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ABSTRACT

In this paper, we study the all-to-all personalized and non-personalized broadcast problems in a
star graph.  This work is motivated by the observation that existing works in the literature only try to
optimize the data transmission time, but ignore the start-up time required to initialize communication.
As a result, existing algorithms, although claimed to be optimal, are only so when the start-up time is
negligible.  In this paper we try to optimize both costs at the same time.  We develop an all-to-all personalized
broadcast algorithm that is more efficient than existing results.  We also present an all-to-all non-
personalized broadcast algorithm that outperforms existing results in most cases except when the start-
up time is very small (in a ratio of O(   1(n – 1)!

), where n is the dimension of the star graph) compared

to the transmission time.  Extensive simulations have been conducted, which show 10%~80% improvement
over existing results.

Key Words:  all-to-all personalized/non-personalized broadcast, collective communication, interconnec-
tion network, routing, star graph
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bution in High-Performance FORTRAN, parallel graph
algorithms, and parallel matrix algorithms.  This prob-
lem can be classified according to the communication
pattern (one-to-all or all-to-all) and the message nature
(personalized or non-personalized).  Many studies have
been focused on various versions of this problem, e.g.,
one-to-all broadcast (Akers et al., 1987; Akl et al.,
1993; Chen et al., 1996; Mendia and Sarkar, 1992;
Misic and Jovanovic, 1994; Qiu, 1995; Sheu et al.,
1993, 1995) and all-to-all broadcast (Fragopoulou and
Akl, 1995; Misic and Jovanovic, 1994).

In this paper, we study the all-to-all broadcast
problem in a star graph, where each node has a message
to be sent to all other nodes in the network.  We consider
the message to be personalized or non-personalized.  If
it is personalized, then the message sent from a source
node to every destination node may vary; otherwise,
the message is the same.  The routing technology is
assumed to use packet switching with the single-port
capability.  By means of the single-port capability, a
node can send, and simultaneously receive, at most one
message at a time, as opposed to the all-port capability,
where a node can send and receive along all channels
simultaneously.

I. Introduction

Designing and implementing multicomputer net-
works with versatile topologies, such as the linear
array, ring, mesh, tree, hypercube, etc., has become
possible due to fast advances in hardware technologies.
One new interconnection network that has attracted
much attention recently is the star graph (Akers et al.,
1987; Akers and Krishnamurthy, 1989).  Part of the
reason for this interest is its symmetric and recursive
nature, and superior (lower) node degree and compa-
rable diameter as opposed to hypercubes.  Indeed, many
studies have been done on the star graph’s topological
properties (Day and Tripathi, 1994; Qiu et al., 1994),
embedding capability (Jwo et al., 1990; Nigam et al.,
1990; Tseng et al., 1997), communication capability
(Akl et al., 1993; Fragopoulou and Akl, 1995; Mendia
and Sarkar, 1992; Misic and Jovanovic, 1994; Qiu,
1995; Sheu et al., 1995), and fault-tolerant capability
(Bagherzadeh et al., 1993; Jovanovic and Misic, 1994;
Latifi, 1993).

Broadcasting is a preliminary function in an
interconnection network. It has many applications, such
as Fast Fourier Transformation (FFT), data re-distri-
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This work is motivated by the observation that
existing works (Fragopoulou and Akl, 1995; Misic and
Jovanovic, 1994) in the literature only try to optimize
the data transmission time (required for packets to
travel in the communication channels), but ignore
the start-up time (required to initialize the com-
munication).  In current technologies, each communi-
cation involves both a start-up cost and a transmission
cost, and the former cost is typically significant, in
an order or more larger than the later.  As a result,
these algorithms (Fragopoulou and Akl, 1995;
Misic and Jovanovic, 1994), although claimed to be
optimal, are only so when the start-up time is negli-
gible.

In this paper, we try to optimize both costs at the
same time.  We develop an all-to-all personalized broad-
cast algorithm that is more efficient than existing results
(Fragopoulou and Akl, 1995; Misic and Jovanovic,
1994).  We also present an all-to-all non-personalized
broadcast algorithm that outperforms Fragopoulou and
Akl (1995) in most cases except when the start-up time
is very small (in a ratio of O(   1

(n – 1)! ), where n is the

dimension of the star graph) compared to the transmis-
sion time.  Extensive simulations have been conducted,
which show about 10%~80% improvement over exist-
ing results (Fragopoulou and Akl, 1995; Misic and
Jovanovic, 1994).

