i q i , i q i q 23 1 2 2 3 1 2 3 1 2

w xqB i q i , i y i q 11 2 1 3

enddo
w x w x w xs : A i , i q 3 s B i y i , i y i q 2 q C i q i , yi , yi4 2 1 2 1 2 1 2 2 2

enddo
enddo

� 4The set of statements SS is s , s , s , s . The set of array variables is DD s1 2 4 4
� 4¨ , ¨ , ¨ , where ¨ , ¨ , and ¨ represent A, B, and C, respectively. The values of1 2 3 1 2 3
r , r , r , r , r , r , r , r , r , r , r , and r are all 1. We use Theorem 111 12 13 21 22 23 31 32 33 41 42 43

Ž .and Corollary 3 to verify whether L2 has no communication-free hyperplane
Ž Ž si,¨ .. Ž Ž ..partition. Since dim Ý Ker F s 1, which is smaller than dim SIS s , for¨ g DD 1 i
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Ž .i s 1, . . . , 4, Theorem 1 can not ensure that L2 has no communication-free
hyperplane partition. Corollary 3 is useless here because all the values of r are 1,i j
for i s 1, . . . , 4; j s 1, . . . , 3. Further examination is necessary because Theorem 1

Ž .and Corollary 3 can not prove that L2 has no communication-free hyperplane
partition. From Theorem 2, if a communication-free hyperplane partition exists,

Ž .the conditions listed in Theorem 2 should be satisfied; otherwise, L2 has no
communication-free hyperplane partition.

Ž . Ž . Ž .Because the dimensions of the data spaces DS ¨ , DS ¨ , and DS ¨ are 2, 2,1 2 3
and 3, respectively, without loss of generality, the data hyperplane coefficient

w x w xvectors can be, respectively, assumed to be Q s u , u , Q s u , u , and1 11 12 2 21 22
w xQ s u , u , u . In what follows, the requirements which must be satisfied for3 31 32 33

communication-free hyperplane partition to be feasible are examined one-by-one.
Ž . Ž .There is no need to examine Conditions C1 and C3 because all the values of

Ž .r are 1. By Condition C2 , we obtaini j

Q ? F s1 ,¨ 2 s Q ? F s1 ,¨1 , Q ? F s1 ,¨ 3 s Q ? F s1 ,¨1 ,2 1 1 1 3 1 1 1

Q ? F s2 ,¨ 2 s Q ? F s2 ,¨1 , Q ? F s2 ,¨ 3 s Q ? F s2 ,¨1 ,2 1 1 1 3 1 1 1

Q ? F s3 ,¨ 2 s Q ? F s3 ,¨1 , Q ? F s3 ,¨ 3 s Q ? F s3 ,¨1 ,2 1 1 1 3 1 1 1

Q ? F s4 ,¨ 2 s Q ? F s4 ,¨1 , Q ? F s4 ,¨ 3 s Q ? F s4 ,¨1 .2 1 1 1 3 1 1 1

Ž .By Condition C4 , we obtain

Q ? f s2 ,¨ 2 y f s1 ,¨ 2 s Q ? f s2 ,¨1 y f s1 ,¨1 ,Ž . Ž .2 1 1 1 1 1

Q ? f s2 ,¨ 3 y f s1 ,¨ 3 s Q ? f s2 ,¨1 y f s1 ,¨1 ,Ž . Ž .3 1 1 1 1 1

Q ? f s3 ,¨ 2 y f s1 ,¨ 2 s Q ? f s3 ,¨1 y f s1 ,¨1 ,Ž . Ž .2 1 1 1 1 1

Q ? f s3 ,¨ 3 y f s1 ,¨ 3 s Q ? f s3 ,¨1 y f s1 ,¨1 ,Ž . Ž .3 1 1 1 1 1

Q ? f s4 ,¨ 2 y f s1 ,¨ 2 s Q ? f s4 ,¨1 y f s1 ,¨1 ,Ž . Ž .2 1 1 1 1 1

Q ? f s4 ,¨ 3 y f s1 ,¨ 3 s Q ? f s4 ,¨1 y f s1 ,¨1 .Ž . Ž .3 1 1 1 1 1

ŽAfter solving the above linear system, the general solutions are u , u , u , u ,11 12 21 22
. Ž . � 4 w xu , u , u s t, yt, 2 t, yt, t, t, t , t g Q y 0 . Therefore, Q s t, yt , Q s31 32 33 1 2

w x w x2 t, yt and Q s t, t, t .3
Ž .The verification of Condition C5 is as follows:

