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Fault-Tolerant Ring Embedding in a
Star Graph with Both Link and Node Failures

Yu-Chee Tseng, Member, IEEE Computer Society, Shu-Hui Chang,
 and Jang-Ping Sheu, Member, IEEE Computer Society

Abstract —The star graph interconnection network has been recognized as an attractive alternative to the hypercube network.
Previously, the star graph has been shown to contain a Hamiltonian cycle. In this paper, we consider an injured star graph with
some faulty links and nodes. We show that even with fe £ n - 3 faulty links, a Hamiltonian cycle still can be found in an n-star, and
that with fv £ n - 3 faulty nodes, a ring containing at most 4fv nodes less than that in a Hamiltonian cycle can be found (i.e., the ring
contains at least n! - 4fv nodes). In general, in an n-star with fe faulty links and fv faulty nodes, where fe + fv £ n - 3, our embedding
is able to establish a ring containing at least n! - 4fv nodes.

Index Terms —Fault tolerance, graph embedding, Hamiltonian cycle, interconnection network, processor allocation, ring, star graph.

——————————   ✦   ——————————

1 INTRODUCTION

ESIGNING and implementing multicomputer networks
with versatile topologies, such as the linear array, ring,

mesh, tree, hypercube, etc., have become possible due to
fast advance in hardware technologies. One new intercon-
nection network that has attracted a lot of attention recently
is the star graph [1], [2]. Part of the reason is its symmetric
and recursive nature, and superior (lower) node degree and
comparable diameter as opposed to the hypercubes. Large
numbers of references can be found in studying the star
graph’s topological properties [9], [22], embedding capability
[12], [20], communication capability [3], [8], [10], [18], [19],
[21], [24], [29], and fault-tolerant capability [4], [11], [14].

One of the central issues in evaluating a network is to
study the graph embedding problem [5], [6]. Given a guest
graph G and a host graph H, the problem is to find a map-
ping from each node of G to one of H, and a mapping from
each edge of G to one path in H. This problem has long
been used to model the problem of arranging a parallel
algorithm in a parallel architecture. It also has applica-
tions in modeling the simulation of one parallel architec-
ture by another.

The graph embedding problem has been heavily studied
for various host graphs (see [13], [16] for more references).
With a star graph as the host graph, any ring of an even
length ≥ 6 has been shown to be embeddable [12]. Results
regarding embedding multidimensional meshes into a star
graph can be found in [12], [22]. The embedding of Hamil-
tonian cycles and hypercubes is discussed in [20].

As one can see, none of the above results discusses em-
bedding in an injured star graph which has some faulty
components. In this paper, we consider the problem of

embedding a ring into an injured star graph which has
some faulty links (or edges) and nodes (or vertices). Rings
are common guest graphs with many applications (see [16],
[17] for examples). Fault tolerance is an important issue in a
multicomputer network, especially when the network is
large. If, in a star graph, some components fail, it is desir-
able that the injured components be isolated from the rest
of the network, so that the embedding is still possible. The
similar problem of fault-tolerant ring embedding in hyper-
cubes has also been studied in [7], [15], [23], [27], [26], [25].

In this paper, we develop embedding algorithms that
utilize the hierarchical structure of an n-star. The embed-
dings achieved in this paper are summarized as follows:

1) with fe £ n - 3 faulty links, the embedding of a Ham-
iltonian cycle,

2) with fv £ n - 3 faulty nodes, the embedding of a ring
containing, at most, 4fv nodes less than that of a Ham-
iltonian cycle (in a fault-free n-star), and

3) with fe faulty links and fv faulty nodes, where fe + fv £
n - 3, the embedding of a ring containing, at most, 4fv
nodes less than that of a Hamiltonian cycle.

One may notice that the first and second results are special
(extreme) cases of the last result, when fv = 0 and fe = 0, re-
spectively. While this is true, it is worth identifying these
two cases because they are provably optimal (to be dis-
cussed in Section 7). Also, in our development, the third
result is, in fact, derived by combining the techniques used
in deriving the former two.