The algorithms presented in this paper are all
based on the following idea: to perform a broadcast,
instead of sending messages one by one to each node,
we first group several messages together into one packet
and then forward it to another node, which will help
in further distributing the messages to the destination
nodes.  The algorithms are easy to implement.  Also,
the number of messages required to be grouped is an
adjustable factor.  Our simulations show that large gain
can be obtained by only grouping a small (<20) number
of messages.  Note that the size of packets also places
a restriction on the hardware (e.g., buffer size).  There-
fore, the results presented here have much practical
value.

The rest of this paper is organized as follows.
Section II gives some preliminary results.  Algorithms
for all-to-all personalized and non-personalized
broadcast are presented in Section III and Section
IV, respectively.  Conclusions are drawn in Section
V.

II. Preliminaries

An n-dimensional star graph, also referred to as
an Sn or n-star, is an undirected graph with n! nodes.
Each node is represented by a permutation of n symbols
{1, 2, ..., n}.  The edges of Sn are defined using n−

1 functions, g2, g3, ..., gn, where given any node
x=x1...xi...xn in Sn, the function gi(x)=xi...x1...xn (i.e.,
swap the first and the i -th symbols and keep the rest
of the symbols unchanged).  Two nodes x and y are
connected by an edge along dimension i  iff x=gi(y) for
any i= 2..n.  Figure 1 shows an example of an S4.

An Sn is a recursive structure that contains many
substars.  Formally, a k-dimensional substar, or k-
substar, is denoted as a string X= x1x2...xn, where x1=*
and xi∈{ * ,1, 2, ..., n}, 2≤i≤n.  The symbol *  means
“don’t care”.  In X, there are exactly k * ’s, and no two
non-*  symbols are identical. Substar X is a subgraph
of Sn consisting of all the vertices obtained from X by
replacing all the * ’s with arbitrary (but legal) digits
{1, 2, ..., n}, and all the edges induced by these vertices.
For instance, in Fig. 1, we show the four 3-substars

*
31, *

32, *
33, and *

34 in S4, where *
k denotes a string

of k * ’s.  It is a simple fact that a k-substar is also an
Sk.

In Sn, consider the problem of minimal routing
from any node x=x1x2...xn to another node y=y1y2...yn,
x≠y.  It has been proved in Akers et al. (1987) that we
can obtain a node x′ which is closer to y than to x using
the following rules:

R1: If x1=y1, then let x′=gi(x), where i , 2≤i≤n, is any
integer such that xi≠yi.

R2: If x1≠y1, then let x′=gi(x) such that x1=yi.

Clearly, to construct a shortest path from x to y,
we can repeatedly apply R1 and R2.  In this paper, we

Fig 1. A 4-dimensional star graph S4.
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are concerned with a more general node-to-substar
routing problem as follows: Given any node x=x1x2...xn

and any k-substar Y=*
kyk+1yk+2...yn such that x∉Y, how

to construct a route from x to any node in Y such that
the routing distance is minimal.  We propose to apply
the following rules to obtain a node x′:

R3: If x1∉{ yk+1, yk+2, ..., yn}, let x′=gi(x), where i  is
the smallest integer such that xi∈{ yk+1, yk+2, ...,
yn} and xi≠yi.

R4: If x1∈{ yk+1, yk+2, ..., yn}, let x′=gi(x) such that
x1=yi.

For example, if x=123456 and Y=*
463, then by R3 the

smallest i=3.  However, if Y=*
441, then R4 should be

applied and i=6.  It can be easily proved that at least
one symbol between the (k+1)-th and the n-th positions
will be corrected if we continuously apply R3 and/or
R4 twice.  By repeatedly applying the above rules, a
path from x to substar Y can be constructed.

