
Proc. Natl. Sci. Counc. ROC(A)
Vol. 23, No. 3, 1999. pp. 402-410

(Scientific Note)

A Fault-Tolerant Model for Replication in
Distributed-File Systems

TZUNG-SHI CHEN* , CHIH-YUNG CHANG** , JANG-PING SHEU*** , AND GWO-JOHN YU***

*Dept. of Information Management
Chang Jung University
Tainan, Taiwan, R.O.C.

** Dept. of Information Science
Tamsui Oxford University College

Taipei, Taiwan, R.O.C.
*** Dept. of Computer Science and Information Engineering

National Central University
Chungli, Taiwan, R.O.C.

(Received April 20, 1998; Accepted September 1, 1998)

ABSTRACT

In this paper, we propose a new fault-tolerant model for replication in distributed-file systems. We
combine the advantages of the modular redundancy, primary-stand-by, and weighted priority schemes to
address the fault-tolerant model. To fulfill the fault-tolerant requirements, we use the ideas of directory-
oriented replication and the extended prefix table while incorporating a two-level heap data structure. In
a consideration of practical circumstances, the heap, using an array instead of a linked-list tree structure,
has a dynamically adjustable property, which can be used to easily modify the tree structure in the
distributed-file system. Therefore, this fault-tolerant model provides low-cost overhead, a variety of
transparency capacities, a fault-tolerant capacity, and a parallel commitment capacity on backup replicas
for distributed-file systems.

Key Words: distributed-file systems, fault tolerance, network transparency, recovery, replication

− 402 −

tributed-file systems with fault-tolerant capacity
(Banino et al., 1985; Cheng and Sheu, 1991; Dasgupta
et al., 1988; Kistler and Satyanarayanan, 1992; Purdin
et al., 1987; Satyanarayanan, 1990). They have de-
veloped replication and Redundant Arrays of Inexpen-
sive Disk (RAID) (Chen et al., 1994) techniques to
provide redundancy for fault tolerance. Traditionally,
distributed-file systems have relied on redundancy for
high availability. In general, file systems replicate at
the server-level, directory-level, or file-level to deal
with processor, disk, or network failures. Redundancy
allows these systems to operate easily and continuously
despite partial failure at the cost of maintaining replicas
(copies) in the file system. Replicas provide users with
a fault-tolerant environment so that they need not be
concerned with where the replica being accessed ac-
tually resides. Thus, the main purpose of this paper
is to provide fault tolerance for distributed-file systems
by using the redundant technique with lower-cost
overhead of maintaining faults and by allowing a parallel
commits capacity to reduce the turnaround time of

I. Introduction

Over the last decade, distributed processing has
become more and more important and attractive with
progress in the areas of computer networks and dis-
tributed systems. For file accesses, current centralized-
file systems unfortunately limit performance and
availability because all accesses with read or write
operations need to go through the central file server.
Therefore, for distributed file access, many researches
have focused on the design and implementation of
distributed-file systems (Anderson et al., 1996;
Devarakonda et al., 1996; Kistler and Satyanarayanan,
1992; Howard et al., 1988; Satyanarayanan, 1990;
Walker et al., 1983). The storage media distributed
over such networks may potentially incur some unex-
pected faults. Because of hardware or software failure
in distributed-file systems, these systems have to pro-
vide a fault-tolerant capability so as to tolerate faults
and to try to recover from these faults.

A lot of researches have aimed to develop dis-

A Fault-Tolerant Model in DFS

− 403 −

service requests issued by clients.
We focus in this paper on the model construction

of a distributed-file system with fault tolerance. In our
fault-tolerant model, forward progress has to be guar-
anteed. If any replica is available when an unexpected
fault occurs, execution should proceed continuously
and as smoothly as possible. The most popular ap-
proach we use is to periodically set checkpoints on the
file system. When the failed server resumes after a
failure, the stored data may not be the most up-to-date
data. The data should then be corrected according to
the information obtained from the checkpoints the
system has set up. To fulfill the fault-tolerant require-
ments, we use the ideas of directory-oriented replica-
tion and the extended prefix table (Cheng and Sheu,
1991) while incorporating a two-level heap data struc-
ture. In a consideration of practical circumstances, the
heap, using an array instead of a linked-list tree struc-
ture, has a dynamically adjustable property which can
be used to easily modify the tree structure in the dis-
tributed-file system. Therefore, this fault-tolerant model
provides low-cost overhead, a variety of transparency
capacities, a fault-tolerant capacity, and a parallel com-
mitment capacity on backup replicas for distributed-
file systems.

