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This paper presents compilation techniques used to compress holes, which
are caused by the nonunit alignment stride in a two-level data-processor
mapping. Holes are the memory locations mapped by useless template cells.
To fully utilize the memory space, memory holes should be removed. In a
two-level data-processor mapping, there is a repetitive pattern for array
elements mapped onto processors. We classify blocks into classes and use a
class table to record the distribution of each class in the first repetitive data
distribution pattern. Similarly, data distribution on a processor also has a
repetitive pattern. We use a compression table to record the distribution of
each block in the first repetitive data distribution pattern on a processor. By
using a class table and a compression table, hole compression can be easily
and efficiently achieved. Compressing holes can save memory usage, improve
spatial locality and further improve system performance. The proposed
method is efficient, stable, and easy to implement. The experimental results
do confirm the advantages of our proposed method over existing methods.
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1. INTRODUCTION

Distributed-memory multicomputers are superior to shared-memory multipro-
cessors in cost and scalability. These advantages have led to extensive use of dis-
tributed-memory multicomputers in scientific and engineering computation.
However, the absence of a global shared address makes it difficult to program dis-
tributed-memory multicomputers. Programmers must not only distribute the com-
putation and data onto processors, but also manage communication among pro-
cessors. Currently, parallelizing compilers try to fill the gap between users and
machines in order to relieve the burden of such tedious and error-prone work from
users. Many researchers have investigated the extension of existing languages to
provide users with more convenient ways to manage data distribution, such as
using Fortran D [6, 26], High Performance Fortran (HPF) [8, 16], and Vienna
Fortran [2, 3]. The major characteristic of these languages is that they provide
users with a global addressing space and directives to specify data distribution at
the language level.

Generally speaking, data parallel languages support two-level data-processor
mapping. A two-level data-processor mapping enables the user to specify data-pro-
cessor mapping by aligning related array objects with a template, an abstract index
space, and then distributing the template onto the user-declared abstract processors.
In the distribution phase, three regular data distributions, block, cyclic, and block-
cyclic data distributions, are provided by these languages. Distributing array
elements contiguously and evenly onto processors is the process of block distribu-
tion. Cyclic distribution distributes each array element onto processors one at a
time and in a round-robin fashion. The distribution in which blocks of contiguous
array elements of size x are distributed onto processors in a round-robin fashion is
block-cyclic distribution and is denoted as cyclic(x). Block-cyclic distribution is
known to be the most general data distribution. The block and cyclic distributions
can be, respectively, represented by block-cyclic distribution as cyclic(WNA �PX) and
cyclic(1), where NA is the number of array elements and P is the number of
processors.

For completeness, this paper considers a two-level data-processor mapping in
which an array object is aligned with a template and the template is block-cyclic
distributed onto processors. The program model considered in this paper is shown
in Fig. 1. Figure 2 shows an example of a two-level data-processor mapping, which
assumes that array A(i) is aligned with a template T at (3 V i+1), and that the tem-
plate is then distributed onto 4 processors with a cyclic(5) distribution. The white
squares represent the array elements of A, and the number in the square is the
global index of that array element. The gradations of the gray squares represent dif-
ferent template cells on different processors, and the number in the square is the

FIG. 1. HPF-like program model considered in this paper.
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FIG. 2. Two-level data-processor mapping. Array A(i) is aligned with template T(3 V i+1), and the
template is then distributed onto 4 processors with a cyclic(5) distribution.

global index of that template cell. Basically, a template is an abstract index space
whose elements have no content and occupy no storage [8]. Therefore, in a two-
level data-processor mapping, if the alignment stride is nonunit, the mapping will
lead to many holes. That is, there will be many template cells with which no array
element is aligned. These holes imply that the memory locations will not be used.
As a result, to fully utilize the memory space, only the template cells aligned by
array elements need to be mapped to memory locations, and all the holes should
be removed.

Memory holes caused by the nonunit alignment stride will result in a large
amount of memory wastage, even for a small alignment stride. Suppose that the
number of template cells is NT , and that s is the alignment stride. Accordingly, only
NT�s template cells are aligned by array elements. The percentage of memory usage
is ((NT�s)�NT)_1000, which equals 1�s_1000. In other words, the percentage of
memory wastage is ((s&1)�s)_1000. The larger the alignment stride, the more
memory is wasted. The least positive nonunit alignment stride of 2 still wastes 500

of the memory space. For the example shown in Fig. 2, Fig. 3 shows the distribu-
tions of data elements onto processors without and with hole compression. Figure
3a illustrates the distribution of data elements onto processors without hole com-
pression. Meanwhile, Fig. 3b illustrates that with hole compression. Obviously, each
processor should allocate 30 memory spaces if hole compression is not performed.
However, among these spaces, only a few template cells are aligned by array
elements. The rest of the template cells, which are aligned with no array elements,
cause holes in the memory space. As a result, 10 memory spaces are enough for

191INDEX GENERATION FOR TWO-LEVEL MAPPINGS



FIG. 3. The distributions of data elements onto processors without and with hole compression:
(a) without hole compression, (b) with hole compression.

each processor after hole compression is performed. Therefore, compressing holes is
quite necessary and important for compiling a two-level data-processor mapping in
data-parallel programs. The process that maps the aligned template cells to pro-
cessors and eliminate unused holes is called hole compression. In addition to
increasing memory usage, removing holes can also improve spatial locality and,
furthermore, achieve higher performance.

This paper presents compilation techniques used to efficiently remove holes for
compiling a two-level data-processor mapping in data-parallel programs. Observing
the two-level mapping shown in Fig. 2, one can find that the distribution patterns
for every three blocks are identical. Based on this observation, we can classify all
blocks into classes. We design a table, called a class table, to record the distribution
in each class for the first repetitive data distribution pattern. On the other hand,
from the processor's viewpoint, the above observation is true as well. Therefore,
another table called a compression table is established to record the distribution of
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each block in the first repetitive data distribution pattern on a processor. The com-
pression table can be established based on the class table. We design systematic
methods to construct these tables, and the time complexity of each construction is
O(s) in the worst case, where s is the alignment stride. Hole compression can be
easily achieved by using a compression table. The proposed approach can eliminate
a large number of redundant computations since the computations for the repetitive
patterns can be obtained by means of table lookup instead of recomputation.
Experimental results verify the advantages of the proposed approach. Moreover,
the proposed approach has high stability against existing methods. The execution
time does not vary much with the alignment stride and�or the distribution block
size. In addition, the proposed approach can be easily implemented. The technique
presented here could be integrated into the existing address generation algorithms
or communication set generation algorithms which either run in compiler time or
run time under the owner computes rule policy.

This paper is organized as follows. In compiling a two-level data-processor map-
ping, class table is used to record the distribution of the first repetitive data dis-
tribution pattern in the two-level mapping. Therefore, the structure and charac-
teristics of the class table are presented in Section 2. Section 3 introduces how the
class table can be used to construct the compression table. Based on the compression
table, the process of compressing holes and generating the compressed local array
are also described. Experimental results to verify the advantages of our method
over existing methods are provided in Section 4. Section 5 discusses related work.
Section 6 concludes the paper and points out a possible direction for future
research.

2. CHARACTERISTICS OF CLASS TABLE

For the purpose of compiling an array statement in a one-level data-processor
mapping, we have designed a useful structure to summarize the characteristics of
access patterns [29]. Based on a similar concept, a structure called a class table is
designed in this paper to record the distribution of the first repetitive data distribu-
tion pattern in a two-level data-processor mapping. In this section, we briefly
describe the basic components of a class table and how a class table is constructed.
Without loss of generality, we assume that every numbering system starts from
zero, such as numbered array elements, template cells, and processors, except where
otherwise noted.

