Proc. Natl. Sci. Counc. ROC(A)
Vol. 23, No. 3, 1999. pp. 402-410

(Scientific Note)
A Fault-Tolerant Model for Replication in
Distributed-File Systems

TZzUNG-SHI CHEN®, CHIH-YuNG CHANG™, Janc-Ping SHEU™ , anp Gwo-Jonn YU™™

*Dept. of Information Management
Chang Jung University
Tainan, Taiwan, R.O.C.

" Dept. of Information Science

Tamsui Oxford University College

Taipei, Taiwan, R.O.C.
" Dept. of Computer Science and Information Engineering
National Central University

Chungli, Taiwan, R.O.C.

(Received April 20, 1998; Accepted September 1, 1998)

ABSTRACT

In this paper, we propose a new fault-tolerant model for replication in distributed-file systems. We
combine the advantages of the modular redundancy, primary-stand-by, and weighted priority schemes to
address the fault-tolerant model. To fulfill the fault-tolerant requirements, we use the ideas of directory-
oriented replication and the extended prefix table while incorporating a two-level heap data structure. In
a consideration of practical circumstances, the heap, using an array instead of a linked-list tree structure,
has a dynamically adjustable property, which can be used to easily modify the tree structure in the
distributed-file system. Therefore, this fault-tolerant model provides low-cost overhead, a variety of
transparency capacities, a fault-tolerant capacity, and a parallel commitment capacity on backup replicas
for distributed-file systems.

Key Words: distributed-file systems, fault tolerance, network transparency, recovery, replication

l. Introduction tributed-file systems with fault-tolerant capacity
(Baninoet al, 1985; Cheng and Sheu, 1991; Dasgupta
Over the last decade, distributed processing hast al., 1988; Kistler and Satyanarayanan, 1992; Purdin
become more and more important and attractive witlet al., 1987; Satyanarayanan, 1990). They have de-
progress in the areas of computer networks and disceloped replication and Redundant Arrays of Inexpen-
tributed systems. For file accesses, current centralizedive Disk (RAID) (Chenet al.,, 1994) techniques to
file systems unfortunately limit performance andprovide redundancy for fault tolerance. Traditionally,
availability because all accesses with read or writ@istributed-file systems have relied on redundancy for
operations need to go through the central file servehigh availability. In general, file systems replicate at
Therefore, for distributed file access, many researchdbe server-level, directory-level, or file-level to deal
have focused on the design and implementation ofith processor, disk, or network failures. Redundancy
distributed-file systems (Andersoet al., 1996; allows these systems to operate easily and continuously
Devarakondat al., 1996; Kistler and Satyanarayanan,despite partial failure at the cost of maintaining replicas
1992; Howardet al., 1988; Satyanarayanan, 1990;(copies) in the file system. Replicas provide users with
Walker et al.,, 1983). The storage media distributeda fault-tolerant environment so that they need not be
over such networks may potentially incur some unexeoncerned with where the replica being accessed ac-
pected faults. Because of hardware or software failureially resides. Thus, the main purpose of this paper
in distributed-file systems, these systems have to pras to provide fault tolerance for distributed-file systems
vide a fault-tolerant capability so as to tolerate faultdy using the redundant technique with lower-cost
and to try to recover from these faults. overhead of maintaining faults and by allowing a parallel
A lot of researches have aimed to develop discommits capacity to reduce the turnaround time of

