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An important research topic is parallelizing of compilers to generate local
memory access sequences and communication sets while compiling a data-parallel
language into an SPMD (Single Program Multiple Data) program.  In this paper, we
present a scheme to efficiently enumerate local memory access sequences and to
evaluate communication sets.  We use a class table to store information that is
extracted from array sections and data distribution patterns.  Given array references
and data distributions, we can utilize the class table to generate communication sets
in closed forms.  Furthermore, we derive the algorithms for sending and receiving
necessary data between processors.  An algorithm for generating the class table is
presented, and the time complexity of this algorithm is O(s), where s is the array
section stride.  The technique of generating communication sets for one index variable
has been implemented on a DEC Alpha 3000 workstation.  The experimental results
confirm the advantage of our scheme, especially when the array section stride is larger
than the block size.  Finally, we adapt our approach to handle array references with
multiple index variables.  The time complexity for constructing the whole class table
is O(s2).

Keywords: communication set, data-parallel language, distributed memory
multicomputers, HPF, parallelizing compilers, SPMD.

1. INTRODUCTION

Data-parallel languages, such as High Performance Fortran (HPF) [1] and
Fortran D [3, 7], support global name spaces and provide directives for programmers
to specify distributions of arrays at the language level.  For a data-parallel program
in which the distribution can be specified by programmers or by means of a
separate compilation phase, the compiler must automatically partition the arrays
according to the distributions and generate the SPMD (Single Program Multiple
Data) code.  Actually, while it distributes arrays over processors, the compiler also
partitions the computation among processors.  In general, the compiler uses the
owner-computes rule to partition the computation.  By means of this rule, as a
computation is executed on a processor, data movement between processors is
needed if a processor references an array element which is allocated on another
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processor.  Therefore, the source processor has to determine the destination pro-
cessors and find out to which array elements will be sent.  The destination processor
has to determine the source processors and find out which array elements will be
received.  The sequence of the local memory addresses where these referenced
elements are allocated is called the local memory access sequence.  The sets of data
that have to be sent or received between source and destination processors are
communication sets [2, 6, 9].

Consider an array reference of the form A(l1 : u1 : s1) = f(X(l2 : u2 : s2)) with
arrays A and X both distributed in block-cyclic distributions, where f is a function
of array reference X(l2 : u2 : s2).  Paalvast et al. [11] proposed a scheme based on
scanning the indices of referenced elements to determine the elements which need
to be communicated.  Chatterjee et al. [2] proposed an approach to solve the local
memory access sequence problem in terms of a finite state machine.  Hiranandani
et al. [8] provided a method that works in Ω(t) time, but some special conditions
(s mod (p*t) < t) must hold, where t is the block size, s is the array section stride,
and p is the number of processors.  Kennedy et al. [9] described an improved
algorithm that computes the memory access sequence for the general case in
O(t + min(log s, log p)) time.  In their approaches, when the communication set
is evaluated, an explicit local-to-global translation corresponding to the r.h.s.
section and a global-to-local translation corresponding to the l.h.s. section need to
be performed for each referenced element on the r.h.s. section.  Stichnoth et al.
[12, 13] addressed communication set identification and local memory access de-
termination for referenced array elements using a block-cyclic distribution.
However, their method does not attempt to formulate active processor sets with
respect to each source/destination processor.  Gupta et al. [6] provided a virtual
processor scheme to address the problem of referenced index-set identification for
array statements with block-cyclic distributions and to formulate active processor
sets as closed forms.  During evaluation of communication sets, evaluation of the
first and last iterations within each block is required.

In this paper, we address the problems of finding local memory access
sequences and evaluating communication sets.  During evaluation of communica-
tion sets, however, our method does not require explicit local-to-global or global-
to-local transformation for each referenced array element.  To efficiently generate
communication sets, we classify all the blocks of array elements into several
classes according to the offsets of their first array elements referenced within
blocks.  We use a class table to store the information that is extracted from these
classes.  In a class table, we record four items for each class, including the offsets
of the first and last referenced elements, and the first and last iterations of the
first block in a class.  We can get the first and last iterations within each block
easily from the class table and avoid some computation overhead.  Moreover, in
case the array section stride is larger than the block size, we can use the class table
to enumerate the communication sets systematically and avoid runtime address
resolution [6].  In addition, previous researches almost all focused on the array
reference with one index variable.  One advantage of our work over others is that
it relaxes the restriction of an array reference with one index variable into affine
functions of loop indices.  According to the different boundary values of the array
section, we can determine the corresponding class table to enumerate the commu-
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nication sets.  The time complexity of the algorithm used to construct class tables
for the case of multiple index variables is O(s2), where s is the array section stride.
The strategy for compiling the array reference with multiple index variables is easy,
intuitive, and efficient.  We believe that this method is feasible for compiling an array
reference with multiple index variables.

Closed form characterization of index sets and processor sets would reduce
the overhead needed for packing data into messages on source processors and
unpacking data at destination processors.  For an array reference with one index
variable, if the array has only block or cyclic distribution, then the data index sets
and the processor sets can be characterized with regular sections for closed forms
[4, 5, 10].  However, for general block-cyclic distribution, closed form character-
ization of these sets with simple regular sections is impossible [6].  However, if we
change our viewpoint from processors to blocks, closed form characterizations of
communication sets and local memory access sequence are the same as cyclic
distribution.  Therefore, when evaluating a communication set, the following index
sets and block sets for a given block b have to be determined.

• The set of blocks to which b has to send data.
• The set of indices of the array elements which are allocated on b but are

needed by block k.
• The set of blocks from which b has to receive data.
• The set of indices of the array elements which are needed by b but are

resident on block k.

For a general block-cyclic distribution, since a message from processor p to
processor q consists of all the data which have to be sent from the blocks on p to
the blocks on q, we can obtain communication sets by the intersection of the index
sets for all blocks b and k, where blocks b are on p and blocks k are on q.  We can
get the processor sets for processor p in the same way.  However, in order to
efficiently compute the index sets and processor sets for a given processor p, we
use the class table to generate these sets.  We have stated that the class table
records the offsets of the first and last referenced elements and the first and last
iterations of the first block in a class.  The first two elements can help us to
generate the local memory access sequence, and the last two elements are useful
for evaluating the communication sets.  The time complexity of the algorithm
used to construct the class table is O(s/gcd(s, t)), and O(s) is the worst case.  For
array references with multiple index variables, the evaluation of communication
sets is more complicated than it is for array references with one index variable.
We still have a general method for compiling array references with multiple
index variables, and the overhead for constructing a class table with an array
reference is O(s2).

The rest of the paper is organized as follows.  In Section 2, we introduce
some notations and terminology used throughout the paper.  The closed forms of
the communication sets for array references with one index variable and multiple
index variables derived using class tables are described in Section 3.  Experimental
results and a comparison of our technique with the technique proposed in [5, 6] are
given in Section 4.  Section 5 concludes the paper.
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2. PRELIMINARIES

In this section, we will introduce the array statement model used in the paper,
formulate the closed form of the indices of array elements with block, cyclic, block-
cyclic distributions, and show the basic compilation phases of array references,
including the sending, receiving, and computation phases.  The outlines of the
algorithms for these three phases will also be provided in this section.

