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AbstractÐIn this paper, we propose new routing schemes to perform all-to-all personalized communication (or known as complete

exchange) in wormhole-routed, one-port tori. On tori of equal size along each dimension, our algorithms use both asymptotically

optimal startup and transmission time. The results are characterized by several interesting features: 1) the use of gather-scatter tree to

achieve optimality in startup time, 2) enforcement of shortest paths in routing messages to achieve optimality in transmission time, 3)

application of network-partitioning techniques to reduce the constant associated with the transmission time, and 4) the dimension-by-

dimension and gather-scatter-tree approach to make possible applying the results to nonsquare, any-size tori. In the literature, some

algorithms are optimal in only one of startup and transmission costs, while some, although asymptotically optimal in both costs, will

incur much larger constants associated with the costs. Numerical analysis and experiment both show that significant improvement can

be obtained by our scheme on total communication latency over existing results.

Index TermsÐAll-to-all personalized communication, broadcast, complete exchange, gossiping, multicomputer network, torus,

wormhole routing.
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1 INTRODUCTION

ADVANCES in technology have made possible multi-
computers of large scale. In a multicomputer network,

fast and efficient interprocessor communication is crucial to
unleashing the aggregated computing power. The most
basic communication pattern is one-to-one (unicast). Recent
research has put much attention on the collective commu-
nication, which incurs denser and heavier traffic on the
network. Examples include one-to-all (broadcast), one-to-many
(multicast), and all-to-all communications and a large
amount of work can be found in [2], [4], [5], [7], [11], [15],
[16], [17], [18], [20], [22], [30]. Messages to be sent can be
further classified as nonpersonalized (wherein all receivers
will receive a same message from a same source) and
personalized (wherein each receiver will receive a different
message from a same source). Some of these communica-
tion patterns have also been implemented in PVM [8] and
MPI [19] as communication libraries.

In this paper, we study the all-to-all personalized commu-

nication, or known as complete exchange or gossiping, wherein

each node needs to send a distinct message to each of the

rest of the nodes. This represents the densest communica-

tion pattern among what is identified above. Applications

of complete exchange include matrix algorithms, fast

Fourier transformation (FFT), graph algorithms, and data

redistribution in HPF [13]. It can also be used to evaluate

the quality of an interconnection network. Previous work

for complete exchange can be found in [3], [9], [23], [27],
[28], [29] for meshes and [6], [10], [25], [26], [31], [32] for tori.

Here, the torus network is considered, which architec-
ture has been adopted by commercial machines such as
Cray T3D/T3E. The switching model under consideration is
wormhole routing, which has been widely used in existing
machines such as Caltech MOSAIC, Cray T3D/T3E, IBM
SP2, Intel Touchstone Delta, Intel Paragon, MIT J-machine,
and nCUBE3.

Works related to the problem considered in this paper
include [1], [6], [10], [14], [25], [26], [31], [32]. The results in
[1], [6], [14] are based on a torus/mesh using packet
switching (or store-and-forward). Such schemes are inap-
propriate for wormhole-routed networks as the distance-
insensitive property is hardly exploited. Communication in
a wormhole-routed network typically incurs two kinds of
costs: startup time and transmission time.1

Both schemes in [10], [31] use the optimal transmission
time to achieve complete exchange in a torus. However, the
startup cost is pretty highÐO�n3� in a 2D n� n torus and
O�n4� in a 3D n� n� n torus. To relieve this problem,
reference [32] proposes a diagonal-propagation scheme
which uses asymptotically optimal transmission time, but
incurs a much lower O�n� startup time (for both 2D and 3D
tori). This startup time is still relatively higher than the
theoretical lower bound of O�lgn�. The first scheme that is
known to use both asymptotically optimal startup time and
transmission time is proposed in [25], [26]. However, the
constant associated with the transmission time is relatively
high and the effect of this is significant as the amount of
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1. In a wormhole-routed network, the communication latency to deliver
a worm of m bytes is typically modeled as ts �mtx [21]. The former cost is
termed as startup time and the latter, the transmission time.
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data sent in complete exchange is fairly large (see the
comparison in Section 6).

We comment that the complete-exchange algorithms
developed for meshes [3], [9], [23], [27], [28], [29] may be
directly applied on tori. However, such algorithms may fail
in using the additional bandwidth provided by tori (a torus
has twice the bisection bandwidth that of a mesh of the
same size) and, thus, are inherently slower than good torus
algorithms, as has been observed by [32].

In this paper, we also present a complete exchange
scheme which uses asymptotically optimal startup and
transmission time. For a brief overview, refer to Table 3 and
Table 4. Our 2D and 3D schemes both incur transmission
time of 65

48 times the lower bound, as opposed to that of 9
2

and 10 times, respectively, the lower bound in [25], [26].
According to our numerical evaluation, significant gain can
be achieved by our schemes (refer to Fig. 9 and Fig. 11 for a
quick overview).

In addition to performance gain, our schemes also
possess some features which are worth of pointing out.
First, inspired by [25], we also use a ªgather-then-scatterº
(or called bottom-up in [25]) technique to achieve asympto-
tically optimal startup time. Second, we try to send
messages along shortest paths as much as possible. This
turns out to be important to achieve optimality in
transmission time. On the contrary, references [25], [26],
[31] use nonminimal paths to deliver messages. Third,
inspired by [34], [35], we adopt the network-partitioning
technique to divide a torus into multiple logical subtori.
This turns out to be helpful for our schemes to fully utilize
the communication bandwidth and to conform to the one-
port model, wherein a node can only send, and simulta-
neously receive, one worm at a time. Last, we take a
dimension-by-dimension and gather-scatter-tree approach,
which makes easy extending our schemes to any-dimen-
sional, nonsquare, non-power-of-2 tori (which seems to be
difficult, if not impossible, for the approaches adopted by
[25], [26], [32]).

The rest of this paper is organized as follows. As a basic
construct, Section 2 develops a complete exchange scheme
on a 1D ring. Based on this construct, we present our
complete exchange schemes for 2D and 3D tori in Section 3
and Section 4, respectively. The extensions to nonsquare,
non-power-of-2 tori are discussed in Section 5. Some
numerical analysis and evaluation are shown in Section 6
to demonstrate the strength of our result. In Section 7, issues
of synchronization in our schemes are discussed. Conclu-
sions are drawn in Section 8.

2 BASIC CONSTRUCT: COMPLETE EXCHANGE ON A

RING

In this section, we consider the complete exchange problem
on a ring of length n � 2d. Nodes on the ring are denoted as
vi, i � 0::�nÿ 1�. Between vi and v�i�1� mod n, there is a
positive link from vi to v�i�1� mod n and a negative link along
the reverse direction. The positive distance from vi to vj,
denoted as dist��vi; vj�, equals �jÿ i�mod n and the negative
distance from vi to vj, denoted as distÿ�vi; vj�, is
nÿ dist��vi; vj�. Below, we omit saying ªmodº whenever

the context is clear. On the ring, a transmission from vi to vj
along the positive direction will be denoted as vi !� vj,
while that along the negative direction will be denoted as
vi !ÿ vj.

In the problem of complete exchange, each node vs has a
message block (or simply block) denoted as bts, which is aimed
at node vt. We use bi . js to denote the set of blocks
fbis; bi�1

s ; . . . ; bjsg and bi / js the set of blocks fbis; biÿ1
s ; . . . ; bjsg.

Symbols . and / are used in the incremental and
decremental senses, respectively. Likewise, we define
bdi . j � fbdi ; bdi�1; . . . ; bdjg and bdi / j � fbdi ; bdiÿ1; . . . ; bdjg.
2.1 The Gather-Scatter Tree

Our scheme consists of a sequence of gathering phases
followed by a sequence of scattering phases. In the
beginning, all nodes will join the communication. After
each gathering phase, the blocks are concentrated into a
smaller number of nodes. On the contrary, blocks are
distributed to more nodes after each scattering phase. At the
end, it is guaranteed that every block arrives at its
destination. The communication patterns of these phases
are defined as follows:

Definition 1. Given any l, 0 � l � dÿ 2, define the commu-
nication phases GP�l and SP�l as follows:

GP�l � SP�l � fvi !
�
vi�2l j imod 2l � 0g:

In the definition, GP stands for ªgathering phase,º SP
for ªscattering phase,º and � for ªpositiveº direction. Note
that although GP�l and SP�l have the same communication
pattern, as yet to be shown, different blocks are delivered in
them.