The rest of this paper is organized as follows.
Section II introduces our model and related work. In
Section III, we propose our fault-tolerant model for
replications in distributed-file systems to improve
efficiency over our previous work (Cheng and Sheu,
1991). From the practical point of view, we derive
some data structures and operations to design our
proposed fault-tolerant model in Section IV. Finally,
conclusions are summarized in Section V.

II. Related Work

It is important to deal with hardware failures, such
as server crashes, in a distributed-file system. We will
concentrate our discussion on hardware failures and on
fault tolerance by means of replication. In the literature
(Bloch et al., 1987; Guerraoui and Schiper, 1997), the
use of replication to provide the capacity of fault
tolerance as in the distributed schemes can be classified
into three approaches: the primary-stand-by approach,
the modular redundancy approach, and the weighted
voting approach.

For the sake of tolerating faults, some researchers
have focused their research on replica mechanism
design. The primary-stand-by approach (Guerraoui
and Schiper, 1997) first selects one copy as the primary
one while the others are stand-by ones. If one copy
is a primary one, all of subsequent requests from clients
are sent to it only. The stand-by replicas only synchro-

nize with the primary copy periodically while they are
not available to service requests. When failures occur
in the primary copy, one of the stand-by replicas will
be chosen as the new primary one. Then, the request
service will continue to go on from the most recent
commit point. The second one is the modular redun-
dancy approach (Banino et al., 1985) which provides
the system with no distinction between the primary
copy and stand-by ones. The requests are sent to all
of the backups simultaneously; that is, the service is
performed on all of machines for each copy. Thus, there
exists at least one correct copy in these machines to
achieve the fault tolerance. In the third approach,
weighted voting (Gifford, 1979), all replicas of a file
are assigned a certain number (weight) of votes. We
call these replicas representatives. Any request, in-
cluding a read or write operation, is performed on a
set of representatives called a request quorum. Any
read (write) quorum which has a majority of the total
votes of all the representatives is allowed to perform
the corresponding operation.

In our previous work (Cheng and Sheu, 1991), we
presented a scheme which blends together the primary-
stand-by approach and the modular redundancy ap-
proach. We divided all of the backups into several
partitions connected to a linear form. The first partition
was called the primary partition and the others were
called backup partitions. In order to improve system
performance over the previous one, we will propose
a new fault-tolerant model for replication in distrib-
uted-file systems in the next section.

III. A Fault-Tolerant Model for Rep-
lication

1. A Fault-Tolerant Model

The basic concept of our proposed fault-tolerant
model is described as follows. We combine the ad-
vantages of the modular redundancy, primary-stand-
by, and weighted priority schemes to create a new fault-
tolerant model. We initially divide all of the replicas
for fault tolerance into several groups with variable size
depending on the practical situation. Each group is
assigned a priority corresponding to its weight and
depending on its significance. The larger the priority
value, the more significant it is. Each group acts as
a modular redundancy unit. We call the group with
the highest priority the primary group, and the others
are called backup groups. Requests are sent to all
backups in the primary group for service in parallel.
This is the same as in the primary-stand-by case.
Therefore, we can enhance flexibility to instantaneously
forward progress to the other groups after completing

T.S. Chen et al.

− 404 −

the processing commits of the primary group. For each
replica, we can choose the significant servers in the
primary group or backup groups, which fully depend
on some performance criteria, such as server loads,
proximity constraints with spatial locality, server com-
puting power, and so forth. This kind of selection is
similar to the Accessible Volume Storage Group (AVSG)
on the Coda system (Satyanarayanan, 1990).

A heap structure, which is a binary tree, is used
to connect these groups by means of group priority.
In the heap, the weight of a node is less than or equal
to that of its parent node. The root of this heap tree
has the highest priority with the largest weight value.
We also use the same technique to construct the heap
structure for all of the replicas in each group if each
replica in a group also has a designated priority. In
this way, we can speed up the commits of client requests
easily by applying a parallelizing technique. Thus, a
client is no longer responsible for dealing with all calls
and returning responses. Moreover, performing par-
allel commits for each client request is not only done
for each group, but also among groups to achieve high-
performance computing in a distributed environment.