2.1 Assignment Statement Model

In this paper, we consider a simple FORALL loop in a data-parallel program:

FORALL(I1 = L1:U1, I2 = L2:U2, …, In = Ln:Un)

A(fA(I1, I2, …, In)) = F(X(fX(I1, I2, …, In))).

This loop has the following characteristics.

• F(X(fX)) denotes the function of X(fX).  F can contain only one array
variable, and the array variable’s reference function is fixed.

• The array references fA and fX are a linear combination of index variables
with integer constant coefficients:

fA(I1, I2, …, In) = a0 + a1I1 + a2I2 + … + anIn

fX(I1, I2, …, In) = x0 + x1I1 + x2I2 + … + xnIn .

 • The loops’ lower and upper bound expressions, L1, U1, L2, U2, …, Ln, Un,
can be constants or a linear combination of outer index variables.

For simplicity, here, we assume that the iteration strides are one.  If the
iteration stride Si is not one for some i, we can rewrite the loop as follows in order
to preserve the iteration stride with one step:

FORALL(I1 = L1:U1, …, Ii = 0 : (Ui – Li)/Si, …, In = Ln : Un)

A(fA(I1, I2, …, In)) = F(X(fX(I1, I2, …, In))),

where

fA(I1, I2, …, In) = a0 + a1I1 + … + (ai * Si * Ii + ai * Li) + … + anIn

fX(I1, I2, …, In) = x0 + x1I1 + … + (xi * Si * Ii + xi * Li) + … + xnIn.

Each array in such an assignment statement will be specified as a distribution
with directives provided by data-parallel languages.  We will now introduce common
distributions provided by general data-parallel languages.
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2.2 Data Distribution

Data-parallel languages, such as High Performance Fortran (HPF) [1] and
Fortran D [3], provide regular distributions, including block, cyclic, block-cyclic
distributions.  When the array elements are distributed over processors, we need
to store these array elements in local memory.  The index of an array element in
the original program is called a global index, and the index of an array element in
some processor’s local memory is called a local index.  There exists a mapping
between local indices and global indices.

Consider an array A(0 : n – 1) distributed onto P processors.  Let B = [n/t]
denote the total number of blocks, where t is the block size and POB(p) denotes
the set of blocks owned by processor p.  Thus, we obtain POB(p) = {bb = p + i
* P, 0 ≤ i ≤ B/P – 1, 0 ≤ b ≤ B – 1}.  Actually, block and cyclic distributions are
both special cases of the block-cyclic distribution.  Obviously, a cyclic distribution
is equivalent to cyclic (1), so each element forms a block, and POB(p) is equal to
the global index set of the array elements which are owned by processor p.  A block
distribution is equivalent to cyclic (n/P), so each processor has only one block.
Thus, we have POB(p) = {p} Hence, the general functions for mapping the global
to local indices and local to global indices can be formulated as follows:

global-to-local: loc = gl/(t * P) * t + (gl mod t),

local-to-global: gl = (loc/t * P + p) * t + (loc mod t),

where loc indicates the local index and gl is the global index.
Let the array reference A(l : u : s) contain the access sequence as follows:

(l, l + s , l + 2s, …, u), where l, u, and s are all integers.  (l : u : s) indicates a regular
section with a fixed memory stride, s.  If we can represent the local memory
access sequence of each processor in a regular section, it will be easy to enumerate
the access sequence in closed forms.  However, the local memory access sequence
for each processor may not be presented as a regular section when array elements
are distributed in a block-cyclic distribution.

Now, we can define a set of iterations, denoted by BOI(b), which includes
the iterations that reference the array elements owned by block b.  Let POI(p)
denote the set of iterations that references the array elements allocated on
processor p, that is, POI(p) = ∪b∈POB(p) BOI(b).  For an array reference A(l : u :
s) and a array A in block-cyclic distribution, the local memory access sequence in
a processor maybe have not constant memory stride, but it must be a constant
within each block.  Thus, if we know the first and last active elements in each
block, we will have a regular memory access sequence.  Following this idea, we can
try to classify the blocks to enumerate the local memory access sequence more
efficiently.  The way to classify blocks will be introduced in the next subsection.

2.3 Classification of Blocks

First of all, blocks are classified into three types.  If all the elements of a block
are less than l or greater than u, then we call it a blank block.  Those two blocks
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which have the elements A(l) or A(u) are called boundary blocks.  The rest of the
blocks are called active blocks.  Since no elements of a blank block will be
referenced and only two blocks are boundary blocks, we will first concentrate our
attention on active blocks, and the exception will be discussed in the next
section.  For the sake of simplicity, hereinafter, a block means an active block
except additional specification.

Two blocks belong to the same class if and only if the offsets of the first and
last active elements within these two blocks are the same.  Therefore, for a given
block b, the class number which it belongs to is equal to b mod class, where class
means the number of classes.  Since those blocks belonging to the same class have
the same offsets of the first and last active elements, we can denote the offsets of
the first and last active elements in class i as index_low(i) and index_up(i), respec-
tively.  The value of index_low(i) will be set to null if the active blocks in class i
contain no active element.

As previously described, those blocks belonging to the same class have the
same offsets of the first and last active elements.  Thus, if we view blocks in cyclic
manner from class 0 to class class – 1 as a cycle, the number of active elements in
each cycle is the same.  This property is very helpful when we are evaluating the
corresponding iteration of an active element.  Let iter_low(i) and iter_up(i) denote
the first and last iterations of class i in a cycle, respectively.  Those data elements
in regular section ((l mod s) : (l mod s) + ( l

s  – 1 ) × s : s) are not active elements.
However, when we evaluate iter_low(i) and iter_up(i), these data elements should
be taken into consideration.  To do so, evaluation of iter_low(i) and iter_up(i) can
begin with block 0 instead of the first active block of a cycle.  We term these data
elements pseudo active elements.  Those iterations which access pseudo active
elements are termed pseudo active iterations.  By definition, a class table keeps the
information about the classification of blocks.

Fig. 1 illustrates the notions of index_low, index_up, iter_low, and iter_up.
Blocks 3, 6, 9, and 12 belong to class 0.  The offsets of the first and last active
elements of these blocks are 0 and 6, respectively.  Therefore, the values of
index_low(0) and index_up(0) are set to be 0 and 6, respectively.  On the other
hand, the pseudo active elements are (0 : 6 : 3).  When we evaluate iter_low and
iter_up, these three pseudo active elements have to be counted.  The first and last
iterations of class 0 in a cycle are 0 and 2, respectively.  Thus, iter_low(0) = 0 and
iter_up(0) = 2.  In the same way, iter_low(1), iter_up(1), iter_low(2), and iter_up(2)
can be obtained.

We can prove that the classification of blocks is true for any array reference
of the form A(l : u : s) and array A with a cyclic(t) distribution using the following
theorem.

Theorem 1: Given an array A(0 : n-1) in a cyclic(t) distribution, for any array reference
A(l : u : s), all the active blocks can be classified into s/gcd(s , t) classes.
proof.