The concept of the so-called gather-scatter tree is best
described by putting together a sequence of positive phases,

GP�0 ! GP�1 ! . . .! GP�dÿ2 ! SP�dÿ2

! SP�dÿ3 ! . . .! SP�0 :

An example is shown in Fig. 1 with d � 4. The gathering
phases are time-spread vertically from the bottom, while
the scattering phases are time-spread similarly from the top.
We will call such a tree the positive gather-scatter tree
(though, precisely speaking, it is a graph).

The height of the tree is dÿ 1. The tree is very helpful in

determining how to route a block from one node to another,

by taking some gathering phases followed by some

scattering phases. For instance, three routes exist from v2

to v4: 1) v2 !� v4 in GP�1 , 2) v2 !� v4 in SP�1 , and 3) v2 !� v3 in

GP�0 followed by v3 !� v4 in SP�0 .

Definition 2. For each integer l, 0 � l � dÿ 2, define
Vl � fvij imod 2l � 0g. For each integer l, 1 � l � dÿ 1,
define V̂l � Vlÿ1 ÿ Vl except that V̂dÿ1 � Vdÿ2. For all values
of l unspecified, Vl � ; and V̂l � ;.

Intuitively, if vi belongs to Vl, it will join the commu-
nication in GP�l . However, vi will not join the next
gathering phase GP�l�1 if vi 2 V̂l�1. For example, v2 belongs
to V1, implying that v2 will communicate in GP�1 , but not in
GP�2 because v2 2 V̂2. On the contrary, v4 is in V1 and V2, so
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it will communicate in both GP�1 and GP�2 . Similar
phenomena hold true for scattering phases.

The gather-scatter tree can also be used in determining
the set of nodes from/to which a node can gather/scatter
blocks. Specifically, if vi 2 Vl [ V̂l, the set of nodes from
which vi can collect blocks in the gathering phases is (ªCº
means ªcoverageº)

GC�l �vi� � fvi; viÿ1; . . . ; viÿ�2lÿ1�g:
Similarly, the set of nodes to which vi can forward blocks in
scattering phases is

SC�l �vi� � fvi; vi�1; . . . ; vi�2lÿ1g:
This leads to the following lemma.

Lemma 1. For any vs and vt such that dist��vs; vt� � n
2 , there

exists a path leading from vs to vt on the positive gather-scatter
tree.

Proof. This can be validated since there always exists a vm
between vs and vt such that vm 2 Vh [ V̂h satisfying vs 2
GC�h �vm� and vt 2 SC�h �vm� for some h; 0 � h � �dÿ 1�.tu

Definition 3. Given any l, 0 � l � dÿ 2, define the commu-
nication phases GPÿl and SPÿl as follows:

GPÿl � SPÿl � fvi !
ÿ
viÿ2l j imod 2l � 0g:

Definition 3 is simply rewritten from Definition 1 by using
links in the negative direction. It is easy to generalize to the
concept of the negative gather-scatter tree (by reversing the
directions of all transmissions in Fig. 1) and further prove a
reachability property similar to Lemma 1. It should be
understood that the extension to the negative tree is
straightforward.

In Sections 2.2 and 2.3, we will develop a complete

exchange scheme using the positive and negative gather-

scatter trees. For each vi, it will deliver n=2 blocks bi�1 . i�2dÿ1

i

on the positive tree, and n=2ÿ 1 blocks b
iÿ1 / iÿ�2dÿ1ÿ1�
i on the

negative tree. However, as the negative tree is symmetric to

the positive one, we will concentrate our discussion on the

positive tree.

2.2 The Path Selection Strategy for Blocks

As shown earlier, there may exist multiple paths between a
pair of source and destination nodes on the positive gather-

scatter tree. How to choose from these paths to reduce the
communication latency is a difficult problem. Mainly, we
need a good heuristics to balance the communication load
(number of transmitted blocks) on each link in a phase.

The following observation is used as a guideline in
designing our scheme:

Observation 1. For two nodes vi 2 Vh and vj 2 V̂h, the traffic in
vi tends to be busier than that in vj as vi needs to join more
communication phases than vj does.

We next discuss a strategy for routing blocks in the
gathering phases. Consider the gathering phase GP�l ,
0 � l � �dÿ 2�. Suppose that, right before GP�l , a block bts
has arrived at node vi 2 Vl. We need to decide, in the
communication vi !� vi�2l in GP�l , whether bts should be
sent to vi�2l or not. There are two cases:

Case 1: vi 2 V̂l�1. This implies that vi will be prohibited from
communicating in the subsequent gathering phases GP�l0
and scattering phases SP�l0 , l0 > l, which in turn implies that
the scattering coverage of vi is at most as large as SC�l�1�vi�.
Now, consider the location of vt (see Fig. 2a for an
illustration):

1. dist��vi; vt� < 2l, i.e., vt 2 SC�l �vi�. Apparently, bts
should not be sent to vi�2l ; otherwise, the block will
go too far beyond its destination.

2. 2l � dist��vi; vt� < 2l�1. If so, vt is in both SC�l�1�vi�
and SC�l�1�vi�2l�. That is, vt can be reached from both
vi and vi�2l using later scattering phases. Because
vi 2 V̂l�1 and vi�2l 2 Vl�1, according to Observation 1,
vi�2l tends to be busier than vi and, thus, bts should
not be sent in this phase.

3. dist��vi; vt� � 2l�1. This implies vt 62 SC�l�1�vi� and,

thus, bts must be sent in vi !� vi�2l so as to reach vt.

Case 2: vi 2 Vl�1. This implies that the receiving node vi�2l 2
V̂l�1 and will not communicate in the subsequent gathering
phases GP�l0 and scattering phases SP�l0 , l0 > l, which in turn
implies that the scattering coverage of vi�2l is at most as
large as SC�l�1�vi�2l�. Now, consider the location of vt (see
Fig. 2b for an illustration):

1. dist��vi; vt� < 2l, i.e., vt 2 SC�l �vi�. Apparently, bts
should not be sent to vi�2l .

2. 2l � dist��vi; vt� < 2l � 2l�1, i .e . , vt 2 SC�l�1�vi�2l�.
However, it is also possible that vt 2 SC�l0 �vj� such

TSENG ET AL.: TOWARD OPTIMAL COMPLETE EXCHANGE ON WORMHOLE-ROUTED TORI 1067

Fig. 1. The positive gather-scatter tree on a ring of length n � 16.



that vj 2 Vl0 or V̂l0 , l
0 � l� 1. Observation 1 indicates

that vi�2l will be less busy and, thus, bts should be
sent in vi !� vi�2l .

3. dist��vi; vt� � 2l � 2l�1. This implies vt 62 SC�l�1�vi�2l�
and, thus, bts should not be sent in this phase (it will
join later phases for wider coverage).

Routing in the scattering phases is simpler. Consider the

scattering phase SP�l . Suppose that, right before SP�l , a

block bts has arrived at vi 2 Vl�1 [ V̂l�1 (i.e., Vl). If

dist��vi; vt� < 2l, i.e., vt 2 SC�l �vi�, apparently bts should

not be sent to vi�2l (or it will go too far beyond its

destination). Otherwise, vt 2 SC�l �vi�2l� and, thus, bts should

be sent in vi !� vi�2l .