Suppose the array element A(i) is aligned with T(s V i+o), where s is the
alignment stride and o is the alignment offset. In order to make the class table
reusable, we define a term called isomorphic alignment. All isomorphic alignments
can use the same class table. The definition of isomorphic alignments is stated as
follows.

Definition 1 (Isomorphic Alignments). Suppose A(i) is aligned with T(s1 V i+
o1) and A$(i) is aligned with T(s2 V i+o2). The two alignments are isomorphic if and
only if
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v s1=s2 ,

v o1 #o2 (mod s),

where s=s1=s2 .

Consequently, for an alignment in which array A(i) is aligned with T(s V i+o),
we use the isomorphic alignment offset r to construct the class table, where
r=(o mod s). A template cell t is aligned by an array element if and only if t#r
(mod s). For example, suppose array A(i) is aligned with a template T at (3i+10).
The alignment is illustrated in Fig. 4. We construct a class table by using the
isomorphic alignment offset 1 instead of the original alignment offset 10, where 1=
(10 mod 3). For those template cells where t#r (mod s), there must exist array
elements aligned with them. A template cell is active if it is aligned with an array
element and its index is within the range o�t�s V (NA&1)+o, where NA is the
number of array elements. Otherwise, it is termed pseudo active. For this example,
the active template cells start from 10, each then strides 3 and the template cells 1,
4, 7 are pseudo active elements. Figure 4 also illustrates the active elements and
pseudo active elements for this example. The numbers in boldface are active
elements, and the numbers in italics are pseudo active elements. Note that the
pseudo active elements are viewed as being the same as active elements when we
generate a class table and a compression table. However, the pseudo active elements
will not be counted when we generate the compressed local array.

For a cyclic(x) distribution, every x template cells form a block. A block is
numbered according to the occurrence of the block in the data-processor mapping.
Suppose the number of array elements and template cells is NA and NT , respec-
tively. Let Nb be the number of blocks. Thus, Nb=WNT�xX. Those blocks within
which active elements have the same positions are classified into the same class. For
example, consider the two-level data-processor mapping shown in Fig. 2. Blocks 0,
3, 6, 9, ... have active elements with the same positions. These blocks are classified
into the same class. Similarly, blocks 1, 4, 7, 10, ... can be classified into the same
class. The following theorem demonstrates that, for a two-level data-processor map-
ping, according to the positions of the active elements within the blocks, all the
blocks can be classified into different classes. Moreover, the number of classes is
equal to s�gcd(s, x), where gcd(a, b) is the greatest common divisor of a and b.

Theorem 1. For any two-level data-processor mapping in which array A is
aligned with T at a stride s and an offset o and template T is distributed onto pro-
cessors using cyclic(x) distribution, all the template blocks can be classified into
s�gcd(s, x) classes.

Proof. Since each block is of the same size and the alignment stride is s, if the
position of the first active element for some block is the same as that of another

FIG. 4. The active elements and pseudo active elements. The numbers in boldface are active
elements, and the numbers in italics are pseudo active elements.
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one, the positions of the rest of the active elements within the two blocks are the
same. Suppose the position of the first active element within block b is $, 0�$<s.
We would like to show that the position of the first active element is still $ for every
period of s�gcd(s, x) blocks.

The position in a block for any active element before or after $ can be formulated
as (($+k } s) mod x), where k # Z and Z is the set of integers. We claim that
($+k$ } s) mod x=$, for some k$. Therefore, the number of blocks between b and
the block in which the position of the first active element is the same with b is
(k$ } s)�x. Since ($+k$ } s) mod x=$, it follows that $+k$ } s=x } q+$, for some
q # Z. Thus, k$ } s=x } q. Because k$ and q are integers, the unique solution to
k$ } s=x } q is

k$=t }
lcm(s, x)

s
and q=t }

lcm(s, x)
x

,

where t # Z and lcm(a, b) is the least common multiple of a and b. Therefore

k$ } s
x

=q=t }
lcm(s, x)

x
=t }

s
gcd(s, x)

.

In other words, for every period of s�gcd(s, x) blocks, the first active elements of
these blocks are the same. Thus, for arbitrary two-level data-processor mapping,
blocks can be classified into s�gcd(s, x) classes. The theorem is, therefore,
obtained. K

Let Nc be the number of classes. By Theorem 1, Nc=s�gcd(s, x). Since all blocks
are classified into Nc classes, we arrange the class numbers of the block in
lexicographical order and in a round-robin fashion. Formally, the class number of
block b is (b mod Nc). Furthermore, blocks b1 and b2 belong to the same class
if and only if b1 #b2 ( mod Nc). Accordingly, blocks [b, (b+1), (b+2), ..., (b+
Nc&1) | b#0( mod Nc)] are a period in terms of classes, and we term such a
period a class cycle. A class table is used to record the first, the last and the number
of active elements on a class for each class in a class cycle. For a class c, Af (c)
represents the order of occurrence in a class cycle for the first active element in c,
Al (c) the order of occurrence in a class cycle for the last active element in c, and
An(c) the number of active elements within c. In addition to the characteristics
described above, a class table also contains implicitly a lot of additional informa-
tion implicitly. For a class c, Af (c) also indicates the number of active elements
contained from class 0 to class (c&1), and (Al (c)+1) indicates the number of
active elements contained from 0 up to class c. Therefore, the number of active
elements contained in a class cycle is equal to Al (Nc&1)+1. Let Ac be the number
of active elements contained in a class cycle. Thus, Ac=Al (Nc&1)+1.

Figure 5 shows the class table for the example shown in Fig. 2. In this example,
blocks can be classified into 3 classes. The blocks 0, 3, 6, 9, ..., belong to class 0,
the blocks 1, 4, 7, 10, ..., belong to class 1, and the blocks 2, 5, 8, 11, ..., belong to
class 2. Blocks 0, 1, 2 form a class cycle, blocks 3, 4, 5 form another class cycle, and
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FIG. 5. Class table for the example shown in Fig. 2.

so on. For the first class in a class cycle, the number of occurrences of the first and
the last active elements is 0 and 1, respectively, and the number of active elements
in this class is 2. Thus, Af (0)=0, Al (0)=1, and An(0)=2. Likewise, Af (1)=2,
Al (1)=2, and An(1)=1 for class 1, and Af (2)=3, Al (2)=4, and An(2)=2 for
class 2. Hence, the number of active elements within a class cycle, Ac , is
5(=Al (2)+1). Figure 6 shows the algorithm used to generate a class table, which
is termed the Class�Table�Generation algorithm. The major factors affecting the
construction of a class table are the alignment stride s, alignment offset o, and
distribution block size x. The time complexity of the Class�Table�Generation
algorithm is O(s�gcd(s, x)).

Note that, if the block size x is larger than the alignment stride s, each block con-
tains at least one active element. Thus, Al (c) is always larger than or equal to
Af (c), where c is the class number of that block. However, if the block size is
smaller than the alignment stride, each block contains at most one active element,
and there are blocks that contain no active elements at all. For any block that con-
tains no active element, Af (c) will be one larger than Al (c). Lemma 1 demonstrates
this phenomenon.