As mentioned above, we demonstrate our model
using an example shown in Fig. 1. Assume that there
are sixteen replicas (servers) for a certain data object
which are divided into four groups, the first one called
a primary group and the others called backup groups.
These four groups are connected into a heap tree, called
an inter-group heap, based on the designated priority
of each group. All of the replicas in each group are
also connected into a heap tree, called an intra-group

Fig. 1. Replica groups with a two-level heap structure in our model.

heap. We assume that all the replicas in one group
have the same priority. The replicas could be assigned
different levels of priority, depending on the practical
application.

When a client issues a request, the service request
is sent to the root of an intra-group heap which is the
root of the inter-group heap. If this request is an update
operation, the first replica must propagate the request
to the replicas in the primary group. Then, all of the
other requests submitted by clients need to be queued
to wait for processing later. In order to maintain
consistency, the requests in the queue are continuously
delivered to the other groups in parallel until a check-
point is reached. If no failure occurs, the replicas in
the primary group will get the request. If this request
needs to update the content of the data, the request has
to be propagated to the other groups in parallel. We
will consider an example shown in Fig. 2 with four
servers in the primary group. The client issues a request
for an update operation to the distributed-file system.
Server 0 gets the request at time 1 and then passes the
request to its left child, server 1, at time 2. At time
3, servers 0 and 1 pass the request to the respective
server 2 (the right child of server 0) and server 3 (the
left child of server 1) in parallel. In the reverse order,
these servers reply a result message to the client. After
relaying the response to the client, server 0 (the root
of the heap) goes on propagating the service request
to the backup groups by means of the inter-group heap.
The numbers between the two servers indicate the
message sequence of a request-service cycle. There-
fore, we allow parallel commits with group commu-
nication to reduce the turnaround time of service re-
quests issued by the client in the intra-group heap.

All replicas (servers) in the primary group will
relay the request and wait for the result (response) of
its child in the inter-group heap. Replicas in the backup
groups need not synchronize with replicas in the pri-

Fig. 2. Request and result messages are sent in parallel if no server
has failed.

A Fault-Tolerant Model in DFS

− 405 −

mary groups. Among groups of the inter-group heap,
information propagation with request and reply mes-
sages only takes place on root servers of intra-group
heaps. These actions and related operations for parallel
commits can be easily examined in Fig. 2.

Now, we will discuss the time complexity of
performing a request issued by a client and getting a
response from this distributed-file system if no server
fails in this system. Assume that the average service
time for a certain server to complete execution of a
request (an update operation) is Ts. The average com-
munication time between two servers in the network
is assumed to be Tc. The number of backup groups
is Ng. Thus, the height of the inter-group heap is
logNg+1. The number of servers in the backup group
k is Gk, and the height of its corresponding intra-group
heap is logGk+1, where 0≤k≤Ng−1. Hence, it takes
the maximum number of transmission steps, 2logGk
steps, to deliver a message from the root to a leaf server
in group k along the intra-group heap. Thus, the time
needed to complete execution of a request-service cycle
in group k is O(logGk(Ts)+4logGk(Tc))=O(logGk(Ts+
Tc)), which consists of the time for relaying the request,
executing the update operation, and gathering a re-
sponse. Hence, the total time complexity of performing
the completion request-service cycle on the two-level
heap structure is

O(logNg(log(
 max

0 ≤ k ≤ Ng – 1
Gk)(Ts+Tc))).

Because of the nice property of the two-level heap, we
are able to efficiently and quickly complete execution
of a request for a client.

Based on the above construction, there is a prob-
lem of how to guarantee and enforce the single-copy
semantics in this system. In our fault-tolerant model,
we use a useful data structure, a heap, incorporated with
a hybrid structure, i.e., a two-level heap structure. In
each intra-group heap, the single-copy will be pre-
served and guaranteed by propagating and performing
the update operation in parallel. The request issued
by the client is then relayed through the inter-group
heap. By means of the structure with two layers, the
communication overhead is efficiently distributed over
all the replicas, and the single-copy semantic is still
remained.