Example 1. Fig. 3 shows the transmission patterns from the

point of view of sources v0, v1, v2, and v3 to some

destinations on the positive gather-scatter tree. For

instance, consider the source v1 in Fig. 3b. In GP�0 ,

because v1 2 V̂1, Case 1 should be applied to v1 !� v2. As

destination v2 satisfies 20 � dist��v1; v2� < 21, subcase 2

should be applied and, thus, b2
1 should remain in v1. As

dest inat ion vt; t � 3::9, sat isf ies dist��v1; vt� � 21,

subcase 3 should be applied and, thus, bt1 (b3 . 9
1 ) should

be sent to v2. In GP�1 , consider b3 . 9
1 that have been

moved to v2. Because destination v2 2 V̂2, again Case 1

should be applied to v2 !� v4. As destination v3 satisfies

dist��v2; v3� < 2, subcase 1 should be applied and, thus,

b3
1 should remain in v2. As destination vt; t � 4::5, satisfies

21 � dist��v2; vt� < 22, subcase 2 should be applied and,

thus, b4 . 5
1 should remain in v2. As destination vt; t � 6::9,

satisfies dist��v2; vt� � 22, subcase 3 should be applied

and, thus, b6 . 9
1 should be sent to v4.

Now, consider the source v3, as shown in Fig. 3d.
Similar to the decisions for source v1, in GP�0 b5 . 11

3

should be moved to v4 (Case 1). In GP�1 , Case 2
should be applied to v4 !� v6. As v5 satisfies
dist��v4; v5� < 2, subcase 1 should be applied and,
thus, b5

3 should remain in v4. As vt; t � 6::9, satisfies
21 � dist��v4; vt� < 21 � 22, subcase 2 should be applied
and, thus, b6 . 9

3 should be sent to v6. As vt; t � 10::11,

satisfies dist��v4; vt� � 21 � 22, subcase 3 should be
applied and, thus, b10 . 11

3 should remain in v6.

2.3 The Routing Algorithm

We now reorganize the algorithm in a formal way. Routing
on the positive tree consists of 2dÿ 2 phases:

GP�0 ! GP�1 ! . . .! GP�dÿ2 ! SP�dÿ2

! SP�dÿ3 ! . . .! SP�0 :

Initially, each vi has a pool of blocks Bi � bi�1 . i�2dÿ1

i . Note
that Bi will change by time. At the end of the algorithm, the
Bi in each vi contains bi

iÿ2dÿ1 . iÿ1
. Every vi executes the

following phases synchronously.

Phase GP�l : //l � 0; 1; :::; �dÿ 2�.
if vi 2 Vl then

if vi 2 Vl�1 then //Case 2.
M � fbtsj bts 2 Bi and vt 2 SC�l�1�vi�2l�g.

else //Case 1.
M � fbtsj bts 2 Bi and vt 62 SC�l�1�vi�g.

end if

Bi � Bi ÿM.
Send M to vi�2l .
Receive blocks from viÿ2l and add these blocks to Bi.

end if

Phase SP�l : //l � �dÿ 2�; �dÿ 3�; :::; 0.
if vi 2 Vl then

M � fbtsj bts 2 Bi and vt 2 SC�l �vi�2l�g.
Bi � Bi ÿM.
Send M to vi�2l .
Receive blocks from viÿ2l and add these blocks to Bi.

end if

The correctness of the routing algorithm can be seen as
follows: Case 1 of the algorithm GP�l describes that a block
bts will stay in vi if vt 2 SC�l�1�vi� or be moved to vi�2l for
joining later phases. Case 2 of the algorithm GP�l describes
that bts will be moved from vi to vi�2l if vt 2 SC�l�1�vi�2l�.
Otherwise, bts stays in vi because vt 2 SC�l �vi� (Fig. 2b) or it
will join later phases. Therefore, after the gathering phases
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GP�0 ! GP�1 ! . . .! GP�dÿ2 are completed, the block bts

will be located in some vm such that vt 2 SC�h �vm� and

vm 2 Vh [ V̂h, for some h; 0 � h � �dÿ 1�. Then, the scatter-

ing phases SP�dÿ2 ! SP�dÿ3 ! . . .! SP�0 will ensure that bts

can reach its destination vt.

2.4 Overlapping Positive Phases and
Negative Phases

We have derived the routing on the positive gather-scatter

tree; routing on the negative tree can be similarly obtained.

To perform complete exchange, one naive solution is to

sequentially perform the positive phases followed by the

negative phases. Apparently, this is inefficient as half of the

links will be unused in each phase. A better solution is to

overlap positive phases and negative phases:

�GP�0 [GPÿ0 � ! �GP�1 [GPÿ1 � ! . . . �GP�dÿ2 [GPÿdÿ2�
! �SP�dÿ2 [ SPÿdÿ2� ! �SP�dÿ3 [ SPÿdÿ3�
! . . .! �SP�0 [ SPÿ0 �:

However, problems may arise because some nodes may

need to send/receive more than one message in one phase,

thus violating the one-port model. Below we show how to

modify our algorithm to solve this problem.
First, we shift the communication patterns in all negative

phases, except GPÿ0 and SPÿ0 , along the positive direction

by one position. That is, we redefine the following negative

phases:

GPÿl � SPÿl � fvi !
ÿ
viÿ2l j �iÿ 1�mod 2l � 0g;

1 � l � �dÿ 2�:
This will relieve the necessity for a node to send/receive
more than one message in phase �GP�l [GPÿl � and phase
�SP�l [ SPÿl �, 1 � l � �dÿ 2�. For example, see the second
to fifth phases in Fig. 4. Note that Vl and V̂l for the negative
tree need to be adjusted accordingly to adapt to those
changes.

However, since all transmissions of GP�0 , GPÿ0 , SP�0 , and
SPÿ0 are of distance one, the above shifting technique does
not help to satisfy the one-port constraint. Therefore, we
redefine GP�0 , GPÿ0 , SP�0 , and SPÿ0 by removing some
transmissions from them as follows:

GP�0 � fvi !
�
vi�1j imod 2 � 1g;

SP�0 � fvi !
�
vi�1j imod 2 � 0g;

GPÿ0 � fvi !
ÿ
viÿ1j imod 2 � 0g;

SPÿ0 � fvi !
ÿ
viÿ1j imod 2 � 1g:

Now, GP�0 [GPÿ0 , as well as SP�0 [ SPÿ0 , will conform to
the 1-port constraint, as shown in Fig. 4 (the first and last
phases).

With these changes, we need to modify the routing of
some bts, dist�vs; vt� � 2, too. Taking source v0 as an
example, blocks b1

0 and b2
0 that would have been sent in

the original GP�0 will be left undelivered (since v0 !� v1 is
removed) and, thus, kept in v0. Fortunately, this can be
taken care of by delivering b1

0 in v0 !� v1 of SP�0 and
delivering b2

0 in v0 !� v2 of GP�1 . Similarly, the block b2
1 of v1

that would have been sent in the original SP�0 will be
undeliverable since v1 !� v2 is removed. Still, this can be
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solved by sending b2
1 in v1 !� v2 of GP�0 . We can accom-

modate these changes in the routing rules of GP�l , GPÿl ,

SP�l , and SPÿl , l � 0; 1. All other phases remain the same.

2.5 Performance Analysis

In the following, we analyze the total latency of our

complete exchange scheme on a ring of length 2d with

message block size b, startup time ts, and transmission time

tx. Lemmas 2 to 6 show the communication latency of the

original positive phases (i.e., without considering the

modification in Section 2.4). Finally, Theorem 1 gives the

total communication latency incurred by the phases with the

changes in Section 2.4. The proofs of Lemmas 2 to 6 and

Theorem 1 can be found in the appendix.