III. All-to-All Personalized Broadcast

1. Algorithm

Consider any node z.  Below, we will first describe
how to perform a one-to-all personalized broadcast
from z.  First, we partition Sn into k-substars, each with
the format *

kxk+1xk+2...xn (there are totally N=n!/k! such
substars).  Parameter k is to be determined later for
optimization purposes.  For each k-substar X, node z
performs the following two steps: (1) z packs the k!
personalized messages for the nodes in X into a packet
and then sends the packet to a representative node in
X, and (2) the representative node un-packs the packet
and further distributes the messages to each individual
node in X.  Steps (1) and (2) are repeated sequentially
N times for each k-substar, and the broadcast is com-
pleted.

To perform all-to-all personalized broadcast, we
execute n! copies of the above one-to-all broadcast
from all nodes z in Sn.  Further, this is done by all z’s
concurrently.  However, note that for each z, the
corresponding substar X in step (1) may be distinct for
different z’s.  Also, each z must pick a distinct rep-
resentative node.  Consequently, step (2) in fact be-
comes an all-to-all personalized broadcast in a smaller
k-substar.  Again, steps (1) and (2) will be repeated
N=n!/k! times sequentially.

The detailed algorithm for node z is shown
below. It is to be executed concurrently and synchro-
nously by all nodes.  The label of z is denoted as
z1z2...zn.

Table 1. The Values of Dimensions d1, ..., dj, Node y, and Substar
Y when the Algorithm Personalized_Broadcast() is Ex-
ecuted by a Node z=3241 in an S4 with k=2

Xi d1, ..., dj y Y

Xl=** 12 3,2,4 1432 **32
X2=** 13 3,4 1234 **34
X3=** 14 3 4231 **31
X4=** 21 4,2,3 4123 **23
X5=** 23 2,3,4 1324 **24
X6=** 24 2,3 4321 **21
X7=** 31 4 1243 **43
X8=** 32 2,4 1342 **42
X9=**34 none 3241 **41
X10=** 41 4,3 4213 **13
X11=** 42 2,4,3 4312 **12
X12=** 43 3,4,3 3214 **14

Algorithm  Personalized_Broadcast(z);
(1) Partition Sn into N=n!/k!  k-substars, each with

the format *
kxk+1xk+2...xn.  Let these substars be

denoted as X1, X2, ..., XN.
(2) for i=1 to N do

(i) Let substar Xi be labeled *
kxk+1xk+2...xn.  Use

the node-to-substar routing rules R3 and R4
to find a path from node 12...n to substar
Xi.  Let the path found follow the sequence
of dimensions d1, d2, ..., dj (j  is the length
of the path) and lead to a node x=x1x2...xn

in Xi.
(ii) Le t  node  y=zx1

zx2
. . .zxn

 and  subs ta r
Y=*

kzxk+1
zxk+2

...zxn
.

(iii) Group the k! personalized messages for nodes
of Y into a packet and send the packet along
dimensions d1, d2, ..., dj to the representative
node y.

(iv) In substar Y, perform an all-to-all person-
alized broadcast, by which y distributes the
k! personalized messages it received in step
(2iii).

In step (1), we generate a sequence of substars
X1, X2, ..., XN in any order.  This is the common counting
problem of generating all the permutations of n−k items
from n distinct items.

In step (2), note that node z may not send messages
to substars X1, X2, ..., XN in that order. Instead, Xi is
used in step (2i) in the i -th iteration to determine a
sequence of dimensions d1, d2, ..., dj, which lead from
node 12...n to x. (Clearly this is independent of the label
of z.)  Then, in step (2ii), a substar Y and a represen-
tative node y are determined using the label of x as
indices.  In step (2iii), z sends a packet following
dimensions d1, d2, ..., dj to y (to be proved later).
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Finally, in step (2iv), the packet is un-packed in y and
further forwarded to the nodes of Y.  This step can be
done using any all-to-all personalized broadcast algo-
rithm.

For example, in Table 1, we show the execution
of the algorithm by a node z=3241 in an S4 with k set
to 2.

The algorithm has the following important prop-
erties (with proof provided in parentheses).

(1) In step (2iii), the routing is congestion-free.
(Recall that the dimensions d1, d2, ..., dj  are
independent of the value of z.  From every source
node z, the message will synchronously travel
first along dimension d1, then along d2, . . ., and
then along dj.  Thus, in the i-th step, every node
will send one message and receive one message
along dimension di, i=1...j .  The freedom of
congestion then follows.)