The rest of this paper is organized as follows. Prelimi-
naries are given in Section 2. In Section 3, we develop a new
scheme for finding a Hamiltonian cycle in a fault-free star
graph. Note that the embedding scheme presented in Sec-
tion 3 is different from those proposed in [12], [20], which
also show the existence of a Hamiltonian cycle in a star
graph. Our embedding is then extended with fault-tolerant
capability when only links and only nodes may fail in Sec-
tion 4 and Section 5, respectively. The result to tolerate both
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link and node failures is presented in Section 6. Finally, con-
clusions are drawn in Section 7.

2 PRELIMINARIES

An n-dimensional star graph, also referred to as n-star or Sn, is
an undirected graph consisting of n! nodes (vertices) and
(n - 1) n!/2 links (edges). Each node is uniquely assigned a
label x1x2 � xn, which is the permutation of n distinct sym-
bols {x1, x2, …, xn}. Two nodes are joined by an edge along
dimension d if the label of one node can be obtained from
the other by swapping the first symbol and the dth symbol,
2 £ d £ n. Without loss of generality, throughout we let
these n symbols be {1, 2, …, n}. A four-dimensional star
graph S4 is shown in Fig. 1.

Fig. 1. A four-dimensional star graph S4.

An Sn is a recursive structure that contains many smaller
stars, or substars. Formally, a k-dimensional substar, or k-
substar, k £ n - 1, is denoted as a string X = x1x2 � xn, where
x1 = * and xi Œ {*, 1, 2, …, n}, 2 £ i £ n. The symbol * means
“don’t care.” In string X, there are exactly k *'s. Also, if xi π
* and xj π *, 1 £ i, j £ n, then xi and xj must be distinct. The
substar represented by X is a subgraph of Sn consisting of
all legal (k!) vertices obtained from X by replacing each * with
one digit in {1, 2, …, n}, and edges induced by these vertices
in Sn. For instance, **53* is a three-substar containing six
nodes: 12534, 14532, 21534, 24531, 41532, and 42531.

DEFINITION 1. Let X = x1x2 � xj � xn be a k-substar with xj = *.

The j-cut on X, j ≥ 2, is to partition X along the jth dimen-

sion into k copies of (k - 1)-substars, each obtained from X

by replacing xj with a legal non-* symbol (“legal” in the
sense that the symbol does not appear in the string X). Let

D = (d1, d2, …, dm), m < k, be a sequence of dimensions
such that the xdi

=*, i = 1..m. Then, the D-cut on X is to

first apply a d1-cut on X, whose result is then applied a

dtwo-cut, whose result is then applied a dthree-cut, etc. The

final result is k ¥ (k - 1) ¥ � ¥ (k - m + 1) copies of (k -
m)-substars.

For instance, given a four-substar X = ***5*3 in an S6, a
three-cut on X is to partition X into four three-substars **15*3,
**25*3, **45*3, and **65*3. If D = (3, 5), a D-cut on X will ap-
ply a three-cut and then a five-cut on X. This generates the
following two-substars: {**1523, **1543, **1563}, {**2513,
**2543, **2563}, {**4513, **4523, **4563}, and {**6513, **6523,
**6543}. Also note that in the above definition, if j = 1 then the
partitioning result does not remain in substar structures.

DEFINITION 2. Consider two k-substars X and Y in Sn. We define
X and Y to be adjacent if their string representations differ
in exactly one non-* position. If X and Y are adjacent, the
difference from X to Y, denoted as dif(X, Y), is the sym-
bol of X at the position where X and Y differ.

Note that, by definition, two adjacent substars must have *
symbols appearing in the same positions in their string repre-
sentations. For instance, substar X = **5*13*is adjacent to Y =
**5*23*, but not adjacent to Y¢ = **4*23*. The difference from
X to Y, or dif(X, Y), is one, whereas dif(Y, X) is equal to two.