Suppose the offset of the first active element in block b is i; we want to prove
that the offset of the first active element in block b + s/gcd(s, t) is also i.  By definition,
we obtain the index of the first active element of block b + s/gcd(s, t) as follows:
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((b + s/gcd(s, t)) * t – (b * t + i))/s * s + b * t + i

= (lcm(s, t) – i)/s * s + b * t + i.

Because i < s holds, (lcm(s, t) – i)/s = lcm(s, t)/s.  Therefore, we have the
solution of index b * t + i + lcm(s, t) such that the offset index of the first active
element of block b + s/gcd(s, t) is i. ■

The algorithm for constructing the class table is shown in Fig. 2.

υ = l mod s
class = s/gcd(s, t)
Do i = 0 TO class – 1

iter_low(i) = max(i * t – υ, 0)/s
iter_up(i) = ((i + 1) * t – 1 – υ)/s
IF iter_low(i) ≤ iter_up(i) THEN

index_low(i) = iter_low(i) * s + υ – i * t
index_up(i) = iter_up(i) * s + υ – i * t

ELSE
index_low(i) = null

ENDIF
ENDDO

Fig. 2.  Compute_Class_Table algorithm.

Fig. 1. Block classes and the class table for A(3 * I + 9), where 0 ≤ I ≤ 30, A(0 : 111) is
distributed in cyclic (7).  Rectangles indicate the active elements.  Circles indicate the
pseudo active elements.
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In Fig. 2, class denotes the number of classes.  From Fig. 2, the class table
will be changed according to different values of υ, s, and t.  υ is changed according
to different values of l and s.  Therefore, the factors that really affect the construc-
tion of class tables are the values of l, s, and t.  Hence, each array may have several
class tables corresponding to respective array references and distributions.  For each
array reference, in order to construct the respective class table, the algorithm has
to be executed at the beginning of an assignment statement.  This algorithm takes
O(s/gcd(s, t)) time because it has only one loop, and the time complexity is sub-
jected to the bound of the loop.  Hence, the time complexity of the worst case for
this algorithm is O(s) as s is relatively prime to t.

In the next section, we will discuss how the class table can be used to compute
communication sets and to list local memory access sequences.

3. COMPILATION OF ARRAY REFERENCES

In this section, we will discuss how to generate communication sets and enu-
merate the local memory access sequences for array references with one index
variable.  Finally, we will adapt our approach to array references with multiple index
variables.

3.1 Compilation Phases

We will give the details of the three compilation phases, sending, receiving,
and computation phases, for compiling an assignment statement A(fA) = F(X(fX))
using the notations of sets.  The following definitions of these sets are similar to
those of Gupta et al. [6].  For integral description in this paper, we modify some
notations and enumerate them as follows.

In the sending phase, we have to evaluate PSD(p, q), the set of the local
indices of the array elements needed by processor q but owned by processor p, and
SP(p), the set of the processors that processor p has to send data to.  However, the
elements in these sets are naturally discontinuous when array elements are
block-cyclically distributed across processors.  Thus, we define the following sets
which have definitions corresponding to the above sets from the viewpoint of
blocks to help us represent the sets SP(p) and PSD(p, q):

• BSD(b, k): the set of the local indices of the array elements required by
block k but allocated on block b.  We have to send this set from block b
to block k.

• SB(b): the set of blocks that block b has to send data to.

We can represent the above sets as closed forms.  Therefore, SP(p) and
PSD(p, q) can be represented as closed forms by SB(b) and BSD(b, k) as follows:

SP(p) = ∪b ∈ POB(p)(∪k ∈ SB(b)proc(k))

PSD(p, q) = ∪b ∈ POB(p)(∪k ∈ SB(b)∩POB(q)BSD(b, k)).
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proc(k) is used to evaluate the processor number that block k resides on.  By
means of these equations, we can use a two-nested loop to calculate the sets SP(p)
and PSD(p, q).  We illustrate the basic steps in the sending phase as follows:

( 1) /*algorithm for sending phase */
( 2) DO b ∈ POB(p)
( 3) DO k ∈ SB(b)
( 4) q = proc(k)
( 5) SP(p) = SP(p) ∪ {q}
( 6) PSD(p, q) = PSD(p, q) ∪ BSD(b, k)
( 7) ENDDO
( 8) ENDDO
( 9) DO q ∈ SP(p)
(10) send(X(PSD(p, q)))
(11) ENDDO

The loop from line 2 to line 8 is used to compute the set of processors SP(p)
and the set PSD(p, q) for each processor q in SP(p).  Then, in lines 9-11, we pack
the messages which consist of X(PSD(p, q)) and send it to each processor q in
SP(p).  In the receiving phase, we use the following sets, which have the dual
definitions of those sets used in the sending phase, to show the basic steps of the
receiving phase:

• BRD(b, k): the set of the local indices of the array elements required by
block b but allocated on block k.

• RB(b): the set of blocks that block b has to receive data from.
• PRD(p, q): the set of the local indices of the array elements needed by

processor p but owned by processor q.  Processor p has to receive this set
from processor q.

• RP(p): the set of processors that processor p has to receive data from.

Similarly, the algorithm for receiving phase is stated as follows:

( 1) /*algorithm for receiving phase */
( 2) DO b ∈ POB(p)
( 3) DO k ∈ RB(b)
( 4) q = proc(k)
( 5) RP(p) = RP(p) ∪ {q}
( 6) PRD(p, q) = PRD(p, q) ∪ BRD(b, k)
( 7) ENDDO
( 8) ENDDO
( 9) DO q ∈ RP(p)
(10) receive(tmp_input)
(11) tmp_X(PRD(p, q)) = tmp_input
(12) ENDDO
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The loop in lines 2-8 is parallel to the loop for the sending phase in the same
line.  Processor p sends the elements of the indices in PSD(p, q) to processor q in
the sending phase and receives the elements of the indices in PRD(p, q) from q in
the receiving phase.  Received messages are stored in temporary array temp_X,
which has the same size as array A.  Then, we align the receiving elements with
the elements of array A on each processor.  The algorithm for the computation phase
is shown as follows:

( 1) /* algorithm for computation phase */
( 2) DO b ∈ POB(p)
( 3) DO i ∈ BOI(b)
( 4) d = global-to-local(fA(i))
( 5) A(d) = F(tmp_X(d))
( 6) ENDDO
( 7) ENDDO

Based on the above ideas, the algorithms for the three compilation phases will
be discussed in more detail in the next subsection.

3.2 Array References with One Index Variable

Let arrays A(0 : n1 – 1) and X(0 : n2 – 1) be distributed on P1 and P2 processors
with cyclic(t1) and cyclic(t2) distribution, respectively.  For each processor p, the
formulations of the sets which have been introduced in previous subsection are
described as follows:

B1 = n1/t1

POBA(p) = {bb = p + i * P1, 0 ≤ i ≤ B1/P1 – 1, 0 ≤ b ≤ B1 – 1}

B2 = n2/t2

POBX(p) = {bb = p + i * P2, 0 ≤ i ≤ B2/P2 – 1, 0 ≤ b ≤ B2 – 1}.