(2)From z, the sequence of dimensions d1, d2, ...,
dj indeed leads to the node y as defined in step
(2ii) .  (These dimensions lead from node 12...n
to node x=x1x2...xn.  The symbol xi in x is the
xi-th symbol of 12...n.  Similarly, the symbol zxi

is the xi-th symbol of z, which proves the prop-
erty.)

(3) In each iteration of step (2), no two nodes z will
pick the same representative node y.  Thus, step
(2iv) is indeed an all-to-all personalized broad-
cast in substar Y.  (This follows directly from
the proof of property 1.)

(4) In each iteration of step (2ii), node z will pick
a distinct substar Y.  (Consider two distinct k-
substars, *

kxk+1xk+2...xn and *
kx′k+1x′k+2...x′n, gen-

erated in step (1).  The corresponding k-substars
generated in step (2ii) will be *

kzxk+1
zxk+2

...zxn
 and

*
kzx′k+1

zx′k+2
...zx′n, respectively, which must be

distinct because there must exist some i such that
xi≠x′i, k<i≤n.)

From the above, the correctness of Personalized_
Broadcast() is readily seen.  When k is set to 1, step
(2i) is a node-to-node routing, and our algorithm is
equivalent to the ones proposed in Fragopoulou and Akl
(1995) and Misic and Jovanovic (1994).  When 1<k<n,
our algorithm is a recursive one, and we have the
freedom of choosing any all-to-all personalized broad-
cast algorithm in step (2iv).  Thus, our algorithm is a
generalization of Fragopoulou and Akl (1995) and Misic
and Jovanovic (1994).

2. Performance Analysis and Comparison

Now we will analyze the performance of our

algorithm.  In a packet-switching network, sending a
packet of i bytes takes ts+i •tm′  time, where ts is the start-
up time and tm′  is the data transmission time per byte.
For notational simplicity, we can let tm= p•tm′ , where
p is the size of a personalized message.  Thus, step (2iii)
takes j (ts+k! tm) time, where j is the number of hops.
Let us denote by l n,k the average value of j  (i.e., the
average distance from node 12...n to the k-substars X1,
X2, ..., XN).  The total cost of step (2iii) is Nln,k(ts+k!tm).

Recall that step (2iv) is also an all-to-all person-
alized broadcast in a smaller substar. We will call the
algorithm in Fragopoulou and Akl (1995) and Misic
and Jovanovic (1994) in step (2iv) (or equivalently call
our algorithm again by setting parameter k to 1) and
evaluate the performance for various values of n and
k.  Therefore, node y needs to send k!−1 messages one
by one to the other k!−1 nodes in Y.  This gives a cost
of k! l k,1(ts+tm).  Note that l n,1 is the average distance
from node 12...k to every node (including itself) in Sk

1.
Counting the outer for-loop, the total cost of step (2iv)
is n! l k,1(ts+tm).  Summing the above factors, we have
the cost of the algorithm:

T(n,k)=(Nln,k+n! l k,1)ts+(n! ln,k+n! l n,1)tm. (1)

When k=1, the cost is reduced to T(n,1)=n! ln,1(ts+tm),
which is exactly the time required by Fragopoulou and
Akl (1995) and Misic and Jovanovic (1994).

To compare the performance of our algorithm
with that of Fragopoulou and Akl (1995) and Misic and
Jovanovic (1994), we would expect the condition
T(n,1)>T(n,k) to hold.  We derive the inequality as
follows:

T(n,1)>T(n,k)

⇔n! ln,1(ts+tm)>(Nln,k+n! l k,1)ts+(n! ln,k+n! l k,1)tm

⇔   ts
tm

>
ln,k + lk,1 – ln,1

ln,1 – ln,k / k! – lk,1
. (2)

There are three factors which affect the above
inequality: n, k, and the ratio ts/tm.  Much to our surprise,
as shown below, the value of T(n,1) is always greater
than T(n,2).

Lemma 1. For any n≥2, l n,1−l n,2=0.5.

Proof. To calculate l n,2, we will partition Sn into 2-
substars.  Consider any 2-substar X.  Let x1 and x2 be
the two nodes of X.  Suppose the minimum distance
from 12...n to x1 and x2 is d.  Assume without loss of

1It can be derived that l k,1=(k+2
k

+Hk−4)   k! – 1
k!