The following discussion combines the notion of adja-
cency and cut, which reveals an essential technique used in
this paper. Consider two adjacent k-substars X = x1 � xj � xn

and Y = y1 � yj � yn, such that xj = yj = *. If we apply a j-cut

on X and Y, we will obtain k substars (of dimension k - 1)
from each of X and Y. By the above definition, one easily
sees that all k substars (of dimension k - 1) in X are adjacent
to each other, since their string representations all differ in
only one non-* position, and so are those k substars (of di-
mension k - 1) in Y. Furthermore, among these substars, k - 1
substars in X are adjacent to k - 1 substars in Y in a one-to-
one manner. Only the substar x x xj n1 L L¢  in X and the sub-

star y y yj n1 L L¢  in Y are not adjacent, where ¢ =x dif Y Xj ( , )

and ¢ =y dif X Yj ( , )  The idea is illustrated in Fig. 2, where the

adjacency relation is represented by lines connecting sub-
stars. In particular, Fig. 2a shows three substars X, Y, and Z,
with X adjacent to Y and Y adjacent to Z. Within each of X,
Y, and Z, the three-substars are fully connected, while be-
tween X and Y (and similarly Y and Z) there are three con-
nections. Also note that the three-substar ***256 in X,
which is not connected to Y, satisfies ¢ = =x dif Y Xj 2 ( , )

(and, similarly, the three-substar ***526 in Y, which is not
connected to X, satisfies ¢ = =y dif X Yj 5 ( , ) ).

We summarize the above discussion with the following
lemma.

LEMMA 1. Consider any two adjacent k-substars X and Y and a
legal j-cut on X and Y (by “legal”, the jth symbol of X and
Y must be *).

a) Suppose, after the cut, x1, x2, and x3 are any three
(k - 1)-substars in X. Then, dif(x1, x2) π dif(x3, x2).

b) Suppose, after the cut, x and y are any pair of adja-
cent (k - 1)-substars in X and Y, respectively. Also,
let x’ be the only (k - 1)-substar in X that is not ad-
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jacent to any (k - 1)-substar in Y. Then, dif(x, y) =
dif(X, Y) and dif(x’, x) = dif(Y, X) = dif(y, x).

DEFINITION 3. A sequence of k-substars R X X Xr= -0 1 1, , ,K  is

called a k-ring if substar Xi is adjacent to its neighbors

X i r-1a fmod  and X i r+1a fmod  for any i = 0..r - 1.

In graph theory, a ring is simply a cycle of nodes. The
above definition generalizes a ring with the notion of adja-
cency. For example, R = [***3*2, ***1*2, ***4*2, ***4*5,
***3*5] is a four-ring in an S6. The following lemma, which
will be heavily used in this paper, discusses how to obtain a
(k - 1)-ring from a k-ring.

LEMMA 2. Given a k-ring R X X Xr= -0 1 1, , ,K , k ≥ 4, it is

possible to construct a (k - 1)-ring ¢R  of length kr from
R.

PROOF. First, we apply a legal j-cut on each Xi, i = 0..r - 1,

into k (k - 1)-substars. We obtain kr substars. As men-
tioned earlier, in Xi, all substars are fully connected

(in terms of adjacency) and there are k - 1 connections
between Xi and its neighbor X i r+1a fmod . With so many

connections, it is trivial to derive an ¢R  which con-
nects all kr substars by visiting substars in Xis along
the direction of R. �

3 EMBEDDING OF A HAMILTONIAN CYCLE

In this section, we propose a new scheme for finding a
Hamiltonian cycle in an Sn. Although the equivalent result
has been established in [12], [20], our embedding is unique
in that it utilizes the hierarchical structure of the star graph.
Essentially, [12], [20] take a bottom-up approach, as fol-

lows. To construct a Hamiltonian cycle in an Sn, the exis-
tence of a Hamiltonian cycle in an Sn-1 must be shown first.