Lemma 1. For any block b,

Af (c)=Al (c)+1 � An(c)=0,

where c is the class number of b.

Proof. ( O ): Since An(c)=Al (c)&Af (c)+1 and Af (c)=Al (c)+1; obviously,
An(c)=0.

( o ): Since An(c)=Al (c)&Af (c)+1 and An(c)=0; clearly, Af (c)=Al (c)+1.
K

In the following section, we will explain how the class table is used to construct
a compression table to extract information from the first repetitive data distribution
pattern on a processor. Next, we will describe how the compressed local array for

FIG. 6. Class�Table�Generation algorithm.
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a processor is generating by using the compression table. The transformations
between global and local indices will be addressed as well.

3. HOLE COMPRESSION

A two-level data-processor mapping may cause many useless holes if the align-
ment stride is nonunit. Memory holes result in memory wastage and degrade
system performance. Therefore, this section proposes compilation techniques to
totally eliminate these useless holes and systematically generate the sequence of
array elements exactly obtained by each processor. The transformations between
the global and the local addresses are also described.

3.1. Construction of a Compression Table

Suppose a two-level data-processor mapping is of the form shown in Fig. 1. By
Theorem 1, for an arbitrary two-level data-processor mapping, all the blocks can
be classified into Nc classes, where Nc=s�gcd(s, x). Consequently, lcm(Nc , P)
blocks will form a data distribution pattern. Blocks within a data distribution pat-
tern can be viewed as different but are identical for every different data distribution
patterns. Hence, we only have to consider the first data distribution pattern, and
the rest of data distribution patterns can be processed likewise. Therefore, we
propose a compression table used to record information about the generation of a
compressed local array for a processor on the first data distribution pattern. Similar
to a class table, a compression table also regards an alignment offset o as the
isomorphic alignment offset r, where r=(o mod s).

Let the number of blocks in a data distribution pattern be Npb . Thus,
Npb=lcm(Nc , P). The number of blocks on each processor within a data distribu-
tion pattern is, thus, equal to Npb �P, which can also be written as Nc �gcd(Nc , P).
Let the number of blocks on a processor within a data distribution pattern be N p

pb ;
then, N p

pb=Nc �gcd(Nc , P). We number a block on a processor within a data dis-
tribution pattern according to the order of occurrence of that block on the pro-
cessor. For the example shown in Fig. 2, a data distribution pattern contains
12(=Npb) blocks. Blocks 0 to 11 form the first data distribution pattern, and
blocks 12 to 23 are within the second data distribution pattern. Blocks 0 and 4 are
the first and the second blocks occurring on processors 0, blocks 1 and 5 are the
first and the second blocks occurring on processor 1 within the first data distribu-
tion pattern, blocks 12 and 13 are the first blocks occurring, respectively, on pro-
cessor 0 and 1 within the second data distribution pattern, and so on. The represen-
tations of the notations class, class cycle, data distribution pattern, and occurrence
of a block within a data distribution pattern are shown in Fig. 7.

As mentioned above, data distributions among different data distribution pat-
terns are identical. The only difference between the first data distribution pattern
and other data distribution patterns is the indices of every pair of corresponding
cells. However, for every corresponding cell, the indices are different in only a fixed
offset. Hence, for a processor, we only need to consider how to compress holes for
the first data distribution pattern and for the rest of the data distribution patterns,
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FIG. 7. The representations of the notations class, class cycle, data distribution pattern, and
occurrence of a block within a data distribution pattern.

only the fixed offset needs to be evaluated. To facilitate hole compression, we design
a structure, termed a compression table, used to characterize blocks in the first data
distribution pattern on a processor. For a block of occurrence O on processor p,
a compression table records C p

g , C p
n , and C p

l , where

v C p
g(O) is the global index of the first array element in O on processor p,

v C p
n(O) is the number of array elements in O on processor p, and

v C p
l (O) is the local index in the compressed local array for the first array

element in O on processor p.

Take the compression table of processor p0 as an example. Block b0 is the block
of occurrence 0 within the first data distribution pattern on processor p0 . The
global index of the first array element in b0 is 0, the number of array elements in
the block is 2, and the local index of array element A(0) in the compressed local
array is 0. Thus, C0

g(0)=0, C0
n(0)=2, and C0

l (0)=0. The second occurrence of a
block within the first data distribution pattern on processor p0 is b4 . The global
index of the first array element in b4 is 7, the number of array elements in the block
is 1, and the local index of A(7) in the compressed local array is 2. Therefore,
C0

g(1)=7, C0
n(1)=1, and C0

l (1)=2. Similarly, C0
g(2)=13, C0

n(2)=2, and C0
l (2)=3.

The compression tables for processor p0 and p1 in the example shown in Fig. 2 are
illustrated in Figs. 8a and 8b, respectively.

FIG. 8. Compression tables for processor p0 and p1 in the example shown in Fig. 2. (a) The com-
pression table for processor p0 . (b) The compression table for processor p1 .
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FIG. 9. Compression�Table�Generation algorithm.

The construction of a compression table for processor p is described as follows.
Since all the blocks are classified into Nc classes, every Nc blocks forms a class
cycle. For any block b, there are wb�Nc x class cycles which appear before b.
Furthermore, each class cycle contains Ac active elements. Hence, there are
(wb�Nc x V Ac) active elements in these class cycles. From Section 2, Af (c) implicitly
indicates the number of active elements from class 0 to class (c&1) in a class cycle.
As a result, for any block b, the global index of the first array element in the block
can be obtained by wb�Nc x V Ac+Af (c), where c is the class number of b. There-
fore, C p

g can be obtained by wb�Nc x V Ac+Af (c). On the other hand, C p
n can be

obtained by An(c), and C p
l can be evaluated by summing the last evaluated values

of C p
n and C p

l . Initially, C p
l =0. Note that C p

l can also represent the number of
active elements occurring before the block in a data distribution pattern. The
algorithm to generate compression table is shown in Fig. 9. The time complexity
of the Compression�Table�Generation algorithm is O(Nc�gcd(Nc , P)), where Nc is
the number of classes and P is the number of processors. From Section 2,
Nc=s�gcd(s, x). Hence, the worst case of the Compression�Table�Generation algo-
rithm is O(s), as much as that of Class�Table�Generation algorithm.

Note that if the alignment stride is smaller than or equal to the distribution block
size (s�x), then each block contains at least one active element. In this case, the
first array element in a block obtained by the above calculation is exactly the first
array element on that block. On the other hand, if the alignment stride is larger
than the distribution block size (s>x), then a block may contain no active element.
The first array element of the empty block, a block which contains no active
element, obtained by the above calculation is a pseudo array element. However,
pseudo array elements do not affect the correctness of our proposed approach. We
shall verify this in the next section.

3.2. Generation of Compressed Local Arrays

Using the compression table to generate the compressed local array on a pro-
cessor is proposed in this subsection. Since the isomorphic alignments differ only in
the alignment offset, to simplify our discussion, we will first consider a two-level
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data-processor mapping without considering the pseudo active elements. The
general case will be discussed after that.

3.2.1. Special Case of a Two-Level Data-Processor Mapping

Generally speaking, the main factors affecting a two-level data-processor map-
ping are the alignment stride s, alignment offset o, distribution block size x, and the
number of processors P. However, by Definition 1, for the same s, x, and P, two
different alignment offsets o1 and o2 lead to isomorphic data-processor mappings if
and only if o1 #o2 (mod s). Hence, the constructions of class table and compression
table use the isomorphic alignment offset r, where r=(o mod s). In addition, to sim-
plify our discussion, we neglect the pseudo active elements in this subsection. By
doing so, we can avoid evaluating the pseudo active elements occurring in front and
in back of the first and the last active elements. Figure 2 shows an example of such
a two-level data-processor mapping.