, where Hk=    Σ i = 1
k 1

i .  See Akers et al. (1987) for details.
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Table 2. The Minimum Value of ts/tm Such That T(n,1)>T(n,k) for
Various n and k≥3

n

ts/tm> 4 5 6 7 8 9 10 11 12

3 0.190 0.150 0.124 0.106 0.092 0.082 0.074 0.067 0.062
4 0.288 0.239 0.205 0.179 0.160 0.144 0.131 0.120
5 0.367 0.315 0.276 0.246 0.222 0.202 0.186
6 0.435 0.382 0.340 0.307 0.280 0.257

k 7 0.491 0.438 0.395 0.360 0.331
8 0.538 0.485 0.442 0.406
9 0.577 0.526 0.483
10 0.610 0.560
11 0.638

Fig. 2. The ETI of Personalized_Broadcast() under various n and
k when ts/tm=100.

Fig. 3. The ETI of Personalized_Broadcast() under various n and
k when ts/tm=1.

Fig. 4. The ETI of Personalized_Broadcast() under various n and
k when ts/tm=0.1.

generality that the distance from 12...n to x1 is d.  As
the distance between x1 and x2 is one, it is not hard
to see that the distance between 12...n and x2 can only
be d or d+1.  However, the distance d is impossible
because this implies that we can construct a cycle from
12...n to x1, then to x2, and then back to 12...n, of length
2d +1.  This is a contradiction because Sn is known to
be bipartite (Akers and Krishnamurthy, 1989).  There-
fore, we conclude that the average distance from 12...n
to x1 and x2 is d+0.5.  Since l n,1 means the average
distance from 12...n to all other nodes, the lemma then
follows. ■

Theorem 1. For any n≥3, T(n,1)>T(n,2).

Proof. Observe that l2,1=0.5.  Consider the dividend
of the expression on the right-hand size of Eq. (2).
By Lemma 1, the expression ln,2+l2,1−ln,1=0.  Applying
this value to Eq. (2), we have the inequality ts/tm>

  ln,k + lk,1 – ln,1

ln,1 – ln,k / k! – lk,1
=0, which must be true as ts and tm are

positive non-zero reals.  So Eq. (2) concludes that
T(n,1)>T(n,2).  Note that the inequality does not hold
for n=2 because the divisor will be 0. ■

The above theorem indicates that our algorithm
is always better than that in Fragopoulou and Akl
(1995) and Misic and Jovanovic (1994) if we set k to
2.  For other k’s, Eq. (2) indicates that the larger the
ratio ts/tm is, the more likely T(n,1)>T(n,k) will hold.
In Table 2, we calculate the minimum value of ts/tm

for various n and k such that T(n,1)>T(n,k) holds.  It
can be seen that these values are all very small (<0.64).
As long as the ratio ts/tm is larger than these values,
out algorithm performs better.

Given an n, it is also desirable to know which
value of k will give the best performance.  To find this
out, we define the execution time improved (ETI) as

follows:

  ETI = T(n,1) – T(n,k)
T(n,1) . (3)

ETI indicates the execution time that is saved as op-
posed to the that required by the case of k=1 (or
equivalently, the time required by Fragopoulou and Akl
(1995) and Misic and Jovanovic (1994).  The larger
ETI is, the better.  We have conducted various simu-
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lations based on the assumption that the ratios ts/tm are
large (=100), medium (=1), or small (=0.1).  The results
are shown in Fig. 2, Fig. 3 and Fig. 4, respectively.
From these figures, we find that the best values of k
all range between 2 to 4 for all n≤12 (a larger n may
not be practical as an S12 already has 4.8×108 nodes).
The range of improvement is between 0.2 to 0.8,
depending on the ratio ts/tm.  Hence, to get the best
performance for our algorithm, a packet (in step (2iii))
only needs to contain 2!, 3!, or 4! messages, which is
feasible in most current technologies.

IV. A l l - to -A l l  Non-persona l i zed
Broadcast

1. Algorithm

The algorithm is based on finding an embedding
of an n×(n−1)! mesh in the Sn.  The mesh in fact has
wrap-around connections along the second dimension.
The embedding has a dilation of 3.  We first derive
the embedding.