—402 -

A Fault-Tolerant Model in DFS

service requests issued by clients. nize with the primary copy periodically while they are
We focus in this paper on the model constructiomot available to service requests. When failures occur
of a distributed-file system with fault tolerance. In ourin the primary copy, one of the stand-by replicas will
fault-tolerant model, forward progress has to be guame chosen as the new primary one. Then, the request
anteed. If any replica is available when an unexpecteservice will continue to go on from the most recent
fault occurs, execution should proceed continuouslgommit point. The second one is the modular redun-
and as smoothly as possible. The most popular aglancy approach (Baninet al., 1985) which provides
proach we use is to periodically set checkpoints on ththe system with no distinction between the primary
file system. When the failed server resumes after aopy and stand-by ones. The requests are sent to all
failure, the stored data may not be the most up-to-dat&f the backups simultaneously; that is, the service is
data. The data should then be corrected according performed on all of machines for each copy. Thus, there
the information obtained from the checkpoints theexists at least one correct copy in these machines to
system has set up. To fulfill the fault-tolerant require-achieve the fault tolerance. In the third approach,
ments, we use the ideas of directory-oriented replicaweighted voting (Gifford, 1979), all replicas of a file
tion and the extended prefix table (Cheng and Shewre assigned a certain number (weight) of votes. We
1991) while incorporating a two-level heap data struceall these replicas representatives. Any request, in-
ture. In a consideration of practical circumstances, theluding a read or write operation, is performed on a
heap, using an array instead of a linked-list tree strucset of representatives called a request quorum. Any
ture, has a dynamically adjustable property which canead (write) quorum which has a majority of the total
be used to easily modify the tree structure in the disvotes of all the representatives is allowed to perform
tributed-file system. Therefore, this fault-tolerant modethe corresponding operation.
provides low-cost overhead, a variety of transparency In our previous work (Cheng and Sheu, 1991), we
capacities, a fault-tolerant capacity, and a parallel conpresented a scheme which blends together the primary-
mitment capacity on backup replicas for distributedstand-by approach and the modular redundancy ap-
file systems. proach. We divided all of the backups into several
The rest of this paper is organized as followspartitions connected to a linear form. The first partition
Section Il introduces our model and related work. Invas called the primary partition and the others were
Section Ill, we propose our fault-tolerant model forcalled backup partitions. In order to improve system
replications in distributed-file systems to improveperformance over the previous one, we will propose
efficiency over our previous work (Cheng and Sheua new fault-tolerant model for replication in distrib-
1991). From the practical point of view, we deriveuted-file systems in the next section.
some data structures and operations to design our

proposed fault-tolerant model in Section IV. Finally,|||. A Fault-Tolerant Model for Rep-
conclusions are summarized in Section V. lication

Il. Related Work 1. A Fault-Tolerant Model

It is important to deal with hardware failures, such The basic concept of our proposed fault-tolerant
as server crashes, in a distributed-file system. We wilhodel is described as follows. We combine the ad-
concentrate our discussion on hardware failures and arantages of the modular redundancy, primary-stand-
fault tolerance by means of replication. In the literaturdy, and weighted priority schemes to create a new fault-
(Bloch et al., 1987; Guerraoui and Schiper, 1997), thetolerant model. We initially divide all of the replicas
use of replication to provide the capacity of faultfor fault tolerance into several groups with variable size
tolerance as in the distributed schemes can be classifid@pending on the practical situation. Each group is
into three approaches: tipgimary-stand-byapproach, assigned a priority corresponding to its weight and
the modular redundancypproach, and theeighted depending on its significance. The larger the priority
voting approach. value, the more significant it is. Each group acts as

For the sake of tolerating faults, some researche@ modular redundancy unit. We call the group with
have focused their research on replica mechanisthe highest priority th@rimary group and the others
design. The primary-stand-by approach (Guerraouare calledbackup groups Requests are sent to all
and Schiper, 1997) first selects one copy as the primakyackups in the primary group for service in parallel.
one while the others are stand-by ones. If one copVhis is the same as in the primary-stand-by case.
is a primary one, all of subsequent requests from clientBherefore, we can enhance flexibility to instantaneously
are sent to it only. The stand-by replicas only synchroforward progress to the other groups after completing

- 403 -

T.S. Cheret al.

heap We assume that all the replicas in one group
have the same priority. The replicas could be assigned
different levels of priority, depending on the practical
application.

When a client issues a request, the service request
is sent to the root of an intra-group heap which is the
root of the inter-group heap. If this request is an update
operation, the first replica must propagate the request
to the replicas in the primary group. Then, all of the
other requests submitted by clients need to be queued
to wait for processing later. In order to maintain
consistency, the requests in the queue are continuously
delivered to the other groups in parallel until a check-
point is reached. If no failure occurs, the replicas in
the primary group will get the request. If this request
needs to update the content of the data, the request has
to be propagated to the other groups in parallel. We
will consider an example shown iig. 2 with four
servers in the primary group. The client issues a request
Fig. 1. Replica groups with a two-level heap structure in our modelfq 5 update operation to the distributed-file system.