As previously stated, the data distributions among different data distribution
patterns are identical except for the indices of the corresponding elements. Let the
difference between the global indices of two corresponding array elements on two
contiguous data distribution patterns be the global indexing offset. Therefore, if the
global index of an array element is known, the corresponding array element on the
previous(next) data distribution pattern can be obtained by subtracting(adding)
the global indexing offset from(to) the global index of that array element. Hence,
the simplest approach to generating the compressed local array for processor p is
to first generate the compressed local array for the first data distribution pattern
according to the compression table. Then, for the following data distribution pat-
terns, the compressed local array can be generated according to the previously
generated compressed local array and the global indexing offset. Consider the two-
level data-processor mapping shown in Fig. 2. Take the generation of the com-
pressed local array for processor p0 as an example. The compressed local array for
the first data distribution pattern is A(0, 1, 7, 13, 14). Accordingly, the compressed
local array for the second data distribution pattern is A(20, 21, 27, 33, 34) since the
global indexing offset is 20. Thus, the compressed local array of processor p0 is
Ap0(0, 1, 7, 13, 14, 20, 21, 27, 33, 34). The Hole�Compression algorithm for the
special case of two-level data-processor mapping is shown in Fig. 10.

FIG. 10. Hole�Compression algorithm to generate the compressed local array for processor p in the
special case of two-level data-processor mapping.
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The algorithm shown in Fig. 10 is straightforward but less efficient since it incurs
indirect memory accesses. Based on a similar idea, we propose a more efficient algo-
rithm to generate the compressed local array for the special case of two-level data-
processor mapping. Let the difference between the local indices in a compressed
local array for two corresponding array elements on two contiguous data distribu-
tion patterns be the local indexing offset. As the differences between the global and
the local indices of two corresponding array elements on two contiguous data dis-
tribution patterns are fixed, and are equal to the global and the local indexing
offsets, respectively, the global indices of the array elements on the latter data dis-
tribution pattern can be obtained by adding the global indexing offset to the global
indices of the corresponding array elements on the former data distribution pattern.
Similarly, the local indices in the compressed local array for the compressed array
elements on the latter data distribution pattern can be obtained by adding the local
indexing offset to the local indices of the corresponding array elements on the
former data distribution pattern. Therefore, once the global and local indexing
offsets for two corresponding array elements on two contiguous data distribution
patterns are determined, we can determine the global indices of the corresponding
array elements on contiguous data distribution patterns and the local indices in the
compressed local array for the corresponding array elements. The compressed local
array for processor p can, thus, be generated as follows. For the blocks of the same
occurrence in every data distribution pattern, the global index of the first array
element in the first data distribution pattern can be obtained by the compression
table, and for the array elements in the remaining data distribution pattern, the
index can be obtained by adding the global indexing offset to the global index of
the previous corresponding array element. Similarly, the local index in compressed
local array of the first array element in the first data distribution pattern can also
be obtained by the compression table. For the other corresponding array elements,
the local indices can be obtained by adding the local indexing offset to the local
index of the previous corresponding array element.

Again, take the generation of the compressed local array for processor p0 in
Fig. 2 as an example. The global index of the first array element in block b0 in the
first data distribution pattern is 0, which can be obtained by looking up the com-
pression table of processor p0 . The local index of A(0) is 0, which can also be
obtained by the compression table. For the corresponding array elements in the
second data distribution pattern in this example, the global index of that array
element is 20, which is equal to 20+0, where 20 is the global indexing offset
and 0 is the global index of the previous corresponding array element. The local
index of A(20) is 5, which equals 5+0, where 5 is the local indexing offset and
0 is the local index of the previous corresponding array element. That is, A(20) is
mapped to A p0(5). Likewise, we generate the compressed local array elements
according to the sequence A(0), A(20), A(1), A(21), ... . As a result, we can also
obtain the compressed local array A p0=(0, 1, 7, 13, 14, 20, 21, 27, 33, 34) for pro-
cessor p0 . Figure 11 illustrates the modified algorithm, which can generate the
compressed local array for processor p in the special case of a two-level data-
processor mapping more efficiently. In the algorithm, Nptn is the number of data
distribution patterns in the two-level mapping, Aptn is the global indexing offset,
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FIG. 11. The modified Hole�Compression algorithm for generating the compressed local array of
processor p in the special case of a two-level data-processor mapping.

and A p
ptn is the local indexing offset, which will be described in the following sub-

section.

Implementation issues. The main concept used to generate the compressed local
array for the special case of a two-level data-processor mapping has been described.
However, some implementation issues should be addressed. Since the data distribu-
tions among different data distribution patterns are identical except for the indices
of the corresponding elements, the key to generating the compressed local array is
to evaluate the global and local indexing offset. Evidently, the difference between
the global indices of two corresponding array elements in two contiguous data dis-
tribution patterns is the number of active elements in a data distribution pattern.
Let Aptn be the number of active elements in a data distribution pattern. Thus, Aptn

is the global indexing offset. The number of active elements in a data distribution
pattern can be evaluated by Aptn=W(Npb V x)�sX, where Npb is the number of blocks
in a data distribution pattern. For instance, in the example shown in Fig. 2,
Aptn=20. The first blocks in the first and the second data distribution patterns are
blocks 0 and 12, respectively. The first array elements in blocks 0 and 12 are A(0)
and A(20), respectively. The difference between the global indices of the two corre-
sponding array elements is 20, which is equal to Aptn .

The global indices of two corresponding array elements in two contiguous data
distribution patterns have a fixed difference. Similarly, the local indices in a com-
pressed local array for two corresponding array elements in two contiguous data
distribution patterns also have a fixed difference. We term this fixed difference the
local indexing offset. Clearly, the difference between the local indices in a com-
pressed local array for two corresponding array elements in two contiguous data
distribution patterns equals the number of active elements in a data distribution
pattern allocated to that processor. Let A p

ptn be the number of active elements
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allocated to processor p in a data distribution pattern. Obviously, A p
ptn is the local

indexing offset. From the compression table,

A p
ptn=C p

n(N p
pb&1)+C p

l (N p
pb&1).

For processor p0 in the example shown in Fig. 2, the number of active elements in
a data distribution pattern in p0 is 5. The first array elements in the first and the
second data distribution patterns allocated to processor p0 are 0 and 20, respec-
tively. The local index of array element 0 in compressed local array is 0, and that
for array element 20 is 5. The difference between the local indices in the compressed
local array of p0 for these two corresponding array elements is 5, which is equal to
A p

ptn .
Suppose there are Nptn data distribution patterns in the special case of a two-level

data-processor mapping. The number of data distribution patterns Nptn can be
obtained by Nptn=Nb �Npb , where Nb is the number of blocks and Npb is the
number of blocks in a data distribution pattern. Since the array elements are dis-
tributed into multiple of data distribution patterns, the number of compressed local
array elements on processor p can be figured out as follows. Let the number of
compressed local array elements on processor p be N p

A . Then,

N p
A=Nptn V A p

ptn .

In this subsection, the generation of a compressed local array for the special case
of a two-level data-processor mapping has been described. The next subsection will
discuss the generation of a compressed local array for a general two-level mapping,
which takes the pseudo active elements into consideration.