In this subsection, the array references with one index variable are considered.
Without loss of generality, let the array reference be in the form A(s1 * I + c1) =
F(X(s2 * I + c2)), where L ≤ I ≤ U.  In the sending phase, we have to evaluate PSD(p,
q), the set of the local indices of the array elements needed by processor q and
owned by processor p, and SP(p), the set of processors that processor p has to send
data to.  From the block point of view, before evaluating these two sets, we first
have to determine the index set, the set of the indices of the array elements which
the source block has to send to the destination block, and the block set, the set of
the destination blocks that some source block has to send data to, i.e., BSD(b, k)
and SB(b), respectively.  Hence, we first solve the set SB(b).  Because most of the
blocks belong to the active blocks, only the active blocks with respect to array X
are considered to evaluate the set SB(b); i.e, block b needs to be an active block
of array X.  However, blocks with respect to array A are all considered; that is, the
set BSD(b, k) is the index set that block b must send to block k, where b has to
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be some active block of array X, but k can be either a boundary block or an active
block of array A.  Regarding the boundary blocks of array X, this case will be dis-
cussed at the end of this subsection.

For simplicity, we use the subscript 1 to denote those terms with respect to
array A and the subscript 2 to denote the terms related to array X except
additional specification.  Let A(l1) and A(u1) be the first and last active elements
of array A; we obtain l1 = s1 * L + c1 and u1 = s1 * U + c1.  Similarly, let X(l2) and
X(u2) denote the first and last active elements of array X; we have l2 = s2 * L +
c2 and u2 = s2 * U + c2.  Let X(s2 * τ2 + c2) and X(s2 * ρ2 + c2) be the first and last
active elements within block b.  We obtain τ2 and ρ2 as follows:

τ2 = (b * t2 – l2)/s2),  σ2 = ((b + 1) * t2 – 1 – l2)/s2.

Then, the iterations that reference the array elements X on block b,
denoted by the set BOIX(b), are BOIX(b)={iτ2 ≤ i ≤ ρ2}.  Therefore, block b has
to send data to each block k which owns the elements of the set fA(BOIX(b)).  If
stride s1 is less than the block size t1, each block has at least one active element.
This implies that every block between fA(τ2)/t1 and fA(σ2)/t1 will receive at least
one array element from block b.  In another case where s1 ≥ t1, the contiguous
active elements will be located on discontinuous blocks, and each block will
contain at most one active element.  Thus, we have

   
SB(b) =

{k | fA(τ 2) / t1 ≤ k ≤ fA(σ 2) / t1 } if s1 < t1

{k | k = fA(i) / t1 , τ 2 ≤ i ≤ σ 2} if s1 ≥ t1 .

Figs. 3 and 4 illustrate the above two cases.
In the case s1 ≥ t1, due to the discontinuity of block set SB(b), the trivial way

to enumerate these blocks is to list them one by one.  To avoid runtime address
resolution, we can use the characteristics of the class table to calculate the set
SB(b) when s1 ≥ t1.  In the class table, those classes that the value of index_low
equals null imply that the blocks which belong to these classes contain no active
element.  These blocks can be precluded when the blocks in SB(b) are
enumerated.  Therefore, when the set SB(b) is enumerated, the blocks between
fA(τ2)/t1 and fA(σ2)/t1 except for the null blocks are all needed.  We can rewrite
the set SB(b) in the case s1 ≥ t1 as follows:

   
SB(b) = {k | k = i + j * class1 , 0 ≤ j ≤ (

fA(σ 2)
t1

– i) / class1 ,

   fA(τ 2)
t1

≤ i ≤ fA(τ 2)
t1

+ (class1 – 1) and index_low(i mod class1) ≠ null} .
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Fig. 3.  Determination of the block set SB(b) in  case s1 < t1.

Fig. 4.  Determination of the block set SB(b) in case s1 < t1.

After solving the block set SB(b), we can now consider the index set BSD(b,
k).  To solve the set BSD(b, k), we have to determine which iterations on block
k require the data on block b, where block k can be either a boundary block or
an active block of array A and block b has to be an active block of array X.  The
iterations which reference the data of X on block b are in BOIX(b).  The iterations
which are executed on block k are denoted by BOIA(k), where BOIA(k) = {iτ1 ≤
i ≤ s1} and

τ1 = max(k * t1 – l1, 0)/s1, σ1 = min((k + 1) * t1 – 1 – l1, u1 – l1)/s1.

From BOIX(b) and BOIA(k), the global index set of the array elements of X,
which have to be sent from block b to block k, can be formulated as follows:

fX(BOIA(k) ∩ BOIX(b)) = {fX(i)max(τ2, τ1) ≤ i ≤ min(σ2, σ1)}.

The set BSD(b, k) is defined as the set of the local indices of the array
elements required by block k but allocated on block b.  From the above formula-
tion, we already have evaluated the global index set of the array elements which
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block b needs to send to block k.  We can then transform the global index into local
index by means of the function of global-to-local.  The set BSD(b, k) can, therefore,
be obtained as follows:

BSD(b, k) = {locloc = gl mod t2 + b/P2 * t2, gl ∈ fX(BOIA(k) ∩ BOIX(b))}.

In the sending phase, what we really want to evaluate is the sets PSD(p, q)
and SP(p), that is, the set of the local indices of the array elements needed by
processor q but owned by processor p, and the set of the processors that processor
p has to send data to, respectively.  Evaluation of the sets BSD(b, k) and SB(b)
is a preprocessing step when we evaluate the sets PSD(p, q) and SP(p).  By the
above description, we already have the sets BSD(b, k) and SB(b).  Now, we will
describe how to evaluate the sets PSD(p, q) and SP(p) using the sets BSD(b, k)
and SB(b).

For a given processor p, only the active blocks owned by p need to evaluate
SB(b) and BSD(b, k).  Let head_b and tail_b denote the first and last active
blocks in p, respectively.  We can illustrate the formulations of these two variables
as follows:

   
head_b(p) =

p + l / (P * t) * P if p > l / t mod P

p + ( l / (P * t) + 1) * P if p ≤ l / t mod P

   
tail_b(p) =

p + u / (P * t) * P if p < u / f mod P

p +( u / (P * t) – 1) * P if p ≥ u / f mod P .

It is possible that head_b may be greater than tail_b.  In this case, it is
implied that there is no active block on this processor.  For array A, head_b1 and
tail_b1 are the first and last active blocks in some processor p.  Similarly, for array
X, head_b2 and tail_b2 are the first and last active blocks in some processor q.  In
the sending phase, we have to visit all the active blocks with respect to array X to
evaluate the sending set for each processor.  We can represent all the active blocks
in p as a regular section (head_b2 : tail_b2 : P2).  For each block b in this regular
section, the first and last iterations are required for evaluation of BOIX(b); that
is, τ2 and σ2 need to be evaluated.  Although the formulations of these two variables
already have been described, we can get them in another way by using the class
table instead of straightforward computation and save some computation overhead.
First, we evaluate the following four variables for a given block b:

c2 = b mod class2
r = b div class2
per_iter = iter_up2(class2 – 1) + 1
iter_dist = r * per_iter – l2/s2.
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c2 is the class number that block b belongs to, r stands for the number of
cycles before block b appears, per_iter indicates the total number of iterations
that a cycle contains, and iter_dist is the number of iterations before block b
appears.  From the above, we obtain τ2 and σ2 as follows:

τ2 = iter_dist + iter_low2(c2)

σ2 = iter_dist + iter_up2(c2).