Server 0 gets the request at time 1 and then passes the

request to its left child, server 1, at time 2. At time
the processing commits of the primary group. For eacB, servers 0 and 1 pass the request to the respective
replica, we can choose the significant servers in theerver 2 (the right child of server 0) and server 3 (the
primary group or backup groups, which fully dependleft child of server 1) in parallel. In the reverse order,
on some performance criteria, such as server loadthese servers reply a result message to the client. After
proximity constraints with spatial locality, server com-relaying the response to the client, server 0 (the root
puting power, and so forth. This kind of selection isof the heap) goes on propagating the service request
similar to the Accessible Volume Storage Group (AVSG)o the backup groups by means of the inter-group heap.
on the Coda system (Satyanarayanan, 1990). The numbers between the two servers indicate the

A heap structure, which is a binary tree, is usednessage sequence of a request-service cycle. There-
to connect these groups by means of group priorityfore, we allow parallel commits with group commu-

In the heap, the weight of a node is less than or equalcation to reduce the turnaround time of service re-
to that of its parent node. The root of this heap tregquests issued by the client in the intra-group heap.
has the highest priority with the largest weight value. All replicas (servers) in the primary group will
We also use the same technique to construct the heaglay the request and wait for the result (response) of
structure for all of the replicas in each group if eactits child in the inter-group heap. Replicas in the backup
replica in a group also has a designated priority. ligroups need not synchronize with replicas in the pri-
this way, we can speed up the commits of client requests
easily by applying a parallelizing technique. Thus, a

client is no longer responsible for dealing with all calls
and returning responses. Moreover, performing par-

allel commits for each client request is not only done (fient
for each group, but also among groups to achieve high-
performance computing in a distributed environment.

As mentioned above, we demonstrate our model
using an example shown Fig. 1. Assume that there
are sixteen replicas (servers) for a certain data object
which are divided into four groups, the first one called
a primary group and the others called backup groups.
These four groups are connected into a heap tree, callec

Primary Group
\ with the highest priority

To backup groups
Backup Group 1, ...

No need to wait for the result
from backup groups

—— Request message

—— Result message

aninter-groupheap based on the designated priority Primary Group
of each group. 'A” of the replicas in each group argig. 2. Request and result messages are sent in parallel if no server
also connected into a heap tree, calledrdara-group has failed.

~ 404-

A Fault-Tolerant Model in DFS

mary groups. Among groups of the inter-group heap, = .2
information propagation with request and reply mes- Elrﬂl_ﬁlm_;m“mn
I:

L . -
sages only takes place on root servers of intra-grouy Ve S— Ve
heaps. These actions and related operations for paralls 4 |" "{:_ x R wel S el
commits can be easily examined in Fig. 2. wELT]
. . . . '\-_l w1 = |mm A Fizqazsl mrege wni

Now, we will discuss the time complexity of b " hefare seever bai fnled
performing a request issued by a client and getting ¢ 1& —= Faquan masmug
response from this distributed-file system if no server i slpe. Forali s
fails in this system. Assume that the average service e % Faikd server steratcally
time for a certain server to complete execution of a Primary Gevop R R
request (an update operation)Tis The average com- i))

. R I . (8} Failure pecurs & the First replica befiore the reqoest
munication time between two servers in the network is propagased 10 the neadt replica

is assumed to b&.. The number of backup groups
is Ng. Thus, the height of the inter-group heap is

OogNg+1. The number of servers in the backup group s
k is Gy, and the height of its corresponding intra-group s =i ;_-*E __f},g oy growm
heap isdogGy31, where &ksNg—1. Hence, it takes T Wkl M Backup Groap],
the maximum number of transmission stepdo@G,[] v\ g :r’* A - bkt
steps, to deliver a message from the root to a leaf serve I':_I[L :E i 8 | ‘|
in groupk along the intra-group heap. Thus, the time s '.,H!'ﬂ SR o styrstrl
needed to complete execution of a request-service cycl Ty — R g
in groupk is O(logGy(Ts)+410gG(T.))=0(logGy(Ts+ b E ———p Fomk Eusmp
Tc)), which consists of the time for relaying the request, "t Eﬂ el b v
executing the update operation, and gathering a re Primary {rup B dwppad [e e ws il
sponse. Hence, the total time complexity of performing - N e
L] HINE <LEE N U ey |r|' R aller B II_':|IH5]

the completion request-service cycle on the two-level

. e propegied b the mext replicy
heap structure is

Fig. 3. Failure occurs in the primary group.