The fault-tolerant model we have addressed can
provide several advantages for tolerating faults and is
applicable to distributed environments. First, this model
has inherent support for wide-scale replication. It also
provides a high degree of replication flexibility by
precisely and dynamically specifying the replica data.
It has the nice property of being easy to handle so as
to maintain the data structures for connecting the replicas

Fig. 3. Failure occurs in the primary group.

and to manipulate these by means of dynamically
adjustable operations. Therefore, this improved fault-
tolerant model definitely meets the requirement for
highly scalable and available distributed-file systems.

2. Server Failures

In a distributed-file system, there may exist some
unexpected faults on each replica. Assume that some
failures occur in the primary group. There are two
failure-event times: before or after the replica server
propagates its request. We will first illustrate the basic
concept with an example shown in Fig. 3, where we
show how it works when a failure occurs in the primary
group. Here, all of operations, including adjusting
operations for heap and message transmission for
sending a request or acknowledgement are systematic
and automatic in this fault-tolerant model. In the case
where server 0 has failed, the failed server is automati-
cally removed from the intra-group heap; then, the
request is relayed to the other servers. As shown in
Fig. 3(a), the client issues a request to server 0 failed
to work well. As a result, the intra-group heap can be
immediately reconstructed into another intra-group

T.S. Chen et al.

− 406 −

heap, where the node of server 0 is dropped from the
heap; then, the client reissues the same request to server
3 in step 2. That is, we interchange the faulty node,
to be removed, with the last node and then percolate
the changed node down or up the modified heap. As
shown in Fig. 3(b), the client issues a request to server
0. While the server 0 propagates the request to the child
of the intra-group heap, a failure occurs and is detected
in server 0. As a result, the intra-group heap can be
immediately reconstructed into another intra-group
heap, where the node of server 0 is dropped from the
heap; then, the client reissues the same request to server
3 in step 3. As depicted in Figs. 3(a) and (b), the issued
request is then propagated in parallel to the replicas
on the reconstructed intra-group heap.

As mentioned above, we will discuss the cases of
node failures in a group in detail. The corresponding
intra-group heap is denoted by Htree. Let W(n) denote
the value of priority (weight) of a node n. Assume that
node ni fails after or before the request is propagated
to the next node. We denote Par(ni) as the parent of
node ni in Htree. When the request was relayed to
Par(ni), we guarantee that the ancestors of node ni have
served the service request, and that the descendants
have not received the service request. Also assume that
there exist two children, the left child L(ni) and the right
child R(ni), of ni. We will remove the faulty node ni

from Htree and interchange ni with the last node nj in
Htree. Based on the situation of request propagation
shown in Fig. 4, there exist two circumstances while
server ni fails in Htree.

In the first circumstance, we assume that the faulty
node ni is the ancestor of the last node nj as depicted
in Fig. 4(a).

Case 1:The faulty node ni is removed from Htree, and
we replace the position of ni with the last node
nj to form another tree H tree

′ . It is a well-known
fact that W(nj)≤W(L(ni)) and W(nj)≤W(R(ni)).
The node nj is percolated down H tree

′ to a proper
position to generate a reconstructed heap. After
that, we deal with the two cases of failure-
event shown in Fig. 3.

Secondly, we assume that the faulty node ni is not the
ancestor of the last node nj as depicted in Fig. 4(b) with
the following two cases.

Case 2:The faulty node ni is removed from Htree, and
we replace the position of ni with the last node
nj to form another tree H tree

′ . Suppose node
nj has not received the service request. There
are two sub-cases described below.
(1) Suppose W(nj)<W(L(ni)) or W(nj)< W(R(ni)).

Fig. 4. The cases of server failures in the intra-group heap Htree.

Node nj is percolated down H tree
′ to a proper

position to generate a reconstructed heap.
After that, we deal with the two cases of
failure-event shown in Fig. 3.

(2) Suppose W(nj)≥W(L(ni)) and W(nj)≥
W(R(ni)). Par(ni) first relays the request
to nj. Then, node nj is percolated up H tree

′
to generate a reconstructed heap. Now, we
assume that nk with the request information
occupies the original position of ni in Htree.
Then, nk proceeds to relay the request to
its children and descendants.