 Fig. 1 shows an example with class = 3, per_iter = 7, l = 9, and s = 3.  Let
b = 8; then, we obtain c2 = 2, r = 2, iter_dist = 2 * 7 – 3 = 11.  Therefore, we have
τ = 11 + 5 = 16 and σ = 11 + 6 =17.  The sending algorithm is shown in Fig. 5.
The initialization of the variables class, head_b and tail_b is not shown in Fig. 5.
We assume that the values of these variables and the class table are evaluated
before the algorithm is executed.  The Do loops in lines 10-21 and lines 23-36 are
executed for the set SB(b).  The Do loop in lines 17-20 and lines 29-32 are for
evaluation of BSD(b, k).  In order to reduce the communication overhead, we
collect all the messages together that need to be sent to the same destination
processor but may belong to different blocks.

In the sending phase, we travel over the active blocks of array X which are
owned by processor p and determine which elements of array A need the
elements of array X.  In contrast, we travel over the active blocks of array A which
are owned by p and determine which elements of array X need the elements of
array A in the receiving phase.  Hence, the evaluation part of the receiving phase
is different from the evaluation part of the sending phase.  The difference
between these two phases is that the messages received have to be unpacked and
stored in temporary array tmp_X.  Fig. 6 shows the receiving phase algorithm.

After completion of the communication phase, all the data referenced by the
computation have been allocated in the processor’s local memory.  Hence, the most
important work in the computation phase is to enumerate the local memory access
sequence of array A.  Though it can not be presented as a closed form, the sequence
within a block is a regular section.  Hence, we first scan all the blocks in a regular
section (head_b1 : tail_b1 : P1) and then find the indices of the first and last active
elements within a given block b.  The indices, just like the first and last iterations
of blocks, can be obtained easily using information from the class table.  We can
evaluate the following two variables which can assist us in finding these two elements:

c1 = b mod class1

block_dist =   b
P1

 * t.

Then, we can obtain the local indices of the first and last active elements for
block b as follows:

first_index = block_dist + index_low1(c1)
last_index = block_dist + index_up1(c1).
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( 1) /* Sending_Evaluation algorithm */
( 2) per_iter = iter_up2(class2 – 1) + 1
( 3) c2 = head_b2 mod class2

( 4) iter_dist = (head_b2 div class2) * per_iter – l2/s2
( 5) DO b = head_b2 TO  tail_b2 STEP P2
( 6) IF index_low2(c2) ≠ null THEN
( 7) τ2 = iter_dist + iter_low2(c2)
( 8) σ2 = iter_dist + iter_up2(c2)
( 9) IF s1 < t1 THEN
(10) DO k = fA(τ2)/t1 To fA(σ2)/t1
(11) q = proc(k)
(12) SP(p) = SP(p) ∪ {q}
(13) τ1 = max(k * t1 – l1, 0)/s1
(14) σ1 = min((k + 1) * t1 – 1 – l1, u1 – l1)/s1
(15) first = fX(max(τ1, τ2))
(16) last = fX(min(σ1, σ2))
(17) DO loc = first mod t2 + b/P2 * t2 TO last mod t2 + b/P2 * t2 STEP s2

(18) tmp_outputq(cntq) = X(loc)
(19) cntq = cntq + 1
(20) ENDDO
(21) ENDDO
(22) ELSE /* s1 ≥ t1 */
(23) DO i = fA(τ2)/t1 TO fA(τ2)/t1 + class1 – 1
(24) IF (index_low1(i mod class1) ≠ null) THEN
(25) u = τ2

(26) DO j = i To fA(σ2)/t1 STEP class1

(27) q = proc(j)
(28) SP(p) = SP(p) ∪ {q}
(29) loc = fX(u) mod t2 + b/P2 * t2

(30) tmp_outputq(cntq) = X(loc)
(31) cntq = cntq + 1
(32) u = u + per_iter
(33) ENDDO
(34) ENDIF
(35) τ2 = τ2 + 1
(36) ENDDO
(37) ENDIF
(38) ENDIF
(39) r = (c2 + P2) div class2

(40) c2 = (c2 + P2) mod class2

(41) iter_dist = per_iter * r + iter_dist
(42) ENDDO
(43) /* Sending_Packing Algorithm */
(44) DO q ∈ SP(p)
(45) send(q, tmp_outputq, cntq)
(46) ENDDO

Fig. 5.  Sending algorithm for array references with one index variable.
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( 1) /* Receiving_Evaluation Algorithm */
( 2) per_iter = iter_up1(class1 – 1) + 1
( 3) c1 = head_b1 mod class1
( 4) iter_dist = (head_b1 div class1) * per_iter – l1/s1
( 5) DO b = head_b1 TO tail_b1 STEP P1
( 6) IF index_low1(c1) ≠ null THEN
( 7) τ1 = iter_dist + iter_low1(c1)
( 8) σ1 = iter_dist + iter_up1(c1)
( 9) IF s2 < t2 THEN
(10) DO k = fX(τ1)/t2 TO fX(σ1)/t2
(11) q = proc(k)
(12) RP(p) = RP(p) ∪ {q}
(13) τ2 = max(k * t2 – l2, 0)/s2
(14) σ2 = min((k + 1) * t2 – 1 – l2, u2 – l2)/s2
(15) first = fA(max(τ2, τ2))
(16) last = fA(min(σ1, σ2))
(17) DO loc = first mod t1 + b/P1 * t1 TO last mod t1 + b/P1 * t1 STEP s1
(18) tmp_locq(cntq) = loc
(19) cntq = cntq + 1
(20) ENDDO
(21) ENDDO
(22) ELSE /* s2 ≥ t2 */
(23) DO i = fX(τ1)/t2 TO fX(τ1)/t2 + class2 – 1
(24) IF (index_low2(i mod class2) ≠ null) THEN
(25) u = τ1
(26) DO j = i TO fX(σ1)/t2 STEP class2
(27) q = proc(j)
(28) RP(p) = RP(p) ∪ {q}
(29) loc = fA(u) mod t1 + b/P1 * t1
(30) tmp_locq(cntq) = loc
(31) cntq = cntq + 1
(32) u = u + per_iter
(33) ENDDO
(34) ENDIF
(35) τ1 = τ1 + 1
(36) ENDDO
(37) ENDIF
(38) ENDIF
(39) r = (c1 + P1) div class1
(40) c1 = (c1 + P1) mod class1
(41) iter_dist = per_iter * r + iter_dist
(42) ENDDO
(43) /* Receiving_Unpacking Algorithm */
(44) DO q ∈ RP(p)
(45) receive(q, tmp_inputq, cntq)
(46) DO i = 0 TO cntq – 1
(47) tmp_X(tmp_locq(i)) = tmp_input(i)
(48) ENDDO
(49) ENDDO

Fig. 6.  Receiving algorithm for array references with one index variable.
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Hence, the local indices of the active elements in block b are represented as
a regular section (first_index : last_index : s1).  The algorithm shown in Fig. 7 is a
two-nested loop.  The outer loop is used to enumerate the active blocks that
processor owns, and the inner loop executes the elements of the regular section,
which consists of the active elements in the active block.  The class table avoids
translating global indices to local indices or local indices to global indices and
assists in generating the next active element.