Lemma 2. The latency of GP�l ; 0 � l � dÿ 3; d � 3, is

T1D;GP�
l
�d; b� �

ts �max �2d�lÿ1 ÿ 5 � 22lÿ1 � 3 � 2lÿ1�; �7 � 22lÿ2�� 	 � b � tx:
�1�

Lemma 3. The latency of GP�dÿ2; d � 3 is

T1D;GP�
dÿ2
�d; b� � ts � �22dÿ6 � 3 � 2dÿ3� � b � tx:

Lemma 4. The latency of SP�dÿ2; d � 3, is

T1D;SP�
dÿ2
�d; b� � ts � b � tx:

Lemma 5. The latency of SP�l ; 0 � l � dÿ 3; d � 3, is

T1D;SP�
l
�d; b� �

ts �max �2d�lÿ1 ÿ 5 � 22lÿ1 � 3 � 2lÿ1�; �7 � 22lÿ2�� 	 � b � tx:
�2�

From 2 and 5, we find the interesting coincidence that

T1D;GP�
l
�d; b� � T1D;SP�

l
�d; b�, 0 � l � �dÿ 3�. Also, there are

two terms in the max function in (1) or (2). The following

corollary resolves the max function when d � 4.

Corollary 1. The latency of a positive phase GP�l or SP�l ,

0 � l � dÿ 4; d � 4, is

T1D;GP�
l
�d; b� � T1D;SP�

l
�d; b�

� ts � �2d�lÿ1 ÿ 5 � 22lÿ1 � 3 � 2lÿ1� � b � tx;
and, if l � dÿ 3, is

T1D;GP�
dÿ3
�d;b� � T1D;SP�

dÿ3
�d;b�

� ts � �3 � 22dÿ7 � 3 � 2dÿ4� � b � tx if 3 � d � 5;

�7 � 22dÿ8� � b � tx if d � 6:

(

Lemma 6. The total communication time of all positive phases on

a ring of length 2d, d � 3, is

T�1D�d; b� �
�2dÿ 2�ts � �13 � 31

32 � 22dÿ1 � 2dÿ3 ÿ 1
3� � b � tx if 3 � d � 5;

�2dÿ 2�ts � �13 � 65
64 � 22dÿ1 ÿ 2dÿ2 ÿ 1

3� � b � tx if d � 6:

(

Theorem 1. The total communication time of our complete

exchange scheme on a ring of length 2d, d � 3, is

T1D�d; b� � T�1D�d; b� � 3 � b � tx if d � 3;
T�1D�d; b� � 2 � b � tx if d � 4:

�

3 COMPLETE EXCHANGE ON A 2D TORUS

In this section, we consider the complete exchange on a 2D

n� n torus, where n � 2d. Nodes in the torus are denoted as

v�i;j�, i � 0::�nÿ 1� and j � 0::�nÿ 1�. Each v�i;j� has a block

b
�x;y�
�i;j� aimed at v�x;y�.

In Section 3.1, we first present a naive scheme, based on

which we then develop a more efficient one in Section 3.2.

3.1 A Naive Scheme: Algorithm T1

One obvious approach to perform complete exchange on a

2D torus is to regard the torus as the graph product of two

rings and directly apply the ring complete exchange in

Section 2, first along the x-axis and then along the y-axis.

This is summarized below.

X - S t a g e : F o r e a c h j � 0::�nÿ 1�, r e g a r d

v�0;j�; v�1;j�; . . . ; v�nÿ1;j� as a ring and perform the ring

complete exchange. In the complete exchange, instead of
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sending one block to each destination, v�i;j� should forward

n blocks b
�x;��
�i;j� to destination v�x;j�, x � 0::�nÿ 1�, where

� � 0::�nÿ 1�.
Y - S t a g e : F o r e a c h i � 0::�nÿ 1�, r e g a r d

v�i;0�; v�i;1�; . . . ; v�i;nÿ1� as a ring and perform the ring

complete exchange. In the complete exchange, each v�i;j�
forwards n blocks b

�i;y�
��;j� to v�i;y�, y � 0::�nÿ 1�.

Lemma 7. On a 2d � 2d torus, d � 3, the latency incurred by
algorithm T1 is

T2D;T1�d; b� � 2 � T1D�d; 2d � b�:

Proof. By Theorem 1, the cost of the X-stage is T1D�d; 2d � b�
as the data to be forwarded from a node to any other
node contains 2d blocks. This is the same for the Y-
stage. tu

3.2 A Network-Partitioning Approach: Algorithm T4

The obvious deficiency of algorithm T1 is that transmis-
sions always happen along either the X dimension or Y
dimension, but not both. The implication here is that at
least half of communication bandwidth is waste. To fix
this problem, we propose a new scheme called T4, which
is so named because four copies of T1 will be running
simultaneously.

The idea is similar to the network-partitioning approach

proposed in [34], [35]. We will construct four logical tori,

Pi;j, 0 � i; j < 2, each of size n
2 � n

2 . The logical torus Pi;j
consists of nodes

fv�x;y�j �xmod
���
4
p
� � i and �ymod

���
4
p
� � jg:

In Pi;j, a node v�x;y� is considered to have a logical link

(which is physically dilated by two) to each of nodes v�x�2;y�
and v�x;y�2�. For instance, Fig. 5 shows four logical tori in an

8� 8 torus. However, communication can be performed in

a dilated torus as fast as it can in an ordinary torus due to

the distance-insensitive property of wormhole routing. Two

important properties offered by such logical partitioning

are:

P1. The four logical tori Pi;j, 0 � i; j < 2, are node-disjoint.

P2. Tori P0;0 and P1;1 are link-disjoint, and P1;0 and P0;1 are
link-disjoint.

Next, we need to schedule complete exchange on these
four logical tori. Property P1 guarantees that we can freely
use these tori without violating the 1-port constraint. P2

guarantees that we can simultaneously run algorithm T1 on
tori P0;0 and P1;1 without any link contention. We observe
that more saving can be obtained by running algorithm T1
on P1;0 and P0;1 by swapping the execution order to first
running Y-stage and then X-stage. The communication
directions are summarized in Table 1.

Note that there is no link contention among all these four
tori. Also note that, although the above scheduling does
utilize all links in every phase, blocks may not reach some
of their destinations since the logical tori are node-disjoint.
So, some preparation phases shown below are necessary.
We schedule every node (say, v�x;y� 2 Pi;j) to forward its
blocks aimed at nodes in the other three tori Pi�1;j, Pi;j�1,
and Pi�1;j�1 (note that, here, ªmod 2º is necessary for
subscripts larger than one) before performing the above two
stages. This can be done in two phases:

Pre1. Node v�x;y� sends to v�x�1;y� all blocks aimed at Pi�1;j

and Pi�1;j�1.

Pre2. Node v�x;y� sends to v�x;y�1� all blocks, together with
the blocks received from v�xÿ1;y� (in Pre1), aimed at Pi;j�1.

The result is that each v�x;y� 2 Pi;j has collected blocks
from v�xÿ1;y�, v�x;yÿ1�, and v�xÿ1;yÿ1� aimed at nodes in Pi;j and
will deliver these blocks in place of these three nodes. In
both phases Pre1 and Pre2, n2=2 blocks are sent.

Theorem 2. On a 2d � 2d torus, d � 4, the communication
latency incurred by algorithm T4 is

T2D;T4�d; b� � 2ts � 22d � b � tx � T2D;T1�dÿ 1; 4b�:

Proof. The first two terms are incurred by the two
preprocessing phases. The last term is by algorithm T1,
which is run concurrently on all four logical tori (each of
size 2dÿ1 � 2dÿ1). As each node needs to represent three
other neighbors, the latency is T2D;T1�dÿ 1; 4b�. tu
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Fig. 5. Four logical tori in an 8� 8 torus.

TABLE 1
The Scheduling of Communication Directions of Algorithm T4



4 EXTENSION TO 3D TORI

In the following, we show how our approaches is extended

for a 3D n� n� n torus. Nodes in the torus will be denoted

as v�x;y;z�, 0 � x; y; z � nÿ 1.
Similar to Section 3, we also develop a naive 3-stage

scheme, called C1, by first performing an X-stage on each

ring along the x-axis, then a Y-stage on each ring along the

y-axis, and then a Z-stage on each ring along the z-axis.