Case 3:As in Case 2, suppose node nj has received the
service request. Thus, node nj, which does not
need to be serviced twice, would reply with
the response only. It will be percolated down
or up H tree

′ according to its priority. Then, nk,
as in Case 2, proceeds to relay the request to
its children and descendants.

We assume that the operation for dealing with the
above cases is atomic and indivisible in our proposed
model; i.e., there are no two or more operations which
interfere with each other. From the above cases, the
operation of the node nj being percolated up and down
the heap only affects its ancestors and descendants,
respectively. This is because we use the nice adjustable
property of the heap structure.

Until now, we have only considered the case of
failures occurring in a group. Through the dynamically
adjustable property of the heap, we can efficiently
remove faulty servers from an intra-group heap or even
from the entire group in an inter-group heap.

3. Failure Recovery

In this approach, we use a simple recovery scheme,
backward recovery, which stores all objects before the
atomic action begins. Reconsider the example shown
in Fig. 1. If there exist some faults, the working

A Fault-Tolerant Model in DFS

− 407 −

group heap to the correct position according to its
priority.

As mentioned above, we only consider how to
recover faulty servers in the primary group. If failures
occur in other backup groups, we can also apply the
above scheme to recover from the failures. Therefore,
through the dynamically adjustable property on heap,
our model can efficiently reconfigure and work well.

IV. Extended Prefix Table Structures

The key goal of our proposed distributed-file
system is to provide users with transparent and fault-
tolerant data access. An efficient way to locate and
access files is to use the extended prefix table to design
a distributed-file system (Cheng and Sheu, 1991). In
our proposed fault-tolerant model, there exist auto-
matic abilities of parallel commits for each service-
request and fault recovery. Therefore, this system,
through the mechanism we have designed and its
manipulation operations, provides this ability with four
types of transparency: location transparency, replica-
tion transparency, concurrency transparency, and fail-
ure transparency. In this section, we will describe the
data structures of the extended prefix table for toler-
ating unexpected faults in the distributed-file system.

1. Directory-Oriented Replication

In a fault-tolerant system via replication scheme,
the replication granularities of a data object vary in size
from a file to an entire disk. For larger or smaller
granularity as one replica unit, there much space is
needed to maintain the mapping tables (Cheng and
Sheu, 1991). Therefore, we focus on using directory-
level replication, the middle level of granularity, to
design our distributed-file system. That is, we replicate
the data files in a designated directory, without includ-
ing the data in its subdirectories, as a replication unit.

We will first explain the concept while exploring
its fault-tolerant potential and ability. A client is a
machine that requests services, and a server is also a
machine that serves each client. A domain is a subtree
that is part of the file system. We integrate and mount
these domains together to produce a distributed-file
system. In Fig. 6, we show an example of a file system
with four servers. Each server has a unique domain
number to distinguish it. For each domain, we create
a REP subdirectory, if necessary, in which to store the
replication data as a replica for fault tolerance. Within
each REP subdirectory on each server, we create
subdirectories whose names are domain numbers as
shown in Fig. 6. In Fig. 6, there are three subdirectories,
“5”, “17”, and “27”, within REP on server A. We create

Fig. 5. The scheme for failure recovery.

recovery scheme of our fault-tolerant model is that
shown in Fig. 5. When some failures occur in the
primary group, services on the file system proceed with
the most up-to-date data copy. Once the failed servers
in the primary group are recovered, we will immedi-
ately restore the modified data to a consistent state as
long as there exist no updates in the current group. If
the entire primary group was failed, the data in the
backup groups may be obsolete because these replicas
in backup groups do not have the latest updated data.
However, the next most significant group with the
second highest priority takes over the primary status
and is selected as the primary group while the original
primary one waits for recovery. The services on the
file system may reflect synchronization of the data copy
with the latest checkpoint which was set up. Once the
failed servers in the primary group are recovered, their
current states are updated so as to be consistent with
those of the servers in the new primary group, backup
group 1.

When a faulty server has recovered, we insert the
corresponding node into the intra-group heap. We first
append the recovered node to the last position in the
intra-group heap. It is then percolated up the intra-

T.S. Chen et al.