3.2.2. General Case of a Two-Level Data-Processor Mapping

The concept used in the general case of a two-level data-processor mapping is
similar to the special case of a two-level mapping. However, the pseudo active
elements should be taken into consideration for the general case of a two-level data-
processor mapping. For example, Fig. 12 shows a general two-level data-processor
mapping. In this data-processor mapping, array A has 30 elements indexed from 0
to 29. Array element A(i) is aligned with a template T with stride 3 and offset 28.
Template T is distributed onto 4 processors using cyclic(5) distribution. The two
data-processor mappings shown in Figs. 2 and 12 are isomorphic since the align-
ment strides, the distribution block sizes and the numbers of processors of the two
mappings are equal, and the two alignment offsets 1#28 ( mod 3). The class table
and compression table used by the data-processor mapping shown in Fig. 2 are the
same as those for the mapping shown in Fig. 12. The compressed local array of
processor p0 in Fig. 2 is A p0=(0, 1, 7, 13, 14, 20, 21, 27, 33, 34), which has been
introduced in the previous subsection. However, in Fig. 12, taking the pseudo
active elements into consideration, the compressed local array becomes A p0=
(4, 5, 11, 12, 18, 24, 25).

203INDEX GENERATION FOR TWO-LEVEL MAPPINGS



FIG. 12. A general two-level data-processor mapping. Array A(i) is aligned with template
T(3 V i+28), and the template is then distributed onto 4 processors with cyclic(5) distribution, assuming
NA=30.

In the general case of two-level data-processor mapping, the first and the last
data distribution patterns may have pseudo active elements. These two data
distribution patterns should be considered separately. As for the rest of the data
distribution patterns between the first and the last data distribution patterns, there
is no pseudo active element in these data distribution patterns. Hence, the genera-
tion of a compressed local array for these data distribution patterns can adopt the
concept used for the special case of a data-processor mapping. The evaluations of
the global and local indexing offsets in the special case of a two-level data-processor
mapping are also important for general two-level data-processor mapping, where
the global and local indexing offsets are, respectively, the differences between the
global indices and the local indices in a compressed local array for two correspond-
ing array elements in two contiguous data distribution patterns. In addition to the
evaluations of global and local indexing offsets, an evaluation of the number of
pseudo active elements is required as well. We have to count the number of pseudo
active elements mapped onto p before the first active element T(o). Moreover, the
number of pseudo active elements mapped onto p after the last active element is
also determined. Here, determining the number of pseudo active elements in the last
active block is enough.

Consider the generation of a compressed local array for processor p0 in the
general case of a two-level data-processor mapping shown in Fig. 12. Since the
data-processor mapping shown in Fig. 12 is isomorphic to that shown in Fig. 2, the
compression tables used by the two data-processor mappings are identical and are
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shown in Fig. 8. The global and local indexing offsets are 20 and 5, respectively,
which are the same as those used in the special case of a two-level data-processor
mapping shown in Fig. 2. The compressed local array of processor p0 without con-
sidering the pseudo active elements is A p0=(0, 1, 7, 13, 14, 20, 21, 27, 33, 34), as dis-
cussed in Section 3.2.1. Consider the pseudo active elements. There are totally 9
pseudo active elements which appear before T(o) in the two-level data-processor
mapping, which are indexed as 1, 4, 7, 10, 13, 16, 19, 22, and 25. This implies that
all the array elements are shifted 9 elements. That is, all the global indices of array
elements have to subtract 9 from their original indices in the special case of a two-
level data-processor mapping to get their real indices in the general case. Thus, the
compressed local array of processor p0 becomes A p0=(&9, &8, &2, 4, 5, 11, 12, 18,
24, 25). In addition, there are three pseudo active elements on processor p0 (i.e.,
T(1, 4, 22)). As a result, the previous three array elements should be eliminated.
Actually, the compressed local array of processor p0 for the general two-level data-
processor mapping shown in Fig. 12 is A p0=(4, 5, 11, 12, 18, 24, 25).

However, if the number of compressed local array elements on processor p is
known in advance, the compressed local array of processor p can be generated
more efficiently. Let the number of compressed local array elements on processor
p be N p

A . Once the number of pseudo active elements allocated on processor p is
calculated, N p

A can be obtained easily. Let Aptn be the number of active elements in
a data distribution pattern, and let A p

ptn be the number of active elements allocated
to processor p in a data distribution pattern. Obviously, Aptn and A p

ptn are the
global and the local indexing offsets, respectively. As mentioned above, if an array
element A(gl ) is mapped to the compressed local array at A p(loc), the array
element A(gl+Aptn) will be mapped to the compressed local array at
Ap(loc+A p

ptn). Thus, we can generate the compressed local array for the first A p
ptn

elements by using the compression table. After that, we can generate the next A p
ptn

elements according to the previous A p
ptn elements and the global indexing offset

Aptn . Finally, we can generate the last (N p
A mod A p

ptn) elements accordingly. The

FIG. 13. Hole�Compression algorithm for generating the compressed local array of processor p in
a general two-level data-processor mapping.
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algorithm used to generate the compressed local array for the general case of a two-
level data-processor mapping is shown in Fig. 13.

Implementation issues. For a two-level data-processor mapping, we only need to
be concerned about the blocks which contain active elements. Hence, a block which
contains active elements is termed an active block. Let b p

f and b p
l , respectively,

denote the first and the last active blocks contained by processor p. Thus, b p
f and

b p
l can be determined as follows. The block number of a block contained by pro-

cessor p can be written in the form ( p+k V P), where k # Z+ and Z+ is the set of
positive integers. Since the first and the last active elements are T(o) and
T(s V (NA&1)+o), they are allocated to blocks wo�xx and w(s V (NA&1)+o)�xx,
respectively. Therefore, b p

f should be greater than or equal to wo�xx and b p
l should

be smaller than or equal to w(s V (NA&1)+o)�xx. Suppose b p
f =( p+kf V P)

and b p
l =( p+k l V P), for some kf and k l # Z+. Thus, ( p+kf V P)�wo�xx and

( p+kl V P)�w(s V (NA&1)+o)�xx. We can obtain that kf=W(wo�xx& p)�PX and
kl=w(w(s V (NA&1)+o)�xx& p)�Px. As a result,

b p
f = p+W(wo�xx& p)�PX V P,

b p
l = p+w(w(s V (NA&1)+o)�xx& p)�Px V P.

Any block in processor p will be in a unique data distribution pattern and will
occur in that data distribution pattern. Therefore, for any block b in processor p,
b can be decomposed into two factors : and ;, which are the data distribution pat-
tern number and the occurrence in the distribution pattern where b belongs, respec-
tively. : and ; can be, respectively, obtained by wb�Npb x and w(b mod Npb)�Px,
where Npb is the number of blocks in a data distribution pattern and
Npb=lcm(Nc , P), which has been discussed in Section 3.1. Given (:, ;) p, a unique
block number b can be obtained via

b= p+: V Npb+; V P.

Thus, we call (:, ;) p an addressing pair. Accordingly, the addressing pairs for the
first and the last active blocks that are contained by processor p, b p

f and b p
l , are

represented by (:f , ;f)
p and (:l , ;l)

p, respectively.
In order to exactly evaluate the number of compressed local array elements

allocated on a processor, the number of pseudo active elements has to be deter-
mined first. Let PA p

h denote the number of pseudo active elements allocated to
processor p and occurring before the first active element T(o), and let PA p

t denote
the number of pseudo active elements occurring in the last active block b p

l . The
values of PA p

h and PA p
t can be calculated as follows.