Definition 1. Given any node v and any two symbols
x and y, the function Tx,y(v) is defined as the node
obtained from v by swapping the symbols x and y in
v. (For instance, in S5, T2,4(51234)=51432.)

Lemma 2. Consider two (n−1)-substars *
n−1x and

*
n−1y.  Let v and v′ be two nodes in *

n−1x such that
v′=gi(v), 2≤i≤n−1.  Then Tx,y(v) and Tx,y(v′) are two
nodes in *

n−1y such that Tx,y(v′)=gi(Tx,y(v)).

Proof. Let v be labeled a...b...x, where a and b are the
first and i -th symbols, respectively.  Let node v′ be
labeled b...a...x.  We consider the location of symbol
y in v in three cases: (1) y=a, (2) y=b, and (3) otherwise.
One can easily verify for each case that Tx,y(v) and
Tx,y(v′) are two nodes in *

n−1y connected by an edge
along dimension i . ■

Corollary 1.  Let v1, v2, ..., vp be a ring in substar

*
n−1x.  Then, Tx,y(v1), Tx,y(v2), ..., Tx,y(vp) form a ring

in substar *
n−1y.

Proof. First, note that if vi and vj, 1≤i ,j≤p, are two
distinct nodes, then Tx,y(vi) and Tx,y(vj) must be distinct.
The corollary then follows directly from Lemma 2.

■

To embed an n×(n−1)! mesh, we can first con-
struct a ring of length (n−1)! in substar *

n−11.  This is
possible because a star graph is Hamiltonian (Nigam
et al., 1990; Tseng et al., 1997).  Let’s call this ring

Fig. 5. The embedding of a 4×3! mesh embedded in an S4.

r1.  From r1, by Corollary 1, we can construct a ring
r2 in substar *

n−12 using function T1,2. We can repeat-
edly generate a ring r i in substar *

n−1i  from r i−1 using
the operator Ti−1,i for i=3...n.  By regarding each x∈
r i−1 and Ti−1,i(x)∈r i as two mesh nodes connected by
a mesh edge, we already obtain an n×(n−1)! mesh.  For
instance, Fig. 5 shows a 4×3! mesh embedded in
an S4.  We implement operator Ti−1,i using either one
or three edges as follows.  Given a node v=v1v2...
vn−1(i−1), define

   
Ti – 1,i(v) =

gn(v) if i = v1

gn(gx(gn(v))) if (i = vx) ∧ (2 ≤ x ≤ n – 1)
.

(4)

Hence, the embedding incurs a dilation of 3 for edges
along the first dimension.  Edges along the second
dimension have no dilation.

Next, we derive our algorithm using the mesh.
The broadcast is performed in two stages: column-
exchange and row-exchange, where a column has n
mesh nodes and a row (n−1)! mesh nodes.  In the
column-exchange stage, every set of n nodes in the
same column will exchange their messages.  Then, in
the row-exchange stage, each node will propagate n
messages (its own message plus the n−1 messages it
received in the previous stage) to other nodes in the
same row.  Note that the column-exchange is a broad-
cast in a linear array of length n while the row-exchange
is one in a ring of length (n−1)!.  The complete algo-
rithm is derived in 3 steps as follows.

Algorithm  Nonpersonalized_Broadcast();
(1) Along each column, each node sends its mes-

sage, following the embedding, to the next node
in the positive direction.  A node receiving a
message further propagates the message to the
next node in the same direction.  The propagation
is repeated n−1 times and is performed in a
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Table 3. The Minimum Value of ts/tm Such That T′>T in Nonpersonalized_Broadcast()

  n 5 6 7 8 9 10 12 14 16 18 20

ts/tm> .27 .043 7.0×10−3 9.9×10−4 1.2×10−4 1.3×10−5 1.2×10−7 8.0×10−10 3.8×10−12 1.4×10−14 4.1×10−17

Fig. 6. The ETI of Nonpersonalized_Broadcast() under various n
when ts/tm=0.1, 1, and 100.

synchronous manner (by synchronous, a Ti−1,i

that traverses only 1 edge must wait for the
others that need to traverse 3 edges to finish
before the next propagation can be started).