− 408 −

Now, we will introduce three data structures written
in the C language as shown in Fig. 8 in order to express
the above ideas. Using these data structures, Group,
Backup, and BackupEntry, we can easily represent the
above structure of the extended prefix table. In the
GroupTable, we use an array to represent a heap struc-
ture, called an inter-group heap. This is because, using
an array, we can easily employ these operations to
adjust the heap tree. By means of the same construc-

Fig. 6. An example showing the distributed-file system hierarchy.

these subdirectories in REP not only so that this file
system can easily handle the replicas for fault toler-
ance, but also, because they can keep the file system
from accessing incorrect data replicas. This is because
it is possible that, for two files, there exists the same
file name with different data content within the same
subdirectory for two servers.

2. Data Structures

We have used and extended the prefix table model
(Welch and Ousterhout, 1986) to design our distrib-
uted-file system in order to efficiently locate and access
files for convenience. We will first describe the data
structures implemented in our distributed-file systems.
A prefix is the topmost directory in the domain. In
Fig. 7, following the above example, we show an
example to demonstrate the concept of the extended
prefix table with its backup and group tables. Each
entry within a prefix table corresponds to one of the
domains in the file system. In the prefix table, to each
entry is added a new field, i.e., the backup table pointer
we extended. For example, there is a backup table
pointer within the entry for server A. This pointer
points to a backup table corresponding to server A with
domain 9. That is, the two directories, “/” and “/BIN”
within server A, have been replicated automatically or
manually by the system. The directory “/” is designated
for some group recorded to the group table with only
one entry with weight 10. By keeping track of the
pointers depicted in Fig. 7, we can store the two replicas
of the data files in the directory “/” on server A into
the directories “/USER1/REP/9/” and “/USER2/REP/
9/” on the domain 5 (server C) and domain 27 (server
D), respectively. Fig. 8. The data structures for replica backup.

Fig. 7. An extended prefix table with its backup tables and group
tables.

A Fault-Tolerant Model in DFS

− 409 −

the dropped group needs to wait for recovery. The
corresponding reconstructed group table is shown in
Fig. 10(b). Once all of the failure servers within the
group have recovered, we can restructure the inter-
group heap in the original heap style. The time needed
to perform the insertion operation while a node is
percolated up the heap is also dependent on the height
of the inter-group heap. Thus, the time is also O(Ht).
Therefore, less overhead is needed to efficiently handle
all of the data structures for replication and manipu-
lation operations using our proposed model.

V. Conclusions

In this paper, we have proposed a new fault-
tolerant model for distributed-file systems. We have
extended the previously proposed fault-tolerant model
to create this distributed-file system model. The pro-
posed model provides low overhead as well as trans-
parency, fault tolerance, and a parallel commitment
capacity for distributed-file systems. Using this model,
we can efficiently manipulate any update of data struc-
tures for replication on distributed-file systems. From
the point of view of scale, our addressed model can
be easily applied to local-area networks (LANs) and
wide-area networks (WANs). Communication among
these backup servers in WANs is significant greater
than that in LANs. To reduce the communication cost,
we can use the proposed two-level heap to construct
and link these backup servers in a WAN in the follow-
ing way. Each intra-group heap is constructed in its
corresponding LAN. Then, we have the whole file
server system via the inter-group heap in a WAN. The
design and implementation of this fault-tolerant model,

Fig. 9. A group table with heap structure representation of a given
example.

t ion, we can also use an array to represent the
BackupEntry table, called an intra-group heap. Within
the hybrid data structure, it is clear and easy to form
a two-level heap structure.

3. Fault Tolerance

Based on our proposed model and the data struc-
tures, we will demonstrate how to provide the fault-
tolerance ability when a fault is detected and to then
recover to a consistent state. In our proposed model,
we can view this structure as a two-level hierarchical
structure: one level is the intra-group heap, and the
other is the inter-group heap. For both kinds of heap
trees, we use the same operations to adjust changes in
the trees, such as when one fault has been detected
(removed from the heap) and is waiting for recovery
or when a fault has been recovered (added to the heap).