To calculate PA p
h , we must decide whether the first active element T(o) is

allocated to processor p or not. If the first active element T(o) is not allocated to
p, the pseudo active elements can only occur in the blocks before the first active
block b p

f . Therefore, PA p
h =:f V A p

ptn+C p
l (;f), where A p

ptn is the number of active
elements allocated to processor p in a data distribution pattern. Otherwise, the first
active element T(o) is allocated to processor p; thus, in addition to the blocks
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before the first active block b p
f , the pseudo active elements can also occur in the

first active block and need to be considered as well. Hence, PA p
h =:f V A p

ptn+
C p

l (;f)+w(o mod x)�sx. As a result, PA p
h can be obtained by

PA p
h ={:f V A p

ptn+C p
l (;f)

:f V A p
ptn+C p

l (;f)+w(o mod x)�sx

if T(o) � p,
if T(o) # p.

For the example shown in Fig. 12, PA p
h for processor p0 can be evaluated as

follows. The first active block in p0 is b8 , and the addressing pair for the block is
(0, 2) p0. Since the first active element T(28) is not allocated to processor p0 , the
pseudo active elements in p0 only occur in the blocks before the first active block
b8 , that is, blocks b0 and b4 . Accordingly, PA p0

h =0 V 5+C p0
l (2)=3, where

A p
ptn=5. With regard to PA p

h for processor p1 , the first active block in p1 is b5 ,
and the addressing pair of this block is (0, 1) p1. Since the first active element T(28)
is allocated on p1 , the pseudo active elements occur not only in the blocks before
the first active block, but also in the first active block. Thus, PA p1

h =0 V 5+
C p1

l (1)+1=2.
To evaluate PA p

t , we also must decide whether the last active element
T(s V (NA&1)+o) is allocated on processor p or not. If the last active element
T(s V (NA&1)+o) is not allocated on p, there is no pseudo active element in the
last active block. Therefore, PA p

t =0. For the example shown in Fig. 12, the values
of PA p

t for processors p0 , p1 and p2 are 0 because the last active element T(115)
is not allocated on p0 , p1 and p2 . On the other hand, if the last active element is
allocated on p, the number of pseudo active elements in the last active block b p

l can
be calculated by PA p

t =C p
n(; l)&w((s V (NA&1)+o) mod x)�sx&1. For the case

of p3 shown in Fig. 12, since the last active element T(115) is allocated on p3 ,
PA p3

t =C p3
n (2)&0&1=1, where the last active block b p3

l on p3 is b23 and its
addressing pair is (1, 2) p3. Consequently, PA p

t can be obtained by

PA p
t ={0

C p
n(; l)&w((s V (NA&1)+o) mod x)�sx&1

if T(s V (NA&1)+o) � p,
T(s V (NA&1)+o) # p.

Since the first and the last active blocks on processor p and the corresponding
addressing pairs can be evaluated, the number of active elements on processor p can
be obtained accordingly. For processor p, the number of active elements which
occur from the first block up to the last active block is :l V A p

ptn+C p
l (; l)+C p

n(;l).
However, the pseudo active elements are also counted. Therefore, the number of
pseudo active elements should be deducted from the total. As a result, the number
of active elements allocated on processor p, N p

A can be obtained by

N p
A=:l V A p

ptn+C p
l (;l)+C p

n(;l)&PA p
h &PA p

t .

We will explain the ideas behind the algorithm shown in Fig. 13 by using the
following example. Consider the general two-level data-processor mapping shown
in Fig. 12. Take the generation of the compressed local array of processor p0 as an
example. We have to evaluate the number of active elements allocated on processor
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p0 first. The first and the last active blocks on processor p0 are b8 and b20 , respec-
tively. That is, b p0

f =b8 and b p0
l =b20 . The addressing pairs (:f , ;f)

p0 and (:l , ;l)
p0

are (0, 2) p0 and (1, 2) p0, respectively. The calculations of PA p
h and PA p

t on pro-
cessor p0 , described in previous paragraphs, produce values of 3 and 0, respectively.
The number of active elements on processor p0 is N p0

A =1 V 5+C p0
l (2)+C p0

n (2)&
3&0=7, where A p0

ptn=5. Since A p0
ptn=5, according to the Hole�Compression algo-

rithm shown in Fig. 13, the first step is to generate the first 5 compressed local
array elements. The compression table records the information used to generate
A p

ptn compressed local array elements without considering the pseudo active
elements. Let PA be the number of pseudo active elements occurring before the
first active element T(o), which can be obtained by PA=wo�sx. Obviously,
PA=9 in this example. That is, 9 pseudo active elements occur before the first
active element T(o) in this example. Hence, the number of global indices in the two-
level data-processor mapping should be reduced by 9 to obtain the number of real
global indices in the mapping shown in Fig. 12. Therefore, according to the com-
pression table, the first A p0

ptn compressed local array elements are A(&9, &8, &2, 4, 5).
Because PA p0

h =3, we discard three pseudo active elements and regenerate three
more active elements to obtain the first real 5 compressed local array elements
A(4, 5, 11, 12, 18) on processor p0 . Since only 2 compressed local array elements
need to be generated, we skip the second step of the Hole�Compression algorithm
shown in Fig. 13 and go directly to step 3 to generate the last 2 compressed local
array elements. As a result, the compressed local array elements on processor p0 are
Ap0=A(4, 5, 11, 12, 18, 24, 25).

3.3. A(gl) W A p(loc) Transformations

Another important problem with hole compression is the transformations
between the global indices of array elements and the local indices of the corre-
sponding compressed local array elements. Suppose that gl is a global index of an
array element, and that loc is the local index of the corresponding compressed local
array element. The transformation between A(gl ) W A p(loc) is important for com-
piling array statements and data redistribution. In other words, given a gl, we have
to find the values of p and loc, where p and loc are the processor number and the
local index in A p mapped by gl, respectively. On the other hand, given p and loc,
we have to find the corresponding value of gl.

Given a gl, (s V gl+o) is the global index of the aligned template cell and
w(s V gl+o)�xx is the block number mapped by gl. Let b=w(s V gl+o)�xx. The
processor to which b belongs is p=(b mod P). That is, p is the processor number
mapped by gl. Let (:b , ;b) p be the addressing pair of b. The local index in A p where
gl is mapped can be determined as follows. The number of array elements occurring
in front of b on processor p is :b V A p

ptn+C p
l (;b)&PA p

h , where A p
ptn is the number

of active elements on processor p in a data distribution pattern and PA p
h is the

number of pseudo active elements allocated to processor p and occurring before the
first active element T(o). The number of array elements appeared before gl on block
b is w((s V gl+o) mod x)�sx. Therefore, the corresponding local index in the com-
pressed local array A p is :b V A p

ptn+C p
l (;b)&PA p

h +w((s V gl+o) mod x)�sx.
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Thus, given a global index gl of array A, the processor number p and the local
index loc in the compressed local array A p mapped by gl can be obtained as
follows.

p=b mod P,

loc=:b V A p
ptn+C p

l (;b)&PA p
h +w((s V gl+o) mod x)�sx.