O(logNg(log(, _ k"s]ﬁ); _, G(Ts+T0)).

Because of the nice property of the two-level heap, wand to manipulate these by means of dynamically
are able to efficiently and quickly complete executionadjustable operations. Therefore, this improved fault-
of a request for a client. tolerant model definitely meets the requirement for
Based on the above construction, there is a probighly scalable and available distributed-file systems.
lem of how to guarantee and enforce the single-copy
semantics in this system. In our fault-tolerant model2. Server Failures
we use a useful data structure, a heap, incorporated with
a hybrid structure, i.e., a two-level heap structure. In In a distributed-file system, there may exist some
each intra-group heap, the single-copy will be preunexpected faults on each replica. Assume that some
served and guaranteed by propagating and performirfgilures occur in the primary group. There are two
the update operation in parallel. The request issuef@ilure-event times: before or after the replica server
by the client is then relayed through the inter-grougpropagates its request. We will first illustrate the basic
heap. By means of the structure with two layers, theoncept with an example shown kig. 3, where we
communication overhead is efficiently distributed overshow how it works when a failure occurs in the primary
all the replicas, and the single-copy semantic is stilgroup. Here, all of operations, including adjusting
remained. operations for heap and message transmission for
The fault-tolerant model we have addressed carsending a request or acknowledgement are systematic
provide several advantages for tolerating faults and iand automatic in this fault-tolerant model. In the case
applicable to distributed environments. First, this modeWwhere server 0 has failed, the failed server is automati-
has inherent support for wide-scale replication. It alseally removed from the intra-group heap; then, the
provides a high degree of replication flexibility by request is relayed to the other servers. As shown in
precisely and dynamically specifying the replica dataFig. 3(a), the client issues a request to server 0 failed
It has the nice property of being easy to handle so as work well. As a result, the intra-group heap can be
to maintain the data structures for connecting the replicaimmediately reconstructed into another intra-group

- 405 -

T.S. Chenret

heap, where the node of server 0 is dropped from th
heap; then, the client reissues the same request to ser
3 in step 2. That is, we interchange the faulty node
to be removed, with the last node and then percolat
the changed node down or up the modified heap. A
shown in Fig. 3(b), the client issues a request to serve
0. While the server O propagates the request to the chi
of the intra-group heap, a failure occurs and is detecte

in server 0. As a result, the intra-group heap can b i

immediately reconstructed into another intra-groug
heap, where the node of server 0 is dropped from theg.
heap; then, the client reissues the same request to server
3in step 3. As depicted in Figs. 3(a) and (b), the issued
request is then propagated in parallel to the replicas
on the reconstructed intra-group heap.

As mentioned above, we will discuss the cases of
node failures in a group in detail. The corresponding
intra-group heap is denoted Ibi... Let W(n) denote
the value of priority (weight) of a node Assume that
noden; fails after or before the request is propagated
to the next node. We denolar(n;) as the parent of
noden; in Hyeee When the request was relayed to
Par(n;), we guarantee that the ancestors of ngdeve
served the service request, and that the descendants
have not received the service request. Also assume that
there exist two children, the left childn;) and the right
child R(n;), of n;. We will remove the faulty nods;
from Hyee and interchange; with the last node; in
Hiecee Based on the situation of request propagation
shown inFig. 4, there exist two circumstances while
servern; fails in Hyee

In the first circumstance, we assume that the faulty
noden; is the ancestor of the last nodeas depicted
in Fig. 4(a).

Thes Taiil vy s i,

al.

Thes yon mande ol F has woeod maeche o

Fyes Irur

the Tuiliy aod= o, T,
'y

ST,
FaES
the: Tast rasade: 1

By

ihe I:\:q noge =

B The ease wileire Bode & 15 1ol &
mniazstonr ol neade n

he2 case whaeme nodie g 15 80

ancestor ol node A

4. The cases of server failures in the intra-group hidag.

Noden; is percolated dowhl ., to a proper
position to generate a reconstructed heap.
After that, we deal with the two cases of
failure-event shown in Fig. 3.