(2) Similar to step (1), but the propagation proceeds
in the negative direction.

(3) In each ring r i, each node packs the n messages
it received in steps (1) and (2) into one packet
and sends it along the positive direction.  All
other nodes in r i help propagate the packet in
the same direction.  The propagation is repeated
(n−1)!−1 times in a synchronous manner.

Steps (1) and (2) implement the column-exchange
stage, while step (3) does the row-exchange.   The proof
of correctness is trivial. It is also clear that step (3)
is congestion-free.  Below, we will further prove
that the communications incurred by T1,2, T2,3, ...,
Tn−1,n together in steps (1) and (2) are free from con-
gestion.

In step (1), in each propagation, the operator
Ti−1,i is equal to gngxgn or gn (recall Eq. (4)).  Below,
we refer to these as the first, second (if any), and third
(if any) traversals.  We claim that in each traversal,
each node in the network will receive at most one
message from other nodes.  If so, the communication
is congestion-free since a node has at most one message
to be forwarded in the next traversal.  At the beginning,
each node has one message to be sent.  In the first
traversal, each node will send, and simultaneously
receive, one message along dimension n.  So the
above claim holds.  In the second traversal, the com-
munications all proceed from nodes with the format
(i−1)*

n−1 to nodes with the format i*
n−1 for i=2...n.  As

a node with the format i*
n−1 can not be adjacent to two

nodes with the format (i−1)*
n−1, each node will receive

at most one message in this traversal.  So the claim
still holds.  Finally, in the third traversal, a node may
only send (and thus receive) one message along dimen-
sion n.  The claim is clearly true.  Step (2) is congestion-
free by a proof similar to that above.

2. Performance Analysis and Comparison

Each of step (1) and step (2) will execute the
operation Ti−1,i n−1 times.  Each operation is imple-
mented by at most 3 traversals.  As each time one

message is sent, the total time required is 6(n−l)( ts+tm),
where tm is the time required to transmit a broadcast
message along a channel (not including the start-up
time ts).  In step (3), each packet will travel along some
r i for (n−1)!−1 steps.  As a packet consists of n mes-
sages, the total cost is ((n−l)! −1)(ts+ntm).  Overall, the
time taken by the algorithm can be calculated as fol-
lows:

T=((n−1)!+6n−7)ts+(n!+5n−6)tm.

We compare our algorithm against the one given
in Fragopoulou and Akl (1995), where it was suggested
that a Hamiltonian cycle in Sn be used, along which the
messages are propagated n!−1 times (which is similar
to our step (3)).  The cost of Fragopoulou and Akl
(1995) is easily seen to be T′=(n!−1)(ts+tm).  Again,
we expect the condition T′>T to hold, which is equiva-
lent to:

  ts
tm

> 5n – 5
n! – (n – 1)! – 6n + 6

  = 5
(n – 1)! – 6

  = O( 1
(n – 1)!) . (5)

In Table 3, we calculate the minimum values of ts/tm

such that T′>T holds for various n.  As can be seen,
this value ≈0.27 when n=5 and drops quickly nearly
zero as n increases.  As long as ts/tm is larger than this
value, our algorithm performs better.  In current tech-



− 818 −

Y.C. Tseng et al.

nologies, the start-up time is typically a large factor.
So our algorithm should have very broad applicability.

Finally, we estimate the amount of improvement
over Fragopoulou and Akl (1995).  Again, we define
ETI as follows:

   ETI = T′ – T
T′ .

In Fig. 6, we plot ETI against n when the ratio ts/tm

is large (=100), medium (=1), and small (=0.1).  Only
when n is very small, will our algorithm result in no
improvement.  In most cases, the amount of improve-
ment is significant (approximately 0.8, 0.4, and 0.1
when ts/tm is large, medium, and small, respectively).

V. Conclusions

In this paper, we have presented efficient all-to-
all personalized and non-personalized broadcast algo-
rithms.  These algorithms rely on a node’s capability
of packing several messages together into a packet for
delivery.  The numbers of messages packed in a packet
are fairly small, but the amount of improvement achieved
over the existing algorithms has been shown to be
significant.  Therefore, the results have much practical
value.
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