Apparently, each stage will take time T1D�d; n2 � b�, so the

total time is 3 � T1D�d; n2 � b�.
As before, to better utilize the communication band-

width, we need to partition the network into a number of

smaller 3D logical tori. The notions behind constructing

these logical tori are as follows: First, as there are three

stages X, Y, and Z (in the naive scheme), nodes along each

axis should be divided into at least three logical tori to fully

utilize all communication links. Second, these logical tori

should be cubic (of equal sizes along all dimensions);

therefore, no matter which stage (X, Y, or Z) a torus is

scheduled to execute, the communication time is about the

same (thus, no torus needs to wait for others to complete).

Based on these observations, one possibility is to
partition each axis into four logical rings. Thus, we define
43 dilation-4 logical tori Ci;j;k, 0 � i; j; k < 4, such that Ci;j;k
consists of nodes

fv�x;y;z� j �xmod 4� � i; �ymod 4� � j; and �zmod 4� � kg:
In Ci;j;k, node v�x;y;z� is considered to be logically adjacent to
six nodes v�x�4;y;z�, v�x;y�4;z�, and v�x;y;z�4�. The logical
connection is physically dilated by four links. A property
similar to P1 in Section 3.2 is:

P1': The 64 logical tori Ci;j;k, 0 � i; j; k < 4, are mutually
node-disjoint.

However, some logical tori do share common links. So,
we classify the tori, according to their link sets, into four
groups, s � 0::3,

Gs � fCi;j;k j �i� j� k�mod 4 � sg:
Each Gs contains 16 logical tori. A property similar to P2 in
Section 3.2 is:

P2': All 16 logical tori in each Gs are link-disjoint.

Similar to the development in Section 3.2, we can
schedule any communication on these 64 logical tori
without violating the 1-port constraint (P1'). Simulta-
neously performing any communication stage (X-, Y-, or
Z-stage) is free from contention in all tori of Gs (P2'). One
possible arrangement is shown in Table 2. Intuitively, the
scheduling of each stage is obtained by cyclically shifting
that in the previous stage. Every torus group will perform
one X-stage, one Y-stage, and one Z-stage in some order.
One nice property is that all n2 axes along each
dimension are busy at each stage. The scheme is named
C64 because it is featured by having 64 logical tori
running C1 simultaneously.
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TABLE 2
Scheduling of Communication Directions for the Logical Torus

Groups in a 3D Torus

Fig. 6. Illustration of communication pattern in stage 1 in a 3D torus.



Fig. 6 demonstrates the communication in Stage 1

following Table 2 (for clarity, only a portion of the torus

is shown). Observe that all physical links are utilized. The

similar phenomena will occur in other stages, too.
It remains to describe the preparation phases. We can let

each node v�x;y;z� forward n3=64 blocks to each

v�x��x;y��y;z��z�, 0 � �x; �y; �z � 3. The latter nodes will be

responsible for delivering the received blocks to other nodes

in their logical tori. It suffices to use nine phases as follows:

1. three phases each of the pattern v�x;y;z� !� v�x�1;y;z�,
2. three phases each of the pattern v�x;y;z� !� v�x;y�1;z�,

and
3. three phases each of the pattern v�x;y;z� !� v�x;y;z�1�.

The three phases in 1 are illustrated in Fig. 7, where the

nodes in the gray area are the target to which blocks are

expected to be delivered. Thus, in total, 48 � n3

64 , 32 � n3

64 , and

16 � n3

64 blocks will be sent in these three phases, respectively.

Note that, as a node needs to forward blocks for other nodes

in phases of 2 and 3, the numbers of blocks sent in them will

be exactly the same as that in 1.

Theorem 3. On a 2d � 2d � 2d torus, d � 5, the communication

latency incurred by our algorithm C64 is

T3D�d; b� � 9ts � 9 � 23dÿ1 � b � tx
� 4 � T1D�dÿ 2; 64 � 22�dÿ2� � b�:

P r o o f . T h e p r e p r o c e s s i n g c o s t i s

3 � �3ts � �48� 32� 16� n3

64 � b � tx�, which gives the first

two terms. The last term is from the cost of complete

exchange on a ring multiplied by four stages. tu

5 EXTENSION TO NONSQUARE, NON-POWER-OF-2
TORI

Up to this point, it seems that our approach can only be

applied to tori whose side lengths are equal and power-of-2.

Recall that, in Section 2, we developed a (perfect) gather-

scatter tree on a ring of length n � 2d. In fact, if some

irregularity is allowed, on a ring of any size n, a positive

gather-scatter tree can be obtained by slightly modifying

Definition 1 as follows:

GP�l � SP�l � fvi !
�
vj j imod 2l � 0g;

where j � i� 2l if i� 2l < n;

0 otherwise:

(

In GP�l � SP�l , whenever the destination node vi�2l does

not exist, we ªwraparoundº the destination to node v0.
Let d � dlgne. The positive gather-scatter tree is still

defined based on the 2�dÿ 1� phases:

GP�0 ! GP�1 ! . . .! GP�dÿ2 ! SP�dÿ2

! SP�dÿ3 ! . . .! SP�0 :

For instance, Fig. 8 shows the positive gather-scatter trees

on rings of lengths n � 10 and n � 13.

The gathering coverage and scattering coverage should

be changed accordingly, for instance, the gathering cover-

age GC�3 �v0� � fv0; v9; v8; . . . ; v5g in Fig. 8a and the scatter-

ing coverage SC�3 �v12� � fv12; v0; v1; . . . ; v3g in Fig. 8b. A

reachability property similar to Lemma 1 will still hold true.

We conjecture that the communication time of our complete

exchange on a ring of length n may be upper-bounded by

T1D�dlgne; b�. However, the problem of deriving the exact

formula of the performance of complete exchange on a non-

power-of-2 ring is an open problem to us.
With the availability of complete exchange on a ring of

any size, the extension to higher-dimensional, non-power-

of-2 tori can be obtained following the line of development

in earlier sections. It is also straightforward to extend our

scheme to a nonsquare torus since we take a dimension-by-

dimension approach.

6 PERFORMANCE COMPARISON

In this section, we compare our algorithms (T4 and C64)

against those by [25](T-2D1, T-2D2, T-3D1, and T-3D2)2 and

[32] (DP-2D and DP-3D). The following lemma will be used

for analyzing these schemes.

Lemma 8. To perform complete exchange on a 2D n� n torus

(resp., 3D n� n� n torus), a lower bound on the startup time

is lg�n2�ts (resp., lg�n3�ts) and a lower bound on the

transmission time is n3

8 b � tx (resp., n
4

8 b � tx).

TSENG ET AL.: TOWARD OPTIMAL COMPLETE EXCHANGE ON WORMHOLE-ROUTED TORI 1073
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Fig. 7. The first three preparation phases.



Proof. The lower bounds on the startup time are obtained
by taking logarithm of the network size. The bounds on
transmission time are established in [32]. tu

Table 3 shows the startup and transmission costs of our
and others' algorithms on a 2D 2d � 2d torus. In terms of
startup cost, both T-2D1 and our T4 have an order of O�d�,
while T-2D2 and DP-2D have an exponential order of O�2d�.
Our T4 incurs a slightly higher startup time, but, as will be
shown later, this will be offset by the transmission time,
which is relatively more significant. In terms of transmis-
sion cost, T-2D1, T-2D2, and DP-2D are about 9

2 , 3, and 2
times the lower bound, respectively. Our T4 requires the
least transmission time, about 65

48 � 1:35 times the lower
bound.

Table 4 shows the startup and transmission costs of our
and others' algorithms on a 3D 2d � 2d � 2d torus. In terms
of transmission cost, T-3D1, T-3D2, and DP-3D are about 10,
3, and 2 times the lower bound, respectively. Our C64
requires transmission time of about 65

48 � 1:35 times the
lower bound.

From Table 3 and Table 4, we establish in Table 5 the
theoretical speedups on transmission time of our T4 over T-
2D1, T-2D2, DP-2D, and our C64 over T-3D1, T-3D2, DP-3D,
when d approaches infinity. These speedups can be used as
a reference in our following analyses when we compare
other algorithms to our algorithms.