(2) SupposeW(n;)=W(L(n;)) and W(n;)=
W(R(n;)). Par(n;) first relays the request
to n;. Then, nodey; is percolated up ¢
to generate a reconstructed heap. Now, we
assume thany, with the request information
occupies the original position of in Hyee.
Then, n, proceeds to relay the request to
its children and descendants.

Case 3:As in Case 2, suppose nodehas received the

service request. Thus, nodg which does not
need to be serviced twice, would reply with
the response only. It will be percolated down
or upHy, according to its priority. Themy,

as in Case 2, proceeds to relay the request to
its children and descendants.

We assume that the operation for dealing with the

Case 1:The faulty noden; is removed fronHy. and
we replace the position of with the last node
n; to form another trekl . Itis a well-known

above cases is atomic and indivisible in our proposed
model; i.e., there are no two or more operations which
interfere with each other. From the above cases, the
fact thatW(n;)sW(L(n;)) andW(n))<SW(R(n;)). operation of the nodsg; being percolated up and down
The noden; is percolated dowHl ;. to a proper the heap only affects its ancestors and descendants,
position to generate a reconstructed heap. Afterespectively. This is because we use the nice adjustable
that, we deal with the two cases of failure-property of the heap structure.
event shown in Fig. 3. Until now, we have only considered the case of
failures occurring in a group. Through the dynamically
Secondly, we assume that the faulty nogles not the adjustable property of the heap, we can efficiently
ancestor of the last node as depicted in Fig. 4(b) with remove faulty servers from an intra-group heap or even
the following two cases. from the entire group in an inter-group heap.

Case 2:The faulty node; is removed fronH;.. and
we replace the position of with the last node
n; to form another tre¢l . Suppose node In this approach, we use a simple recovery scheme,
n; has not received the service request. Therbackward recoverywhich stores all objects before the
are two sub-cases described below. atomic action begins. Reconsider the example shown
(1) Suppos&V(n)<W(L(n;)) orW(n)<W(R(n;)). in Fig. 1. If there exist some faults, the working

3. Failure Recovery

- 406-

A Fault-Tolerant Model in DFS

Prisicy Clroeg group heap to the correct position according to its
¥ priority.

As mentioned above, we only consider how to
recover faulty servers in the primary group. If failures
- : occur in other backup groups, we can also apply the
= above scheme to recover from the failures. Therefore,
: through the dynamically adjustable property on heap,
| our model can efficiently reconfigure and work well.

rmpd o sk ey ek
Tl ry rms o= b p vy pem

b Fl'llln-n:r_lrI-H] |'.

procecd oorkrends o b |
| oore e wiwie ey tha I
| up-rr—die Py |II

B e by g IV. Extended Prefix Table Structures
X \:‘ulll:lﬂ'o\lfﬂrl.-\.;llﬂh":lﬂrrl.l
g, mlmcHd, and srdom e oy el B copry
llj_qfl-irﬁl.ﬂn.‘lu.an:ﬂn.‘rl

The key goal of our proposed distributed-file
system is to provide users with transparent and fault-
- \ tolerant data access. An efficient way to locate and
| access files is to use the extended prefix table to design

! a distributed-file system (Cheng and Sheu, 1991). In
; our proposed fault-tolerant model, there exist auto-
matic abilities of parallel commits for each service-

request and fault recovery. Therefore, this system,

BN
Frumay (roup = droped ll: a ."I . . .
e P o |éﬂ. through the mechanism we have designed and its
.. 1 .II
LY .--_.-'I

manipulation operations, provides this ability with four
types of transparency: location transparency, replica-

Rrels (8 S ErioLME =" Bacioup Oeoup |

e s e - g tion transparency, concurrency transparency, and fail-

E Bl e hep e ure transparency. In this section, we will describe the
data structures of the extended prefix table for toler-

E Fuded servany ating unexpected faults in the distributed-file system.