t tm s ,¨i 1 <w x � 4D Ker F s c 0, 1 c g Q y 0Ž . � 4Ž .is1 1 1 1

Xtt m s ,¨i 1« Q g D Ker FŽ .Ž .ž /1 is1 1

tm s ,¨i 2?D Ker FŽ .Ž .is1 1

t t< <w x w x� 4 � 4s c 1, y1 c g Q y 0 j c 1, 1 c g Q y 0� 4 � 42 2 3 3
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Xtt m s ,¨i 2« Q g D Ker FŽ .Ž .ž /2 is1 1

tm s ,¨i 3?D Ker FŽ .Ž .is1 1

t t< <w x w x� 4 � 4s c 2, y1, y2 c g Q y 0 j c 0, 1, y1 c g Q y 0� 4 � 44 4 5 5

Xtt m s ,¨i 3« Q g D Ker F .Ž .Ž .ž /3 is1 1

All the data hyperplane coefficient vectors are within the legal range.
The statement-iteration hyperplane coefficient vectors can be determined by

Ž .Condition C6 as follows:

s1 ,¨1 s1 ,¨ 2 s1 ,¨ 3 w xD s Q ? F s Q ? F s Q ? F s t , t ,1 1 1 2 1 3 1

s2 ,¨1 s2 ,¨ 2 s2 ,¨ 3 w xD s Q ? F s Q ? F s Q ? F s 2 t , yt , t ,2 1 1 2 1 3 1

s3 ,¨1 s3 ,¨ 2 s3 ,¨ 3 w xD s Q ? F s Q ? F s Q ? F s t , 2 t , t ,3 1 1 2 1 3 1

s4 ,¨1 s4 ,¨ 2 s4 ,¨ 3 w xD s Q ? F s Q ? F s Q ? F s t , yt .4 1 1 2 1 3 1

The legality of these statement-iteration hyperplane coefficient vectors can then
Ž .be checked using Condition C7 as follows:

tn s ,¨1 j <w x � 4span D Ker F s c 1, y1 c g Q y 0Ž . � 4Ž .js1 1 6 6

Ht n s ,¨1 j« D g span D Ker F ,Ž .Ž .Ž .1 js1 1

tn s ,¨2 j <w x � 4span D Ker F s c 1, 1, y1 c g Q y 0Ž . � 4Ž .js1 1 7 7

Ht n s ,¨2 j« D g span D Ker F ,Ž .Ž .Ž .2 js1 1

tn s ,¨3 j <w x � 4span D Ker F s c 1, y1, 1 c g Q y 0Ž . � 4Ž .js1 1 8 8

Ht n s ,¨3 j« D g span D Ker F ,Ž .Ž .Ž .3 js1 1

tn s ,¨4 j <w x � 4span Ý Ker F s c 1, 1 c g Q y 0Ž . � 4Ž .js1 1 9 9

Ht n s ,¨4 j« D g span D Ker F .Ž .Ž .Ž .4 js1 1

From the above observation, all the statement-iteration and data hyperplane
coefficient vectors are legal. This fact reveals that the nested loops have communi-
cation-free hyperplane partitions. Next, the data and statement-iteration hyper-
planes constant terms are decided.
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First, let one data hyperplane constant term be fixed, say c . The rest of theg1
Ž .data hyperplane constant terms can be determined by Condition C8 :

c s c y Q ? f s1 ,¨1 q Q ? f s1 ,¨ 2 s c y Q ? f s2 ,¨1 q Q ? f s2 ,¨ 2
g g 1 1 2 1 g 1 1 2 12 1 1

s c y Q ? f s3 ,¨1 q Q ? f s3 ,¨ 2 s c y Q ? f s4 ,¨1 q Q ? f s4 ,¨ 2
g 1 1 2 1 g 1 1 2 11 1

s c q t .g1

c s c y Q ? f s1 ,¨1 q Q ? f s1 ,¨ 3 s c y Q ? f s2 ,¨1 q Q ? f s2 ,¨ 3
g g 1 1 3 1 g 1 1 3 13 1 1

s c y Q ? f s3 ,¨1 q Q ? f s3 ,¨ 3 s c y Q ? f s4 ,¨1 q Q ? f s4 ,¨ 3
g 1 1 3 1 g 1 1 3 11 1

s c q 3t .g1

Similarly, the statement-iteration hyperplane constant terms can be determined by
Ž .Condition C9 after the data hyperplane constant terms have been decided:

c s c y Q ? f s1 ,¨1 s c y Q ? f s1 ,¨ 2 s c y Q ? f s1 ,¨ 3 s c q t ,h g 1 1 g 2 2 g 3 1 g1 1 2 3 1

c s c y Q ? f s2 ,¨1 s c y Q ? f s2 ,¨ 2 s c y Q ? f s2 ,¨ 3 s c ,h g 1 1 g 2 1 g 3 1 g2 1 2 3 1

c s c y Q ? f s3 ,¨1 s c y Q ? f s3 ,¨ 2 s c y Q ? f s3 ,¨ 3 s c q 2 t ,h g 1 1 g 2 1 g 3 1 g3 1 2 3 1

c s c y Q ? f s4 ,¨1 s c y Q ? f s4 ,¨ 2 s c y Q ? f s4 ,¨ 3 s c q 3t .h g 1 1 g 2 1 g 3 1 g4 1 2 3 1