( 1) /* Computation_Enumeration algorithm */
( 2) block_distance = head_b1/P1 * t1
( 3) DO b = head_b1 TO tail_b1 STEP P1
( 4) c1 = b mod class1
( 5) IF index_low1(c1) ≠ null THEN
( 6) DO d = index_low1(c1) TO index_up1(c1) STEP s1
( 7) i = block_distance + d
( 8) A(i) = F(tmp_X(i))
( 9) ENDDO
(10) ENDIF
(11) block_distance = block_distance + t1
(12) ENDDO

Fig. 7.  Computation algorithm for array references with one index variable.

In the previous discussion, we were only concerned with the active blocks of
array X.  For completeness, we will discuss how to deal with the boundary blocks
of array X.  The differences between active blocks and boundary blocks are
described in the following two instances.  In active blocks, the offset of the first active
element must be less than the array reference stride.  However, in boundary blocks,
the offset of the first active element may be larger than the array section stride.  It
all depends on the value of l.  On the other hand, the distance between the last active
element and the last element (which may not be an active element) within an active
block must be less than the array section stride; however, within a boundary block,
this distance may be greater than the memory stride.  Therefore, the above formu-
lations are not suitable for boundary blocks.  Hence, we generate another piece of
code to handle them.  Adding this code to the sending algorithm, we obtain the
complete algorithm, which is called the One_Variable_Sending algorithm.  Sim-
ilarly, we have the One_Variable_Receiving algorithm and One_Variable_Com-
putation algorithm for the receiving phase and computation phase, respectively.  In
these algorithms, there is a range behind some statement.  This shows where the
statement should be replaced by the range of codes in the specified algorithm.  For
instance, the fourth statement of the One_Variable_Sending algorithm means that
here we should insert the codes from the ninth statement to the thirty-seventh
statement in the Sending_Evaluation algorithm.  We show these algorithms in
Figs. 8, 9, 10 and the entire algorithm in Fig. 11.
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( 1) IF p = l2/t2 mod P2 THEN
( 2) τ2 = 0
( 3) σ2 = (t2 – 1 – (l2 mod t2))/s2
( 4) Sending_Evaluation algorithm (9-37)
( 5) ENDIF
( 6) Sending_Evaluation algorithm
( 7) IF p = u2/t2 mod P2 THEN
( 8) σ2 = (u2 – l2)/s2
( 9) τ2 = σ2 – (u2 mod t2)/s2
(10) Sending_Evaluation algorithm (9-37)
(11) ENDIF

Fig. 8.  One_Variable_Sending algorithm.

( 1) IF p = l1/t1 mod P1 THEN
( 2) τ1 = 0
( 3) σ1 = (t1 – 1 – (l1 mod t1))/s1
( 4) Receiving_Evaluation algorithm (9-37)
( 5) ENDIF
( 6) Receiving_Evaluation algorithm
( 7) IF p = u1/t1 mod P1 THEN
( 8) σ1 = (u1 – l1)/s1
( 9) τ1 = σ1 – (u1 mod t1)/s1
(10) Receiving_Evaluation algorithm (9-37)
(11) ENDIF

Fig. 9.  One_Variable_Receiving algorithm.

( 1) IF p = l1/t1 mod P1 THEN
( 2) low = global – to – local(l1)
( 3) up = global – to – local((l1/t1 + 1) * t – 1)
( 4) DO i = low TO up STEP s1
( 5) A(i) = F(tmp_X(i))
( 6) ENDDO
( 7) ENDIF
( 8) Computation_Enumeration
( 9) IF p = u1/t1 mod P1 THEN
(10) low = index_low1(c1) + block_distance
(11) up = global – to – local(u1)
(12) DO i = low TO up STEP s1
(13) A(i) = F(tmp_X(i))
(14) ENDDO
(15) ENDIF

Fig. 10.  One_Variable_Computation algorithm.
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(1) Compute_Class_Table algorithm for array A
(2) Computd_Class_Table algorithm for array X
(3) Initialization of head_b1, head_b2, tail_b1, tail_b2
(4) One_Variable_Sending algorithm
(5) Sending_Packing algorithm
(6) One_Variable_Receiving algorithm
(7) Receiving_Unpacking algorithm
(8) One_Variable_Computation algorithm

Fig. 11. One_Variable algorithm.

3.3 Array References with Multiple Index Variables

The local memory access sequence in each block must be a regular section
though the local memory access sequence on each processor may not be a regular
section when the array reference involves only one index variable.  However, the
local memory access sequence is no longer a regular section, even in a block where
the array reference involves multiple index variables.  Therefore, we have to change
our viewpoint from array elements to iterations and reduce the problem to the case
of array reference with one index variable.  If we substitute index variables in outer
loops for values of iterations and leave the index variable in the innermost loop to
vary, we reduce the problem to one index variable, and we can apply the approach
developed for array references with one index variable.  Let IS denote the iteration
space, i.e., IS = {(I1, I2, …, In)Li ≤ Ii ≤ Ui, 1 ≤ i ≤ n}.  If we ignore the last dimension
of the iteration space, a reduced iteration space, denoted by ISR, ISR = {(I1, I2, …,
In–1)Li ≤ Ii ≤ Ui, 1 ≤ i ≤ (n – 1)} is formed.  Let (I1, I2, …, In–1) be the reduced
iteration instance.  We traverse the reduced iteration space in lexicographical order
and substitute each reduced iteration instance into the array reference; then, the
array reference with multiple index variables will be reduced to another array
reference involving only the innermost index variable.  For example, the array
reference in the following 2-nested loop involves 2 index variables, I1 and I2:

FORALL(I1 = L1 : U1, I2 = L2 : U2)
A(fA(I1, I2)) = F(X(fX(I1, I2))).

Applying the above strategy, the array reference can be reduced such that it
involves just one index variable, I2:

I1 = L1 : FORALL(I2 = L2 : U2)
A(fA(L2, I2)) = F(X(fX(L1, I2))),

I1 = L1 + 1 : FORALL(I2 = L2 : U2)
A(fA(L1 + 1, I2)) = F(X(fX(L1 + 1, I2))),

 

I1 = U1 : FORALL(I2 = L2 : U2)
A(fA(U1, I2)) = F(X(fX(U1, I2))).
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Obviously, each reduced array reference is independent.  The One_
Variable_Sending algorithm requires that each reduced array reference be
performed once.  In a different reduced array reference, the class table has to be
recomputed due to the changed boundary values.  However, computing the class
table for each reduced iteration instance incurs additional overhead.  To reduce this
kind of overhead, we analyze the construction of the class table and derive the
following theorem:

Theorem 2: Given an array A(0 : n-1) in a cyclic(t) distribution, for any array reference
A(l : u : s), active blocks can be divided into s/gcd(s,t) classes.  Moreover, for different
l, we have different class tables.  All the class tables for all l can be divided into s
distinct class tables.
proof.