Next, we further study the impact of ratio ts
b�tx . We plot

Fig. 9 using different ratios of ts
b�tx � 2,500, 500, 100, and 1 at

different torus sizes. The plots are obtained by dividing the

latency of other algorithms by that of ours (thus, a speedup

value larger than 1 indicates the advantage of our

algorithm). The largest ratio, 2,500, is chosen for the

following reason: In Intel Paragon, ts � 216us and tx �
0:0226us=byte [12]; letting b � 4 we have ts

b�tx � 2; 500. We

observe that, in most cases, the speedup is larger than 1 for

all ratios of ts
b�tx . Only when d is small (d � 4 � 6 in Fig. 9a

and d � 4 � 5 in Fig. 9b, c, d, the speedups are less

significant because our algorithms take more steps (startup

times) than others. After d � 6, the speedups will approach

the values in Table 5 because the transmission costs will

become the dominating factor.
In Fig. 10, we take a closer look at the relationship

between the speedup and the message block size b by fixing
the ratio ts

tx
at 10,000, 2,000, and 400. Fig. 10a shows the

speedups obtained by our T4 when d � 4 (a 16� 16 torus).
The speedup of T4 over T-2D1 is less significant when b is
small (b � 4 � 16) because T-2D1 has the lowest startup
cost. Thus, a higher ratio of ts

tx
will lead to a lower speedup.

When b gets larger, the transmission time will dominate the
overall cost, and the speedup will reach a stable value of
1.89 for T-2D1/T4, 1.33 for T-2D2/T4, and a stable value of
1.11 for DP-2D/T4. Fig. 10b shows a similar trend when
the network size is d � 5 (a 32� 32 torus), but with a
higher stable speedup value of 2.94 for T-2D1/T4, 1.81 for
T-2D2/T4, and of 1.36 for DP-2D/T4. In Fig. 10c, the
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Fig. 8. The positive gather-scatter trees on rings of lengths (a) n � 10 and (b) n � 13.

TABLE 3
Comparison of Startup and Transmission Costs of Complete Exchange Schemes on a 2D 2d � 2d Torus



speedup approaches 3.47 for T-2D1/T4, 2.05 for T-2D2/T4,
and approaches 1.46 for DP-2D/T4 when b increases. Note
that the speedup is slightly going down for T-2D2/T4 and
DP-2D/T4 when b is small (at b � 4 � 16) in Fig. 10c. This is
because both T-2D2 and DP-2D have a higher O�2d� startup
costs and, thus, when d � 6 � 7, the save on startup cost is a
dominating factor. When b gets larger, the speedup is
flattened out because the transmission time becomes the
dominating factor again.

To study the speedups of algorithm C64, we show only

the cases of ts
b�tx � 2,500 and 1 in Fig. 11a and b, respectively,

because the trend under different ratios of ts
b�tx are similar.

Our algorithm C64 can provide significant speedups in

most cases.
Finally, we comment on possible inclusion of synchro-

nization and local data movement costs into the perfor-
mance evaluation. Suppose a global barrier is inserted
between each two consecutive phases to synchronize the
communication. Since the cost of a barrier operation is fixed
for a given torus, a convenient way is to regard this cost as a
part of the startup cost (ts). The local data movement cost
refers to the costs of disassembling and reassembling a
message to be delivered on a link. This is proportional to the
size of the message. Since we already count the size of the
message into the communication cost, a convenient way is
to regard the local data movement cost per byte as a part of
the transmission cost (tx). To summarize, our timing model
can reasonably approximate the communication latency as
well as the barrier and local data movement costs if we can
properly determine the values of ts and tx. This is why we
used a wide range of ts

b�tx in the above comparison.

7 CONCERNS OF SYNCHRONIZATION

In previous analyses, we have assumed that the commu-

nication phases happen perfectly synchronized in a step-

wise manner, which is not necessarily true. Consider Fig. 12.

After v0 !� v2 is finished in GP�1 , v2 does not participate in

any of GP�2 and SP�2 , so it will proceed to carry out v2 !� v4

that is supposed to be performed later in SP�1 . This

transmission (v2 !� v4) may contend with v0 !� v4 in GP�2
and even v0 !� v4 in SP�2 for the physical links between v2

and v4. Such contention may disrupt the transmissions in

the gather-scatter tree and prolong the overall latency.

Below, we discuss three possible approaches, which require

different levels of hardware support, to synchronize these

phases in our gather-scatter-tree schemes.

7.1 Global Barrier

Apparently, we can add barriers into the following

sequence of phases

GP�0 ! GP�1 ! . . .! GP�dÿ2 ! SP�dÿ2 ! SP�dÿ3

! . . .! SP�0 :

This requires 2dÿ 3 barriers (counting the arrows). How-

ever, after careful examination, the two sequences GP�dÿ2 !
SP�dÿ2 and SP�1 ! SP�0 are self-synchronized and, thus, the

corresponding barriers are unnecessary. So, only 2dÿ 5

global barriers are required. This approach is appropriate

for systems that support hardware barrier synchronization.

TSENG ET AL.: TOWARD OPTIMAL COMPLETE EXCHANGE ON WORMHOLE-ROUTED TORI 1075

TABLE 4
Comparison of Startup and Transmission Costs of Complete Exchange Schemes on a 3D 2d � 2d � 2d Torus
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7.2 Local Synchronization

The previous approach has assumed that efficient hard-

ware-supported barrier synchronization is available. If not

so, software-implemented global barriers may be used.

However, software barriers will be much more costly.

Fortunately, as shown in Fig. 12, these global barriers can be

replaced by local synchronization between some pairs of

nodes. For instance, we only require that v0 wait for a signal

from v4 after GP�1 to prevent v0 !� v4 of GP�2 from

contending with v2 !� v4 of GP�1 . Similarly, we only require

that v2 wait for a signal from v0 after SP�2 to prevent v2 !� v4

of SP�1 from starting before v0 !� v4 of SP�2 has finished.

The above signaling can be easily implemented by

sending a null message. Thus, the cost should be much

less than that of doing global software barriers. In general,

after each vi�2lÿ1 !� vi�2l of GP�lÿ1, l � 1; . . . ; dÿ 2, we need

to add a signaling vi�2l !ÿ vi for each vi 2 Vl. This will

eliminate the contention between vi�2lÿ1 !� vi�2l of GP�lÿ1

and vi !� vi�2l of GP�l . Also, after each vi !� vi�2l of SP�l ,

l � dÿ 2; . . . ; 2, we need to add a signaling vi !� vi�2lÿ1 for

each vi 2 Vl. This will eliminate the contention between

vi !� vi�2l of SP�l and vi�2lÿ1 !� vi�2l of SP�lÿ1.

In total, 2dÿ 5 times of local synchronization will be
used.

7.3 Systems which Support Prioritized Messages

Hardware support of prioritized message delivery [24] in
wormhole networks has received some attention recently.
In such systems, messages with higher priorities can
preempt the network resources (input buffer and output
channel) of lower priority messages. In [24], a throttle
mechanism is proposed to preserve input buffers to ensure
that, when the header flit with a higher priority arrives, the
wormhole router can accept this header and, then, this
header (and, thus, those flits following this header) can
preempt the output channel if it is currently used by flits
with a lower priority. After the tail flit of the higher priority
worm leaves the router, the preempted channel is returned
to the original worm.

If the above prioritized message delivery is supported by
the underlying system, we may assign higher priorities to
messages in earlier phases to prevent them from being
blocked by messages of later phases. In this way, the overall
latency will not be degraded even if some transmissions of
posterior phases start before prior phases. To support our
schemes, the system should provide at least a number of
priority levels equal to the number of phases.
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Fig. 9. Speedup of complete exchange obtained by our algorithm T4 at different values of d. (a) ts
b�tx � 2; 500. (b) ts

b�tx � 500. (c) ts
b�tx � 100. (d) ts

b�tx � 1.
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Fig. 10. Speedup of complete exchange obtained by our algorithm T4 vs. block size b on a 2d � 2d torus with ts
tx
� 10; 000, tstx � 2; 000, and ts

tx
� 400. (a)

d � 4. (b) d � 5. (c) d � 6.