Consider the general two-level data-processor mapping shown in Fig. 12. Given
gl=25, we would like to find the corresponding processor number and the local
index in the compressed local array. Based on an alignment stride s=3 and offset
o=28, the global index of the aligned template cell is 103(=3 V 25+28). The
corresponding block number of gl is 20(=w103�5x). Hence, the corresponding pro-
cessor number p is 0(=20 mod 4). The addressing pair of b20 is (1, 2) p0. The corre-
sponding local index in the compressed local array AP0 is loc=1 V 5+C p0

l (2)&3+1
=6. As a result, A(25) is mapped to A p0(6).

On the other hand, given a processor number p and a local index in the com-
pressed local array A p, we would like to find the corresponding global index gl of
array A. According to p and loc, we can restore the corresponding addressing pair
of the block where gl is allocated and then obtain the corresponding global index
gl. Let (:, ;) p be the addressing pair of the block mapped by gl. Since PA p

h is the
number of pseudo active elements which are allocated to processor p and appear
before the first active element T(o), and A p

ptn is the number of active elements on
processor p within a data distribution pattern without considering the pseudo
active elements, it follows that :=w(loc+PA p

h )�A p
ptn x. On the other hand, ; is the

occurrence number of the block where gl is allocated. The value of ; can be
obtained by checking the compression table to make sure that the condition that
Cp

l (;) is the largest value but is no greater than the value of ((loc+PA p
h ) mod A p

ptn)
is satisfied. Since the values of C p

l in a compression table are sorted, the process for
determining an appropriate ; can adopt either a simple linear search or an efficient
binary search on the values of C p

l in the compression table. According to the
addressing pair, the global index gl can be obtained as follows:

gl=: V Aptn+C p
g(;)+((loc+PA p

h ) mod A p
ptn)&C p

l (;)&PA,

where PA is the number of pseudo active elements occurring before the first active
element T(o) and PA=wo�sx.

Take p=0 and loc=6 in Fig. 12 as an example. Since, in this data-processor
mapping, PA p0

h =3 and A p0
ptn=5, :=w(6+3)�5x=1 and ;=2, it follows that

gl=1 V 20+13+((6+3) mod 5)&3&9=25, where Aptn=20 and PA=w28�3x=9.
Thus, given p=0 and loc=6, A p0(6) is mapped by A(25).

4. EXPERIMENTAL RESULTS

This section presents experimental results obtained to evaluate the performance
of our proposed scheme and the work proposed in [12]. In our experiments, three
methods are compared. Two are virtual processor schemes [12], and the last is our

209INDEX GENERATION FOR TWO-LEVEL MAPPINGS



proposed scheme. The virtual processor scheme includes virtual block and virtual
cyclic approaches. Generally speaking, a block-cyclic distribution can be viewed as
either a block distribution on a set of virtual processors, which are then cyclically
mapped to processors, or a cyclic distribution on a set of virtual processors, which are
block-wise mapped to processors. The former is termed a virtual block scheme and is
denoted as v-block here. The latter is termed a virtual cyclic scheme and is denoted as
v-cyclic. As for our proposed scheme, we denote it as ours in the experiment.

Specifically, suppose that array A has NA elements, that A(i) is aligned with
T(s V i+o), and that T is block-cyclically distributed onto P processors with block
size x. The experiment measures the execution time of each method. Actually, our
method includes two phases. One is done at compile-time and the other is done at
runtime. The generations of the class table and compression tables are done at
compile-time if the parameters are known at compile-time. The generation of the
compressed local array is done at runtime. Hence, in most cases, the times to
generate the class table and compression tables can be ignored when we generate the
compressed local array. However, in this experiment, the time we measured for our
scheme also includes the table generation time.

In this experiment, we fix all the parameters except for s and x since the major
factors affecting hole compression are s and x. Thus, the number of array elements
NA , the number of processors P, and the alignment offset o are set to 50000, 16,
and 0, respectively. In real programs, the values of s and x are very correlated with
program behavior. However, we do not take the code part into consideration since
the generation of the compressed local array is irrelevant with the code. We test
various values of s and x to observe the variation of our scheme against virtual pro-
cessor schemes. The experiments are performed on a DEC Alpha 3000�400 worksta-
tion. In the experiment, times are measured in terms of CPU time, and the time
unit used is one microsecond. We evaluate the execution time needed to generate
the compressed local array for one processor. For each case, we run 100 times, each
for the processor generated by a random number generator. Each experimental
result is the total time of the 100 executions.

Figure 14a shows the performance comparisons of the three methods when the
alignment stride is fixed at 12 and the block size varies from 1 to 24. In Fig. 14a,

FIG. 14. Performance comparisons of the three methods. (a) The alignment stride s is fixed at 12,
and the block size varied from 1 to 24. (b) The block size x is fixed at 12, and the alignment stride varied
from 2 to 24.

210 SHIH ET AL.



the x-axis is the block size, and, the y-axis is the accumulated execution time. The
proposed method outperforms the two virtual processor approaches, especially the
virtual block approach. In Fig. 14a, the execution time of the virtual block
approach describes as the block size increases. This is because the execution time
of the virtual block approach is proportional to the number of virtual processors.
Therefore, as the block size increases, the number of virtual processors contained
by a processor decreases. Thus, the execution time of the virtual block approach
decreases accordingly. Similarly, the execution time of the virtual cyclic approach
is also proportional to the number of active virtual processors. The number of
active virtual processors is inversely proportional to gcd(P V x, s) [12]. As a result,
the execution time of the virtual cyclic approach is inversely proportional to
gcd(P V x, s). The experiments also verifies this phenomenon. Therefore, there is no
regular pattern for either the block size or the alignment stride. For our proposed
method, the execution time is closely related to the number of occurrences, N p

pb ,
which is obtained by N p

pb=Nc �gcd(Nc , P), where Nc=s�gcd(s, x). The larger
the number of occurrences, the more time our method takes. Hence, the execution
time of our method is proportional to the number of occurrences, just as Fig. 14a
shows.

On the other hand, Fig. 14b shows performance comparisons of the three
methods when the block size is fixed at 12 and the alignment stride varies from 2
to 24. As is well known, template cells should span the entire range of array
elements. In this situation, since the number of array elements is fixed at 50000, the
number of template cells will increase as the alignment stride increases. Hence, for
the virtual block approach, the number of virtual processors will increase when the
alignment stride increases. As a result, the execution time of the virtual block
approach increases if the alignment stride increases. Similar to Fig. 14a, the execu-
tion time of the virtual cyclic approach is inversely proportional to gcd(P V x, s),
and that of our method is directly proportional to the number of occurrences, N p

pb .
Obviously, our proposed scheme also outperforms the two virtual processor
approaches when the block size is fixed and the alignment stride varies.

In Figs. 14a and 14b, the virtual cyclic approach outperforms the virtual block
approach in every case. However, the virtual cyclic approach does not always out-
perform the virtual block approach. Since the block sizes shown in Figs. 14a and
14b are too small, the number of virtual processors in the virtual block approach
is much larger than that in the virtual cyclic approach. Furthermore, the execution
times of the two virtual processor approaches are proportional to the number of
virtual processors. Thus, the execution time of the virtual block approach is much
longer than that of the virtual cyclic approach. Nevertheless, as long as the block
size is large enough, the execution time of the virtual block approach can be shorter
than that of the virtual cyclic approach. Figs. 15 and 16 show this phenomenon.