Fig. 5. The scheme for failure recovery. 1 Directory-Oriented Replication

In a fault-tolerant system via replication scheme,
recovery scheme of our fault-tolerant model is thathe replication granularities of a data object vary in size
shown inFig. 5. When some failures occur in the from a file to an entire disk. For larger or smaller
primary group, services on the file system proceed witlgranularity as one replica unit, there much space is
the most up-to-date data copy. Once the failed servereeeded to maintain the mapping tables (Cheng and
in the primary group are recovered, we will immedi-Sheu, 1991). Therefore, we focus on using directory-
ately restore the modified data to a consistent state &svel replication, the middle level of granularity, to
long as there exist no updates in the current group. tfesign our distributed-file system. That is, we replicate
the entire primary group was failed, the data in thehe data files in a designated directory, without includ-
backup groups may be obsolete because these replidag the data in its subdirectories, as a replication unit.
in backup groups do not have the latest updated data. We will first explain the concept while exploring
However, the next most significant group with theits fault-tolerant potential and ability. A client is a
second highest priority takes over the primary statumachine that requests services, and a server is also a
and is selected as the primary group while the originahachine that serves each client.démainis a subtree
primary one waits for recovery. The services on théhat is part of the file system. We integrate and mount
file system may reflect synchronization of the data copyhese domains together to produce a distributed-file
with the latest checkpoint which was set up. Once theystem. InFig. 6 we show an example of a file system
failed servers in the primary group are recovered, theiwith four servers. Each server has a unique domain
current states are updated so as to be consistent witkmber to distinguish it. For each domain, we create
those of the servers in the new primary group, backup REP subdirectory, if necessary, in which to store the
group 1. replication data as a replica for fault tolerance. Within

When a faulty server has recovered, we insert theach REP subdirectory on each server, we create
corresponding node into the intra-group heap. We firstubdirectories whose names are domain numbers as
append the recovered node to the last position in th&hown in Fig. 6. In Fig. 6, there are three subdirectories,
intra-group heap. It is then percolated up the intra®*5”, “17”, and “27”, within REP on serveA. We create

- 407 -

T.S. Cheret al.

Server A with domgin %

3t T 1] A
&8 subdiFeciony H P
nams

Now, we will introduce three data structures written
in the C language as shownFig. 8in order to express
the above ideas. Using these data structures, Group,
Backup, and BackupEntry, we can easily represent the
above structure of the extended prefix table. In the
GroupTable, we use an array to represent a heap struc-
ture, called an inter-group heap. This is because, using
an array, we can easily employ these operations to
adjust the heap tree. By means of the same construc-

CDOC BAE |

Fig. 6. An example showing the distributed-file system hierarchy. L

these subdirectories in REP not only so that this file

system can easily handle the replicas for fault toler-
ance, but also, because they can keep the file systen
from accessing incorrect data replicas. This is because
it is possible that, for two files, there exists the same
file name with different data content within the same

subdirectory for two servers.

2. Data Structures

We have used and extended frefix tablemodel
(Welch and Ousterhout, 1986) to design our distrib-
uted-file system in order to efficiently locate and access
files for convenience. We will first describe the data
structures implemented in our distributed-file systems.
A prefix is the topmost directory in the domain. In
Fig. 7, following the above example, we show an
example to demonstrate the concept of the extended
prefix table with its backup and group tables. Each
entry within a prefix table corresponds to one of the
domains in the file system. In the prefix table, to each
entry is added a new field, i.e., the backup table pointer
we extended. For example, there is a backup table
pointer within the entry for servek. This pointer
points to a backup table corresponding to seAvetith
domain 9. That is, the two directories, “/” and “/BIN”"
within serverA, have been replicated automatically or
manually by the system. The directory “/" is designated
for some group recorded to the group table with only
one entry with weight 10. By keeping track of the
pointers depicted in Fig. 7, we can store the two replicas
of the data files in the directory “/” on servArinto
the directories “/USER1/REP/9/” and “/USER2/REP/
9/” on the domain 5 (servel) and domain 27 (server
D), respectively.

- 408-

Extended prefix table
Domain prefix | Server | Domain token |Backup table pointer
/ A 9
/USR2/TMP/ B 17 >
JUSR1/ C 5 >
/USR2/ D 27 »
Backup Table
Directory | Point to the GroupTable Group Table
»{ weight |point to BackupEntry

/BIN —_> 10 _‘i
BackupEntry Table

weight | point to Entry NodeToken DirName

100 —»{ s | MUSERVREPY |

60 —+—{ 27 | /USERREPY/ |

Fig. 7. An extended prefix table with its backup tables and group

tables.

struct Group
{ int weight ;

struct Backup *pointer ;
} GroupTable[NoGroup] ;

(a) The data structure of Group.

struct Backup
{ int weight ;

struct BackupEntry *entry[NoEntry] ;
1

(b) The data structure of Backup.

struct BackupEntry

{ int NodeToken ;
char *DirName ;

}s

(c) The data structure of BackupEntry.