8 CONCLUSIONS

In this paper, we have presented a systematic solution to
perform complete exchange in a torus network using
wormhole routing. The solution can be used on nonsquare,
non-power-of-2, any-dimensional tori, and this is the first
result known to us with such generality in the literature.
Interesting techniques used in this paper include the gather-
scatter tree structure, network-partitioning approach, and
dimension-by-dimension strategy to optimize the startup
and transmission costs subject to wormhole routing.
Performance-wise, when the torus is square, our 2D and
3D schemes incur asymptotically optimal startup and
transmission time (about 2 and 8

3 times the startup lower
bound and both 1.35 times the transmission lower bound
for 2D and 3D schemes, respectively). Numerical evaluation
has shown significant speedup of these schemes over
existing schemes at various communication parameters.
Future research may be on reducing the constants asso-
ciated with the startup and transmission complexities.

APPENDIX

For convenience, we define �� � 2dÿ1 � 1. Intuitively, this
is the number of destination nodes a node needs to cover in

the positive tree plus one (by ªplus one,º we imagine that

the node itself is also a destination).

Proof of Lemma 2. Consider the transmission vi !� vi�2l of

GP�l . There are two cases (recall the discussion in

Section 2.2).

Case 1: vi 2 V̂l�1. Since vi 2 Vl, blocks in Bi are

gathered from 2l nodes in GC�l �vi�. According to the

algorithm, any bts 2 Bi that vt 62 SC�l�1�vi� will be sent

(refer to Fig. 13a). This implies that any block in Bi

whose destination is farther than vi�2l�1ÿ1 will be sent.

Thus, for first source viÿ�2lÿ1� 2 GC�l �vi�, blocks

b
�i�2l�1� . �iÿ�2lÿ1�����ÿ1��
iÿ�2lÿ1� will be sent in vi !� vi�2l , where

viÿ�2lÿ1�����ÿ1� is the farthest destination of the source in

the positive tree. This includes �� ÿ 3 � 2l � 1 blocks.

Similar calculation can be done for other sources in

GC�l �vi� (e.g., for viÿ�2lÿ1��1 2 GC�l �vi�, in total �� ÿ 3 �
2l � 2 blocks b

�i�2l�1� . �iÿ�2lÿ1��1����ÿ1��
iÿ�2lÿ1��1

will be sent).

Summing these together, node vi needs to send
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Fig. 11. Speedup of complete exchange obtained by our algorithm C64 at different values of d. (a) ts
b�tx � 2; 500. (b) ts

b�tx � 1.

Fig. 12. Additional barriers/synchronization in the positive gather-scatter tree of a 16-node ring to avoid link contention.



X2lÿ1

j�0

��� ÿ 3 � 2l � 1� j� � 2d�lÿ1 ÿ 5 � 22lÿ1 � 3 � 2lÿ1

blocks. Note that the above analysis is correct since all

terms in
P

are positive numbers.
Case 2: vi 2 Vl�1. First, consider 1 � l � dÿ 3. Accord-

ing to the algorithm, any bts 2 Bi that vt 2 SC�l�1�vi�2l�
will be sent to vi�2l . However, there is some intersection
between SC�l �vi�2lÿ1� and SC�l�1�vi�2l� (see the illustration
in Fig. 13b). So, the analysis depends on the location of
vs.

1. vs 2 GC�lÿ1�viÿ2lÿ1� (first half of GC�l �vi�): Any bts
that vt 2 SC�l�1�vi�2l� will be sent in vi !� vi�2l . So,

in total, 2lÿ1 � 2l�1 � 22l blocks �bi�2l . i�2l�2l�1ÿ1
s �

will be sent.
2. vs 2 GC�lÿ1�vi� (second half ofGC�l �vi�): Any bts that

vt 2 SC�l �vi�2lÿ1� \ SC�l�1�vi�2l� has been sent in

vi !� vi�2lÿ1 of the previous GP�lÿ1. So, only the

remaining bts that vt 2 SC�l�1�vi�2l� ÿ SC�l �vi�2lÿ1�
needs to be sent. Therefore, in total,2lÿ1 � �3 � 2lÿ1� �
3 � 22lÿ2 blocks �bi�3�2lÿ1 . i�3�2lÿ1

s �will be sent.

As a result, 22l � 3 � 22lÿ2 � 7 � 22lÿ2 blocks are sent in this

case. Note that the above analysis is valid as every vs
considered has one block for the farthest destination

vi�3�2lÿ1 when 1 � l � dÿ 3. As for l � 0, exactly two

blocks bi�1 . i�2
i will be sent.

The lemma then follows by taking the maximum of
the costs incurred by the above two cases. Note that,
when l � 0, the cost of Case 2 (two blocks) is over-
whelmed by that of Case 1. tu

Proof of Lemma 3. The proof is similar to that of Lemma 2.

Consider the transmission vi !� vi�2dÿ2 of GP�dÿ2. As vi
must be in V̂dÿ1, only Case 2 in the proof of Lemma 2

sustains. According to the algorithm, any bts 2 Bi that

vt 2 SC�dÿ1�vi�2dÿ2� will be sent to vi�2dÿ2 . However, there

is an intersec t ion between SC�dÿ2�vi�2dÿ3� and

SC�dÿ1�vi�2dÿ2�. So, the analysis depends on the location

of vs.

1. vs 2 GC�dÿ3�viÿ2dÿ3� (first half of GC�dÿ2�vi�): Any bts
that vt 2 SC�dÿ1�vi�2dÿ2� will be sent. For source

viÿ�2dÿ2ÿ1� 2 GC�dÿ3�viÿ2dÿ3�, there are �� ÿ 2dÿ1 � 1

blocks, i.e., b
i�2dÿ2 . iÿ�2dÿ2ÿ1�����ÿ1�
iÿ�2dÿ2ÿ1� , to be sent.

Similar calculation can be done for other sources

(e.g., for viÿ�2dÿ2ÿ1��1, �� ÿ 2dÿ1 � 2 blocks will be

sent). Summing these together,
P2dÿ3ÿ1

j�0 ��� ÿ
2dÿ1 � 1� j� � 22dÿ7 � 3 � 2dÿ4 blocks will be sent.

2. vs 2 GC�dÿ3�vi� (second half of GC�dÿ2�vi�): The

b l o c k s t o b e s e n t a r e t h o s e bts t h a t

vt 2 SC�dÿ1�vi�2dÿ2� ÿ SC�dÿ2�vi�2dÿ3�. For source

viÿ�2dÿ3ÿ1� 2 GC�dÿ3�vi�, there are �� ÿ 2dÿ1 � 1

blocks, i.e., b
i�3�2dÿ3 . iÿ�2dÿ3ÿ1�����ÿ1�
iÿ�2dÿ3ÿ1� , to be sent.

Similar calculation can be done for other sources

(e.g., for viÿ�2dÿ3ÿ1��1, �� ÿ 2dÿ1 � 2 blocks will be

sent). Summing these together,
P2dÿ3ÿ1

j�0 ��� ÿ
2dÿ1 � 1� j� � 22dÿ7 � 3 � 2dÿ4 blocks will be sent.

Therefore, we need to send 2�22dÿ7 � 3 � 2dÿ4� � 22dÿ6 �
3 � 2dÿ3 blocks in vi !� vi�2dÿ2 of GP�dÿ2. The above analysis

is valid for d � 3. tu
Proof of Lemma 4. Consider the transmission vi !� vi�2dÿ2

of SP�dÿ2. Blocks in Bi are gathered from all nodes

of GC�dÿ1�vi�. According to the algorithm, any bts

that vt 2 SC�dÿ2�vi�2dÿ2� will be sent. However,

SC�dÿ2�vi�2dÿ2� � SC�dÿ1�vi�2dÿ2�, where the latter is con-

sidered in previous vi !� vi�2dÿ2 of GP�dÿ2. So, the analysis

depends on the location of vs.