By Fig. 2, we know that different values of υ, s, and t will result in different
kinds of class tables.  If the array distribution and the stride of the reference patterns
are fixed, i.e., s and t are fixed, then the factor that can affect the class tables is
simply the value of υ.  From Fig. 2, υ = l mod s.  Therefore, for different l, υ can
have at most s kinds of values.  Hence, all the class tables for all l can be divided
into s distinct class tables. ■

The benefit of the Multiple_Variable algorithm from Theorem 2 is that
evaluation of class tables is performed just once; then, for different l, we can
determine which class table fits the array reference A(l : u : s) in constant time.  We
can rewrite the Compute_Class_Table algorithm into the Compute_Whole_
Class_Table algorithm as shown in Fig. 12.  The variable m denotes the table
number, and we can determine m as follows:

class = s/gcd(s, t)
DO m = 0 TO s – 1

DO i = 0 TO class – 1
iter_low(m, i) = max((i * t – m), 0)/s
iter_up(m, i) = ((i + 1) * t – 1 – m)/s
IF iter_low(m, i) ≤ iter_up(m, i) THEN

index_low(m, i) = iter_low(m, i) * s + m – i * t
index_up(m, i) = iter_up(m, i) * s + m – i * t

ELSE
index_low(m, i) = null

ENDIF
ENDDO

ENDDO

Fig. 12.  Compute_Whole_Class_Table algorithm.
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m = l mod s.

We show the Multiple_Variables_Sending algorithm in Fig. 13.  In this algo-
rithm, we apply the One_Variable algorithm in the inner loop.  In fact, it is not
correct to place One_Variable algorithm there without any modification of the
code, but all we have to do is to add the parameter m to specify the class table.
Following the same idea, we can obtain the Multiple_Variable_Receiving algorithm
and Multiple_Variable_Computation algorithm as shown in Fig. 14 and Fig. 15,
respectively.

DO I1 = L1 TO U1
DO I2 = L2 TO U2

 
DO In–1 = Ln–1 TO Un–1

l2 = x0 + x1 * I1 + x2 * I2 + … + xn–1 * In–1 + xn * Ln
u2 = x0 + x1 * I1 + x2 * I2 + … + xn–1 * In–1 + xn * Un
Initialization of head_b2, tail_b2
IF head_b2 ≤ tail_b2 THEN

m = l2 mod s2
One_Variable_Sending algorithm

ENDIF
ENDDO

 
ENDDO

ENDDO
Sending_Packing algorithm

Fig. 13.  Multiple_Variables_Sending algorithm.

DO I1 = L1 TO U1
DO I2 = L2 TO U2

 
DO In–1 = Ln–1 TO Un–1

l1 = a0 + a1 * I1 + a2 * I2 + … + an–1 * In–1 + an * Ln
u1 = a0 + a1 * I1 + a2 * I2 + … + an–1 * In–1 + an * Un
Initialization of head_b1, tail_b1
IF head_b1 ≤ tail_b1 THEN

m = l1 mod s1
One_Variable_Receiving algorithm

ENDIF
ENDDO

 
ENDDO

ENDDO
Receiving_Unpacking algorithm

Fig. 14.  Multiple_Variables_Receiving algorithm.
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DO I1 = L1 TO U1
DO I2 = L2 TO U2

 
DO In–1 = Ln–1 TO Un–1

l1 = a0 + a1 * I1 + a2 * I2 + … + an–1 * In–1 + an * Ln

u1 = a0 + a1 * I1 + a2 * I2 + … + an–1 * In–1 + an * Un

IF head_b1 ≤ tail_b1 THEN
m = l1 mod s1
One_Variable_Computation algorithm

ENDIF
ENDDO

 
ENDDO

ENDDO

Fig. 15.  Multiple_Variables_Computation algorithm.

We have adapted the approach for array references with one index variable
to array references with multiple index variables.  Since the problems related to listing
local memory access sequences and generating communication sets for multiple index
variables are much more complicated than are those for one index variable, almost
all the existing methods target the problems related to one index variable.  Therefore,
the intuitive method for solving this problem is to directly scan over the all of the
active elements and determine which elements need to be communicated.  Note that
the active elements can not be represented by just one variable.  However, this method
involves too many local-to-global and global-to-local computations.  It is the most
inefficient way to generate communication sets.  Our method is an alternative choice.
Although the cost of calculating all of the class tables is O(s2), once these class tables
are available, the algorithm for one index variable, the One_Variable algorithm, can
be directly used.  In addition, our method is more efficient than other methods for
one index variable.  Therefore, we believe that this method is easier to apply to an
array reference with multiple index variables than the other methods.

4. EXPERIMENTAL RESULTS

Regular data distributions include block distribution, cyclic distribution and
block-cyclic distribution.  Block and cyclic distributions are special cases of block-
cyclic distribution.  Given data distribution, parallelizing compilers have to partition
computations and data across processors according to the programmer specified data
distribution and owner-computes rule for execution on distributed-memory
multicomputers.  To do so, compilers have to evaluate local memory access sequences
and generate communication sets.  This paper has focused on general data distri-
bution, block-cyclic distribution, and generation of necessary communication sets.
To verify the advantages of our scheme, the techniques for generating communication
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sets for one index variable proposed in this paper and [5, 6] have been implemented
on a DEC Alpha 3000 workstation.  The viewpoint of block classification is similar
to that of the virtual-block to virtual-block scheme proposed in [5, 6].  Therefore,
we implemented the virtual-block to virtual-block scheme and denote this scheme
as Gupta’s method.  A comparison of our technique and Gupta’s [5, 6] has been
extensively made.  In this experiment, the times were measured by means of CPU
time, and the time unit used was a microsecond.

Given two processors, p1 ∈ P1 and p2 ∈ P2, the time needed to generate RP(p1)
and PRD(p1, q1) for p1 and SP(p2) and PSD(p2, q2) for p2 was measured.  The time
needed to generate the class table was also included in the measurement.  What we
were interested in was the impact on performance incurred by different values of
the block size and the array section stride.  Therefore, only the block size and the
array section stride were varied; other values were fixed except additional speci-
fication.  For simplicity, the block size (t), the array section stride (s), the number
of processors (P), the number of array elements (n), and the lower bound (l) of the
array section for both arrays were the same.  Suppose the number of array elements
was 30000 and suppose they were distributed across 3 processors using cyclic(t)
distribution, where t is the block size.  The array section was from 0, and the stride
was s.  Since the upper bound, u, was irrelevant to our experiment, we omitted the
specification of u.

When the block size was fixed and equaled 12, the execution times varied with
the array section stride as shown in Fig. 16.  When the array section stride was smaller
than or equal to the block size, the execution time of both ours and Gupta’s scheme

Fig. 16.  The execution time of our technique and Gupta’s when the block size was 12 and the
array section stride varied from 1  to 24.
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Fig. 17. The execution time of our technique and Gupta’s when the array section stride was 12
and the block size varied from 1 to 24.

decreased with the increase of the array section stride.  This is because the number
of active elements decreased as the array section stride increased.  However, a sudden
change occurred in Gupta’s scheme when the array section stride was larger than
the block size.  The execution times were much higher than those measured when
the array section stride was smaller than or equal to the block size.  Since a block
contained at most one active element and continuous blocks did not necessarily
contain one active element, as illustrated in Fig. 4, the technique proposed in [5,
6] directly calculated each element of the communication sets one by one.  A large
amount of computation was involved using this straightforward method.  Fig. 16
also shows the fact that Gupta’s method was very inefficient when the array section
stride was larger than the block size.  For our technique, since the class table gives
enough information to generate communication sets no matter whether the array
section stride is larger than, equal to or smaller than the block size, the phenomenon
which occurred in Gupta’s method did not occur in our scheme.  However, when
the array section stride was larger than the block size, the calculation of commu-
nication set was dependent of the number of classes in our method.  That is why
our method had slight vibrations when the array section stride was larger than the
block size.  Comparing the two methods, our method was always superior to Gupta’s
scheme, especially when the array section stride was larger than the block size.