Fig. 8. The data structures for replica backup.

A Fault-Tolerant Model in DFS

xgﬁifeﬁam;mswkuﬁm the dropped group needs to wait for recovery. The
o[e () corresponding reconstructed group table is shown in
! jg — (&) Fig. 10(b). Once all of the failure servers within the
s — @ @ 6 group have'recover'eq, we can restructurg the inter-
bz —T (5 : A ode with weight group heap in the original heap style. The time needed
Thebealtyy s [30 — to perform the insertion operation while a node is
() An example of a group table (t) The corresponding inter-group heap. percolated up the heap is also dependent on the height
with an array structure. of the inter-group heap. Thus, the time is ab{l,).
Fig. 9. A group table with heap structure representation of a givenl Nerefore, less overhead is needed to efficiently handle
example. all of the data structures for replication and manipu-

lation operations using our proposed model.

tion, we can also use an array to represent th§/, Conclusions
BackupEntry table, called an intra-group heap. Within
the hybrid data structure, it is clear and easy to form In this paper, we have proposed a new fault-

a two-level heap structure. tolerant model for distributed-file systems. We have
extended the previously proposed fault-tolerant model
3. Fault Tolerance to create this distributed-file system model. The pro-

posed model provides low overhead as well as trans-
Based on our proposed model and the data strugarency, fault tolerance, and a parallel commitment
tures, we will demonstrate how to provide the fault-capacity for distributed-file systems. Using this model,
tolerance ability when a fault is detected and to themwe can efficiently manipulate any update of data struc-
recover to a consistent state. In our proposed moddlres for replication on distributed-file systems. From
we can view this structure as a two-level hierarchicathe point of view of scale, our addressed model can
structure: one level is the intra-group heap, and thbe easily applied to local-area networks (LANs) and
other is the inter-group heap. For both kinds of heawide-area networks (WANs). Communication among
trees, we use the same operations to adjust changestlvese backup servers in WANSs is significant greater
the trees, such as when one fault has been detectddén that in LANs. To reduce the communication cost,
(removed from the heap) and is waiting for recoverywe can use the proposed two-level heap to construct
or when a fault has been recovered (added to the heapnd link these backup servers in a WAN in the follow-
Now, we will only consider an example of whening way. Each intra-group heap is constructed in its
an entire group fails as shown fiiig. 9. Assume that corresponding LAN. Then, we have the whole file
there are seven groups used to maintain a specifgerver system via the inter-group heap in a WAN. The
directory, and that their corresponding weights arelesign and implementation of this fault-tolerant model,
those shown in Fig. 9(a). Thus, the indicator of the
health number, which after adding one is the number

of groups in which there exist some non-faulty replicas et i i AR WA

points to the number 6; i.e., there are seven health =l bg] el v wgm (o) pakin j_-:;_

groups. The inter-group heap is shown in Fig. 9(b). _@’ D ;-’“;" "t o i

where each node denotes a group with its weight insid .~ &+ % v T B . S)

the circle. Group O with weight 99 is referred to as'~~ =~ = &/ = S ® @O@ ‘r%_

the primary group; the others are referred to as backu vy

groups. jm1 The s jestment of the heap itnickine when some seérvan boee Teiled i o gnoup
Assume that backup group 1 with weight 80 has o

been detected to have failed, i.e., the replicas withir e e ey

it need to wait for recovery. Now, we have to drop [w | O —t

the faulty group with weight 80 from the inter-group 3 e S :

heap as shown in Fig. 9(b) and reconstruct the modifie: il 1 —"

inter-group heap with six groups as showikrig. 10(a) e —

The time needed to perform the drop and reconstructio = Tehshmmba w6 | —+

operations while a node is percolated down the hea et S —

is in practice dependent on the height of the inter-grou TR pecmmtrwcied oy s

heap, assuminbl=llog Ny3+1, whereNg is the number Frig. 10. A group table when all of the servers have failed in the group

of backup groups. Hence, the timeQ¢H,). Then, with weight 80.