We experimented using various alignment strides ranging from 2 to 100 and
various block size ranging from 50 to 10000. The alignment strides studied are
s=2, 8, 16, 25, 32, 48, 60, 72, 80, and 100, and the block sizes studied are
b=50, 100, 250, 500, 750, 1000, 2500, 5000, 7500, and 10000. Figure 15 shows
performance comparisons of the three methods for all the tested block sizes and
two selected alignment strides, s=2 and 100. On the other hand, Fig. 16 shows
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FIG. 15. Performance comparisons of the three methods. (a) The alignment stride is fixed at 2
(s=2), and the block size varies between the selected values. (b) The alignment stride is fixed at 100
(s=100), and the block size varies between the selected values.

performance comparisons of the three methods for all the tested alignment strides and
two selected block sizes x=50 and 10000. In Fig. 15, as the block size grows, the
number of virtual processors increases. Therefore, the execution time used by the
virtual cyclic approach increases. However, the execution time of the virtual block
approach decreases as the block size increases. On the other hand, in Fig. 16, the
execution time of the virtual cyclic approach decreases and that of the virtual block
approach increases when the alignment stride increases. In Fig. 16a, the execution
time of the virtual cyclic approach is lower than that of the virtual block approach.
However, when the block size is large, as shown in Fig. 16b, the execution time of
the virtual cyclic approach turns out to be longer than that of the virtual block
approach.

One more significant result of our approach over the two virtual processor
approaches, in addition to better performance, is the stability of the execution time.
Obviously, there is a tradeoff between the virtual block approach and the virtual
cyclic approach. We have to decide which approach is appropriate, the virtual
block approach or the virtual cyclic approach, when either the block size or the
alignment stride is changed. Nevertheless, from Figs. 15 and 16, the execution time
of our approach is very stable when the alignment stride or the block size is
changed from a small value to a large value.

FIG. 16. Performance comparisons of the three methods. (a) The bock size is fixed at 50 (b=50),
and the alignment stride varies between the selected values. (b) The block size is fixed at 10000
(b=10000), and the alignment stride varies between the selected values.

212 SHIH ET AL.



5. RELATED WORKS

Two-level data-processor mappings involving first aligning related array objects
with a template and then distributing the template onto processors have been well-
used with data-parallel languages in distributing data onto processors. In recent
years, researchers who have focused their attention on compiling array statements
or array redistribution have taken only identical alignment into consideration. That
is, the alignment stride is forced to be 1, and the alignment offset is forced to be
0. As for compiling array statements, enumerating local memory access sequences
and generating communication sets for compiling array statements with unit access
stride were considered in [17] and for nonunit access stride were considered in
[15]. Both works considered the distribution to be either a block or a cyclic dis-
tribution. With regard to the block-cyclic distribution, the enumerations of the local
memory access sequences and the generation of communication sets for compiling
array statements have been extensively discussed recently in the literature [7, 9, 18,
19, 23, 25, 28, 29]. On the other hand, researchers who have studied the generation
of communication sets for compiling array redistributions have seldom taken
arbitrary affine alignment into consideration [5, 10, 11, 20, 21, 24]. However, affine
alignment wastes a lot of memory space if the alignment stride is non unit. Such a
wastage of memory usage is unacceptable considering the limited local space in pro-
cessors on distributed-memory multicomputers. Allocating space only for useful
template cells is, therefore, of critical importance for distributed-memory multicom-
puters.

Gradually, a number of researchers have become aware of this fact and propose
methods for compressing holes for compiling two-level data-processor mapping
with nonunit alignment stride. For a two-level data-processor mapping with affine
alignment and block-cyclic distribution, the enumeration of local memory access
sequences for compiling array statements was considered in [4]. Both identical
alignment and affine alignment with hole compression were addressed. A finite state
machine (FSM) approach was adopted to traverse the local index space of each
processor. The construction of a state table involves solving k linear Diophantine
equations and performing a sorting operation. Moreover, the FSM approach is a
runtime technique. High runtime overhead to enumerate local memory access
sequences is the result.

The work improving the FSM approach [4] was proposed in [13, 14]. Efficient
FSM table generation was proposed. The improved method enumerates the local
memory access sequences by viewing the accessed elements an integer lattice. The
sorting step in [4] is avoided in the improved method. However, runtime resolu-
tion of Diophantine equations is also required.

In [12], the authors proposed virtual processor approaches. From the different
viewpoint of a block-cyclic distribution, the virtual processor approach actually
contains two approaches, one termed the virtual block approach and the other the
virtual cyclic approach. The virtual block approach views a block-cyclic distribu-
tion as a block distribution on a set of virtual processors, which are then cyclically
mapped onto processors. On the other hand, the virtual cyclic approach views a
block-cyclic distribution as a cyclic distribution on a set of virtual processors, which

213INDEX GENERATION FOR TWO-LEVEL MAPPINGS



are then block-wise mapped onto processors. Therefore, if hole compression for
block and cyclic distributions are derived, hole compression for block-cyclic dis-
tribution can be obtained accordingly. However, in addition to the disadvantages
mentioned in Section 4, holes cannot be totally eliminated by using the two virtual
processor approaches. Moreover, the virtual cyclic approach can not preserve the
order of compressed local array elements.

An approach similar to the virtual processor approach was presented in [27]. In
[27], row-wise and column-wise scanning of the index space were proposed. One
corresponds to the virtual block approach and the other to the virtual cyclic
approach. They can also be applied to affine alignment with hole compression.
Based on scanning polyhedra, an approach to enumerating local memory access
sequences and generating communication sets was proposed in [1]. Complex loop
bounds and local array subscripts of the generated code will incur significant
overhead.

In this paper, a new approach has been proposed to compress holes for compil-
ing two-level data processor mappings. The proposed approach is also a table-
based approach. However, our approach does not need to solve k linear Diophan-
tine equations and has no sorting operation. Furthermore, the proposed approach
has less runtime overhead. In Section 4, we extensively compared our method with
the method proposed in [12]. Experimental results also verify the advantages of
our proposed approach. Moreover, the proposed approach has higher stability than
existing methods. The execution time varies a little with the alignment stride and
the distribution block size. In addition, the proposed approach can be easily
implemented.

6. CONCLUSIONS

Data-parallel languages support two-level data-processor mappings which users
can use to specify data distributions. However, a non-unit alignment stride always
results in a lot of memory holes, even for a small alignment stride. Holes result in
not only memory wastage, but also performance degradation. Eliminating holes is
of critical importance for compiling two-level data-processor mappings. Therefore,
this paper presents compilation techniques for solving this problem. Our approach
uses a class table and a compression table to facilitate the generation of a com-
pressed local array for each processor. The class table is used to record the distri-
bution of blocks in a class cycle, and the compression table is used to record the
distribution of blocks in a data distribution pattern on a processor. The time
complexities of the constructions of these two tables are O(s) in the worst case,
where s is the alignment stride. The approach proposed in this paper is straight-
forward but efficient. Moreover, one significant advantage of our approach is its
stability. The execution time required by our approach varies a little when the
alignment stride or the distribution block size increase. As for implementation,
the proposed method is easy to implement. Experimental results do confirm the
advantages of our proposed method over the existing methods.

On the other hand, the compilations of array statements and data redistribution
are very important for compiling data-parallel languages. However, compiling array
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statements or data redistribution incurs an indexing overhead and a communica-
tion overhead. Alleviating the overheads that result from compiling array
statements or data distribution has become very important for distributed-memory
multicomputers. Hence, based on the idea of hole compression, future work will
focus on efficiently generating communication sets for compiling array statements
and data redistribution in order to reduce the indexing and communication
overheads.
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