On the other hand, we were curious about the influence of the block size on
performance when the array section stride was fixed.  Fig. 17 illustrates the variation
of the execution time when the array section stride was fixed and the block size varied.
For both methods, the bigger the block size was, the shorter was the execution time.
This again confirmed the fact that when the array section stride was larger than the
block size, the execution time of Gupta’s scheme was much longer than that of our
method.  It is worth mentioning that when the block size equaled 1, in other words,
the arrays were distributed using cyclic distribution, we observed that the execution
time of Gupta’s method was much longer than others.  This means that Gupta’s
method is inefficient when the array is distributed using cyclic distribution.
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Previously, we have experimented on fixing either the array section stride on
the block size.  To better understand the impact on performance caused by different
values of the array section stride and the block size, we also experimented using
different values of t and s.  Table 1 gives the speedups of our method against Gupta’s
for t = 1, 10, 50, 100, 500, 1000, 5000, 10000 and s = 1, 2, 3, 5, 7, 8, 10, 12, 15, 18,

20, 24, 25, where speedups were obtained from   Gupta′s
ours .  From the experimental result,

the bigger the block size was, the smaller was the speedup.  Since the number of
active elements contained in a block was larger if the block size was bigger, the
overhead incurred by Gupta’s method was smaller.

Table 1. Speedups of our technique against Gupta’s for different values of block
sizes and array section strides.

t = 1 t = 10 t = 50 t = 100 t = 500 t = 1000 t = 5000 t = 10000

s = 1 2.42 1.33 1.20 1.22 1.11 1.09 1.15 1.13

s = 2 280.72 1.48 1.29 1.21 1.15 1.14 1.10 1.17

s = 3 158.86 1.53 1.30 1.24 1.18 1.12 1.24 1.52

s = 5 153.41 1.66 1.33 1.27 1.19 1.14 1.13 1.18

s = 7 124.17 1.72 1.37 1.32 1.14 1.13 1.11 1.48

s = 8 132.63 1.77 1.44 1.36 1.19 1.16 1.00 1.19

s = 10 97.71 2.31 1.48 1.32 1.23 1.21 1.10 1.00

s = 12 186.36 13.83 1.48 1.35 1.19 1.21 1.09 1.17

s = 15 154.84 16.88 1.52 1.40 1.19 1.11 1.19 1.18

s = 18 133.10 11.58 1.59 1.43 1.26 1.18 1.05 1.15

s = 20 57.51 27.46 1.58 1.45 1.28 1.18 1.16 1.16

s = 24 102.24 9.79 1.62 1.47 1.27 1.18 1.09 1.17

s = 25 47.37 18.04 1.64 1.49 1.31 1.16 1.06 1.23

We have analyzed the performance results when all the parameters for two
arrays were the same.  Table 2 gives the performance of our technique and Gupta’s
for different parameters to two arrays.  The number of array elements was 30000,
the number of processors was 3, and the lower bound of the array section was 0
for two arrays.  We give not only the speedup but also the improvement to verify
the advantages of our method against Gupta’s, where the improvement was obtained

from    Gupta′s – ours
Gupta′s  * 100%.  Although the parameters for the two arrays were

different, the experimental results also display the same phenomena.  The bigger
the block size was, the smaller was the improvement or speedup obtained.  When
the array section stride was larger than the block size, the performance of our method
was much better than that of Gupta’s.
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Table 2.  Performance results of our technique and Gupta’s and a comparison of
ours with Gupta’s for variations of s and t.

Parameters Execution Time (µs) Improvement Speedup

t1 s1 t2 s2 Ours (O) Gupta’s (G) (   G – O
G  * 100%) (G

O)

1 1 1 1 188084.95 498482.25 62.27% 2.65

5 2 5 3 82657.44 165107.69 38.82% 1.64

5 4 7 5 63156.96 107926.08 41.48% 1.71

10 6 12 4 44085.92 68017.44 35.18% 1.54

15 10 20 5 25893.28 40279.52 35.72% 1.56

50 10 80 5 12600.16 16904.32 25.46% 1.34

100 12 120 10 9106.08 12258.56 25.72% 1.35

200 4 250 5 12483.04 15098.72 17.32% 1.21

300 3 500 5 11799.84 14640.00 19.40% 1.24

1000 10 800 8 5953.60 7388.32 19.42% 1.24

5000 7 4000 9 6080.48 6627.04 8.25% 1.09

10000 3 8000 7 5465.60 5934.08 7.89% 1.09

1 5 1 3 56432.32 15570363.00 99.64% 275.91

5 7 5 9 47170.08 1782283.38 97.35% 37.78

5 7 7 12 45110.72 1159546.50 96.11% 25.70

10 15 12 15 30753.76 528055.06 94.18% 17.17

15 18 20 25 18797.76 209713.13 91.04% 11.16

These experimental results confirm that our technique outperforms Gupta’s
in all cases.  When the array section stride is smaller than or equals the block size,
the amount of improvement obtained using our technique against Gupta’s varied
with different parameters, but our technique always outperformed Gupta’s.  In
addition, our technique always exhibited superior advantages against Gupta’s
when the array section stride was larger than the block size.

5. CONCLUSIONS

Automatic generation of efficient SPMD code for implementation of data-
parallel programs on multicomputers is a very important issue for parallelizing
compilers.  In this paper, we have proposed a strategy to generate efficient SPMD
codes for assignment statements in a data-parallel program.  Given an array reference
and an array in a block-cyclic distribution, we construct the class table to keep
necessary information to assist both the evaluation of communication sets and the
enumeration of local memory access sequences.  The information in the class table
is useful in reducing the overhead of translation between local indices and global
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indices when local memory access sequences are enumerated.  In addition, calculation
of the first and the last iterations in a block for evaluation of communication sets
can also be handled by the class table.  We have presented an algorithm for computing
the essential information of the class table.  The time complexity of this algorithm
is O(s/gcd(s, t)).  We have also implemented our technique and the virtual-block
to virtual-block scheme proposed in [5, 6].  Extensive experiments were performed,
and performance analyses have been given.  The experimental results show the
advantages of our technique against Gupta’s, especially when the array section stride
is larger than the block size.  Furthermore, compiling of array references with multiple
index variables also can be done by applying our method.  The construction of class
tables for compilation of array references with multiple index variables takes O(s2)
time.  The strategy for compiling array references with multiple index variables is
easier and more efficient than those of existing methods.  We believe that this
method is feasible for compiling array references with multiple index variables.
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