Now, we will only consider an example of when
an entire group fails as shown in Fig. 9. Assume that
there are seven groups used to maintain a specific
directory, and that their corresponding weights are
those shown in Fig. 9(a). Thus, the indicator of the
health number, which after adding one is the number
of groups in which there exist some non-faulty replicas,
points to the number 6; i.e., there are seven healthy
groups. The inter-group heap is shown in Fig. 9(b),
where each node denotes a group with its weight inside
the circle. Group 0 with weight 99 is referred to as
the primary group; the others are referred to as backup
groups.

Assume that backup group 1 with weight 80 has
been detected to have failed, i.e., the replicas within
it need to wait for recovery. Now, we have to drop
the faulty group with weight 80 from the inter-group
heap as shown in Fig. 9(b) and reconstruct the modified
inter-group heap with six groups as shown in Fig. 10(a).
The time needed to perform the drop and reconstruction
operations while a node is percolated down the heap
is in practice dependent on the height of the inter-group
heap, assuming Ht=log Ng+1, where Ng is the number
of backup groups. Hence, the time is O(Ht). Then,

Fig. 10. A group table when all of the servers have failed in the group
with weight 80.

T.S. Chen et al.

− 410 −

incorporated into the previous one is under investiga-
tion. When this system has been successfully set up,
we will compare it with other systems in the future in
terms of performance.

References

Anderson, T. E., M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.
Roselli, and R. Y. Wang (1996) Serverless network file systems.
ACM Transactions on Computer Systems, 14(1), 41-79.

Banino, J. S., J. C. Fabre, M. Guillemont, G. Morisset, and M. Rozier
(1985) Some fault-tolerant aspects of the Chorus distributed
system. Proceedings of the 5th IEEE International Conference
on Distributed Computing Systems, pp. 430-437. Denver, CO,
U.S.A.

Bloch, J. J., D. S. Daniels, and A. Z. Spector (1987) A weighted
voting algorithm for replicated directories. Journal of ACM,
34(4), 859-909.

Chen, P. M., E. K. Lee, G. A. Ginson, R. H. Katz, and D. A. Patterson
(1994) RAID: high-performance, reliable secondary storage.
ACM Computing Surveys, 26(2), 145-185.

Cheng, H. C. and J. P. Sheu (1991) Design and implementation of
a distributed file system. Software-Practice and Experience,
21(7), 657-675.

Dasgupta, P., R. J. LeBlanc, Jr., and W. F. Appelbe (1988) The
Clouds distributed operating system: functional description,
implementation details and related work. 8th IEEE International
Conference on Distributed Computing Systems, pp. 2-9. San

Jose, CA, U.S.A.
Devarakonda, M., B. Kish, and A. Mohindra (1996) Recovery in

the Calypso file system. ACM Transactions on Computer Sys-
tems, 14(3), 287-310.

Gifford, D. K. (1979) Weighted voting for replicated data. 7th ACM
Symp. on Operating System Principles, pp. 150-159. Pacific
Grove, CA, U.S.A.

Guerraoui, R. and A. Schiper (1997) Software-based replication for
fault tolerance. IEEE Computer, 30(4), 68-74.

Howard, J. H., M. L. Kazar, S. G. Menees, D. A. Nichols, M.
Satyanarayanan, R. N. Sidebotham, and M. J. West (1988) Scale
and performance in a distributed file system. ACM Transactions
on Computer Systems, 6(1), 51-81.

Kistler, J. J. and M. Satyanarayanan (1992) Disconnected operation
in the Coda file system. ACM Transactions on Computer Sys-
tems, 10(l), 3-25.

Purdin, T. D. M., R. D. Schlichting, and G. R. Andrews (1987) A
file replication facility for Berkeley unix. Software-Practice and
Experience, 17(12), 923-940.

Satyanarayanan, M. (1990) Scalable, secure, and highly available
distributed file access. IEEE Computers, 23(5), 9-21.

Walker, B., G. Popek, R. English, C. Kline, and G. Thiel (1983) The
Locus distributed operating system. 9th ACM Symp. on Oper-
ating System Principles, pp. 49-70. Bretton Woods, NH, U.S.A.

Welch, B. and J. Ousterhout (1986) Prefix tables: a simple mecha-
nism for locating files in a distributed system. 6th IEEE Interna-
tional Conference on Distributed Computing Systems, pp. 184-
189. Cambridge, MA, U.S.A.