Ž . Ž .The corresponding partition group is as follows: G s C I j C I jh s h s1 1 2 2
Ž . Ž . Ž . Ž . Ž .C I j C I j F D j F D j F D , whereh s h s g ¨ g ¨ g ¨3 3 4 4 1 1 2 2 3 3

<w xC I s I t , t ? I s c q t ,� 4Ž .h s s s g1 1 1 1 1

<w xC I s I 2 t , yt , t ? I s c ,� 4Ž .h s s s g2 2 2 2 1

<w xC I s I t , 2 t , t ? I s c q 2 t ,� 4Ž .h s s s g3 3 3 3 1

<w xC I s I t , yt ? I s c q 3t ,� 4Ž .h s s s g4 4 4 4 1

<w xF D s D t , yt ? D s c ,� 4Ž .g ¨ ¨ ¨ g1 1 1 1 1

<w xF D s D 2 t , yt ? D s c q t ,� 4Ž .g ¨ ¨ ¨ g2 2 2 2 1

<w xF D s D t , t , t ? D s c q 3t .� 4Ž .g ¨ ¨ ¨ g3 3 3 3 1

Figure 4 illustrates the communication-free hyperplane partitions for a partition
group, where t s 1 and c s 0. The corresponding parallelized program is asg1
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Figure 4. Communication-free statement-iteration hyperplanes and data hyperplanes for a partition
Ž . Ž . Ž . Ž .group of loop L , where t s 1 and c s 0. a Statement-iteration hyperplane of SIS s . b2 g 11

Ž . Ž . Ž . Ž .Statement-iteration hyperplane of SIS s . c Statement-iteration hyperplane of SIS s . d State-2 3
Ž . Ž . Ž . Ž . Ž . Ž .ment-iteration hyperplane of SIS s . e Data hyperplane of DS A . f Data hyperplane of DS B . g4

Ž .Data hyperplane of DS C .
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follows:

doall c s y7, 18
c y 4 c q 4

do i s max min c y 4, , 1 , min max c, , 51 ž / ž /ž / ž /2 2

if max c y 4, 1 F i F min c, 5Ž . Ž .Ž .1

i s c y i q 12 1

w x w xA i q i , 1 s B i q i y 1, i q i q 21 2 1 2 1 2

w xqC i q 1, y2 i q 2 i , 2 i y i q 11 1 2 1 2

endif
do i s max 2 i y c q 1, 1 , min 2 i y c q 5, 5Ž . Ž .2 1 1

i s c y 2 i q i3 1 2

w xB i q i q 1, i q i q 11 3 2 3

w x w xs A 2 i q 2 i , i q i q C i q i q 1, yi q i q 1, i y i q 11 3 2 3 1 2 2 3 1 2

enddo
enddo
do i s max c y 13, 1 , min c y 1, 5Ž . Ž .1

c y i y 3 c y i q 11 1
do i s max , 1 , min , 52 ž / ž /2 2

i s c y i y 2 i q 23 1 2

w x w xC i q 1, i , i q i s A 2 i q 3i q i , i q i q 21 2 2 3 1 2 3 1 2

w xqB i q i , i y i q 11 2 1 3

enddo
enddo
do i s max c q 4, 1 , min c q 8, 5Ž . Ž .1

i s i y c y 32 1

w x w x w xA i , i q 3 s B i y i , i y i q 2 q C i q i , yi , yi1 2 1 2 1 2 1 2 2 2

enddo
enddoall

6. Conclusions

This paper has presented techniques for finding statement-level communication-
free hyperplane partition for a perfectly nested loop and sequences of imperfectly
nested loops. The necessary and sufficient conditions for communication-free
partition along hyperplanes to be feasible have been proposed. The techniques can
be applied to loops with affine array references and do not use any information
about data dependence distances or direction vectors.
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Although our goal is to determine communication-free partition for loops, in
reality, most loops are not communication-free. If a program is not communica-
tion-free, then the technique can be used to identify subsets of statement-iteration
and data spaces which are communication-free. For other statement-iterations, it is
necessary to generate communication code. Two important tasks in our future
work will be to develop heuristics for searching a subset of statement-iterations
which is communication-free, and to generate efficient code when communication
is inevitable.

Note

t Ž .1. Note that D is a row vector. However, it is D , but not D, that is orthogonal to C s .h
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