- 409 -

T.S. Cheret al.

incorporated into the previous one is under investiga- Jose, CA, US.A. _ _
tion. When this system has been successfully set uBfevarakonda, M., B. Kish, and A. Mohindra (1996) Recovery in

. the Calypso file systemACM Transactions on Computer Sys-
we will compare it with other systems in the future in tems 14(3), 287-310.

terms of performance. Gifford, D. K. (1979) Weighted voting for replicated daf&th ACM
Symp. on Operating System Principle®. 150-159. Pacific
References Grove, CA, U.S.A.

Guerraoui, R. and A. Schiper (1997) Software-based replication for

. fault tolerance. IEEE Computer30(4), 68-74.
Anderson, T. E., M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.
derson, . ahlin, J eete, aterson, SHoward, J. H., M. L. Kazar, S. G. Menees, D. A. Nichols, M.

Roselli, and R. Y. Wang (1996) Serverless network file systems. .
9) y Satyanarayanan, R. N. Sidebotham, and M. J. West (1988) Scale

ACM Transactions on Computer Systerh4(1), 41-79. . o) .
Banino. J. S.. J. C. Fabre. M GuFi)IIemonty Ge Mééri)sset and M. Rozier and performance in a distributed file systeACM Transactions
N e o L ' . on Computer System6(1), 51-81.

(1985) Some fault-tolerant aspects of the Chorus distributed, . . .
system. Proceedings of the 5th IEEE International Conference?('St!erj[h‘]' JC a(tjndfl_\l/l. Sati/anexgﬁr]ran (199,[2_) Dlscognecte? opSeratlon
on Distributed Computing Systemsp. 430-437. Denver, CO, Lstelog) a3_|2e53ys em ransactions on tomputer Sys-

U.S-A. CFurdin, T. D. M., R. D. Schlichting, and G. R. Andrews (1987) A

Bloch, J. J, D. S. Daniels, and A. Z. Spector (1987) A weighte file replication facility for Berkeley unix.Software-Practice and
voting algorithm for replicated directorieslournal of AC . ’ .
929 P M Experience 17(12), 923-940.

34(4), 859-909. . .
Chen (P)M E. K. Lee. G. A. Ginson. R. H. Katz. and D. A Pattersoéatyanarayanan, M. (1990) Scalable, secure, and highly available

(1994) RAID: high-performance, reliable secondary storagewaliz”gwtédg!ieiccgséigﬁsi Ccorlﬂﬁzerzﬁj(g)’Tgh-izeT.(1983) The
ACM Computing Survey26(2), 145-185. e T T ' :

Cheng, H. C. and J. P. Sheu (1991) Design and implementation of chussdlstrlbu;eq qplteratlni;)/?soteg&th AC\'\/AV SﬁmpNan Spse;:
a distributed file system.Software-Practice and Experience ating System Principlepp. 49-70. retFon OO_ S, NH, U.5.A.
21(7), 657-675. Welch, B. and J. Ousterhout (1986) Prefix tables: a simple mecha-

nism for locating files in a distributed systeréth IEEE Interna-
Dasgupta, P., R. J. LeBlanc, Jr., and W. F. Appelbe (1988) The . o .
Clouds distributed operating system: functional description, tllggaICConkf)e_r;nce'\zz Ddstsrlzuted Computing Systepys 184-
implementation details and related wodth IEEE International - Lambriage, T
Conference on Distributed Computing Systemg. 2-9. San

Ral— T HRAERRFEHAERZ TR

BRERE" REETT FRETT OHRETTT

TRAEMERENERER
CRAKIGEHREREARER
TR AEEAIRER

i =

EEREXET BMRE —RBESBAHZZFPIEENEHNNERER - ZEHEXNGE THHEE
{ modular redundancy) -~ F£4# (primary-stand-by) R#EE% (weighted priority) = @HENEE - BT
RESHTKR > RORABSKEEMMEEEMEEHeapz #3e /i H &4 (extended prefix table) & kst
EEEMNBIHREX - EHEEREL - #FdiHeapB ERS AL WHY - BT LEHEE A ENREZSHINEHEERN R
$AZBEN o HMETRFINEHEXIEHIERE SN NEE N ARARENEZEN - ASBEFEMNESN - AR
BN~ BRERFEIITHESE

-410-