1. vs 2 GC�dÿ2�viÿ2dÿ2� (first half of GC�dÿ1�vi�): For the

first destination vi�2dÿ2 , any bts that vs 2
GC�dÿ2�viÿ2dÿ2� and dist��vs; vi�2dÿ2� < �� will be

sent. The only block satisfied this condition is

bi�2dÿ2

iÿ2dÿ2 . There is no block to be sent to other

destinations in SC�dÿ2�vi�2dÿ2�.
2. vs 2 GC�dÿ2�vi� (second half of GC�dÿ1�vi�): In

GP�dÿ2, any bts that vt 2 SC�dÿ1�vi�2dÿ2� has already
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Fig. 13. The source and destination nodes involved in (a) Case 1 and (b) Case 2 transmissions in GP�l .



been sent to vi�2dÿ2 . Thus, there is no block left to

be sent for these sources.

Consequently, one block will be sent in vi !� vi�2dÿ2 of

SP�dÿ2. (An instance of this lemma can be observed in

Fig. 3, where v0 is the source and v8 is the destination.)tu
Proof of Lemma 5. Consider the transmission vi !� vi�2l of

SP�l . There are two cases.

Case 1: vi 2 Vl�1 �vi�2l 2 V̂l�1�. Any bts 2 Bi that vt 2
SC�l �vi�2l� will be sent. As shown in Fig. 14a, the

transmission vi !� vi�2l in GP�l has already moved blocks

from sources in GC�l �vi� to vi�2l for destinations in

SC�l�1�vi�2l�. Since SC�l �vi�2l� � SC�l�1�vi�2l�, any bts
which remains in Bi such that vt 2 SC�l �vi�2l� must have

vs farther than viÿ�2lÿ1�. Thus, for the first destination

vi�2l , 2dÿ1 ÿ 2l�1 � 1 blocks �bi�2l

i�2lÿ���ÿ1� . iÿ2l
� will be sent,

where vi�2lÿ���ÿ1� is the farthest source that vi�2l could

involve. Similar calculation can be done for other

destinations in SC�l �vi�2l� (e.g., for vi�2l�1, �2dÿ1 ÿ 2l�1 �
1� ÿ 1 blocks are sent). Summing these together,

X2lÿ1

j�0

�2dÿ1 ÿ 2l�1 � 1ÿ j� � 2d�lÿ1 ÿ 5 � 22lÿ1 � 3 � 2lÿ1

blocks will be sent. The analysis is valid since all terms inP
are positive.

Case 2: vi 2 V̂l�1 �vi�2l 2 Vl�1�. F irs t , consider
1 � l � dÿ 3. Since vi 2 V̂l�1, blocks in Bi are gathered
from 2l�1 nodes (GC�l�1�vi�). Any bts 2 Bi that vt 2
SC�l �vi�2l� will be sent. Some blocks heading for
destinations in SC�lÿ1�vi�2l� � SC�l �vi�2l� have already
been sent in GP�lÿ1 (Fig. 14b). So, the analysis depends on
the location of vt.

1. vt 2 SC�lÿ1�vi�2l� (first half of SC�l �vi�2l�): Source

nodes in GC�lÿ1�vi� already have Case 2 vi !�
vi�2lÿ1 in GP�lÿ1 move blocks whose destinations

include those in SC�lÿ1�vi�2l�. Thus, any bts that

vs 2 GC�l�1�vi� ÿGC�lÿ1�vi� will be sent. That is, 3 �
2lÿ1 blocks btiÿ�2l�1ÿ1� . iÿ�2lÿ1ÿ1�ÿ1 will be sent to

vi�2l for each vt. So, in total, 2lÿ1 � 3 � 2lÿ1 � 3 � 22lÿ2

blocks will be sent.
2. vt 2 SC�lÿ1�vi�2l�2lÿ1� (second half of SC�l �vi�2l�):

Any bts that vs 2 GC�l�1�vi� will be sent. That is,

2l�1 blocks btiÿ�2l�1ÿ1� . i will be sent for each vt. So,

in total, 2lÿ1 � 2l�1 � 22l blocks are sent.

As a result, 22l � 3 � 22lÿ2 � 7 � 22lÿ2 blocks are sent in a

Case 2 transmission of SP�l . Note that the above

analys is is va l id as the far thest dis tance

dist��viÿ�2l�1ÿ1�; vi�2l�1ÿ1� < �� when 1 � l � dÿ 3. As

for SP�0 , exactly two blocks, i.e., bi�1
iÿ1 . i, will be sent.

The lemma then follows by taking the maximum of
the costs incurred by the above two cases. Note that,
when l � 0, the cost of Case 2 (two blocks) is over-
whelmed by that of Case 1. tu

Proof of Corollary 1. Note that the analyzed result of GP�l
(Lemma 2) is identical to that of SP�l (Lemma 5). In

each of GP�l or SP�l , two message sizes are compared

for finding the transmission time of that phase. If

l � dÿ 4, the message size of Case 1 is always larger

than that of Case 2. Therefore, the transmission time is

�2d�lÿ1 ÿ 5 � 22lÿ1 � 3 � 2lÿ1� � b � tx. In case of l � dÿ 3, the

message size of Case 1 transmission is larger if 3 � d � 5,

but, if d � 6, that of Case 2 is larger. Thus, by substituting

l with dÿ 3, we have 3 � 22dÿ7 � 3 � 2dÿ4 for 3 � d � 5 and

7 � 22�dÿ3�ÿ2 � 7 � 22dÿ8 for d � 6. tu
Proof of Lemma 6. The total communication time is

T�1D�d; b� �Xdÿ3

l�0

T1D;GP�
l
�d; b� � T1D;GP�

dÿ2
�d; b� � T1D;SP�

dÿ2
�d; b�

�
Xdÿ3

l�0

T1D;SP�
l
�d; b�:

ut
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Fig. 14. Source and destination nodes involved in (a) Case 1 and (b) Case 2 transmissions in SP�l .



Proof of Theorem 1. Since �� > �ÿ � 2dÿ1, the latency of a

negative phase is smaller than that of a corresponding

positive phase. Therefore, we need to consider only the

latency of positive part plus the additional cost for

overlapping. We adjust the latency for positive phases

GP�0 and GP�1 according to Section 2.4. Depending on

the location of vs, we have following four cases:

1. vs 2 V̂2: vs !� vs�1 of GP�0 and vs�1 !� vs�2 of SP�0
are removed. Thus, bs�1

s is sent in SP�0 (Case 1),
and bs�2

s is sent in SP�1 (Case 2).
2. vs�1 2 V̂2: vs !� vs�1 of SP�0 is removed. Thus, bs�1

s

is sent in GP�0 (Case 1).
3. vs�2 2 V̂2: vs !� vs�1 of GP�0 and vs�1 !� vs�2 of

SP�0 are removed. Thus, bs�1
s is sent in SP�0

(Case 1), and bs�2
s is sent in GP�1 (Case 2).

4. vs�3 2 V̂2: vs !� vs�1 of SP�0 is removed. Thus, bs�1
s

is sent in GP�0 (Case 1).

Because the transmission time of each of GP�0 , SP�0 ,

GP�1 , and SP�1 is dominated by Case 1 transmissions, the

total transmission time is increased by only two blocks,

one added to GP�0 and another to SP�0 , for d � 4. If

d � 3, GP�1 is the special case GP�dÿ2 in which every

transmission is considered as Case 2. Thus, the addi-

tional one block transmitted in GP�1 should be taken into

account, where no additional block is transmitted in SP�1
since SP�1 is the special case SP�dÿ2. Consequently, three

blocks are added to the total transmission time for

d � 3. tu
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