Then, the Sn is partitioned into n (n - 1)-substars. The

Hamiltonian cycle in Sn is formed by joining together the n

Hamiltonian cycles in the n (n - 1)-substars. On the con-
trary, in this paper, we take a top-down approach. Given an
Sn, we first construct an (n - 1)-ring, from which we will

construct an (n - 2)-ring, from which we will construct an
(n - 3)-ring, …, from which we will construct a one-ring,
which is a Hamiltonian cycle. As will be seen in later sec-
tions, such an approach can be easily extended to a fault-
tolerant embedding scheme.

Given an Sn, our embedding works as follows. First, we
construct, from Sn, an (n - 1)-ring. Then, we apply Lemma
2 to construct, from the (n - 1)-ring, an (n - 2)-ring. Then,
we apply Lemma 2 to construct, from the (n - 2)-ring an
(n - 3)-ring. This will be repeated recursively until a three-
ring is obtained (however, note that, in the later stage of
the construction, we will use embedding techniques
stronger than what is used in Lemma 2 to generate rings
with some special properties; this will be clear later). In
the end, we will construct from the three-ring a one-ring,
which is a Hamiltonian cycle.

In the following presentation, we will discuss the em-
bedding backward from the last step (note that this is not in
contradiction to our “top-down” approach).

3.1 Constructing a One-Ring from a Three-Ring
We first show how to construct a one-ring from a three-
ring. Observe that there are two links between any two
adjacent three-substars. These connections have two
properties.

Fig. 2. The adjacency relation between (a) three adjacent four-substars X, Y, and Z, and (b) two adjacent five-substars P and Q. In both cases,
a four-cut is applied.
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P1: For any two adjacent three-substars X and Y, the two
nodes in X connecting to Y are located at antipodal
positions of the hexagon formed by X (i.e., the dis-
tance between these two nodes is three).

P2: Consider any three three-substars X, Y, and Z such
that

(i) X is adjacent to Y,

(ii) Y is adjacent to Z, and

(iii) dif(X, Y) ≠ dif(Z, Y).

The two nodes in Y connecting to X are disjoint from
those two in Y connecting to Z.

P2 can be proved as follows. The two nodes in Y con-
necting to X must have labels starting with symbol dif(X, Y).
Similarly, the two nodes in Y connecting to Z have labels
starting with dif(Z, Y), thereby proving the disjointness.

P2 (especially, condition (iii)) is important in finding a
Hamiltonian cycle in our algorithm. To shed some light, Fig.
3a shows three adjacent substars X, Y, Z in an S5 with dif(X, Y)
= dif(Z, Y) = 4. The two nodes (42135 and 41235) in Y, having
connections to X, must be the same as those having connec-
tions to Z (the proof is similar to the previous paragraph). It is
easy to show that the graph formed by X, Y, Z does not con-
tain a Hamiltonian path/cycle. On the contrary, in Fig. 3b, the
condition dif(X, Y) ≠ dif(Z, Y) holds and the graph formed by
X, Y, Z has a Hamiltonian path. In fact, by P1 and P2, it is not
hard to prove that, as long as the condition dif(X, Y) π dif(Z, Y)
holds, we can construct a path starting from X, visiting all
nodes in X, connecting to Y, visiting all nodes in Y, connecting
to Z, and then visiting all nodes in Z.

The above discussion leads to the following lemma.

LEMMA 3. Given a three-ring R X X Xr= -0 1 1, , ,K , such that

dif X X dif X Xi r i i r i- +π1 1a f a fe j e jmod mod, ,

for any i = 0..r - 1, we can find a one-ring ¢R  of length 6r
from R.

PROOF. We traverse the three-substars of R one after an-
other. First, let x be any of the two nodes in X0 that

have a link connecting to X1. We traverse, starting

from x, visiting every node in X1, and stopping at a

node in X1 with a link connecting to X2 (see Fig. 4 for
illustration). Properties P1 and P2 ensure that the
above traversal is possible. We then visit every node
in X2 and stop at a node with a link to X3. This process
can be repeated until Xr-1  is reached.

Suppose we stop at a node in Xr-1  with a link con-

necting to a node, say y, in X0. By P1 and P2, the distance
between x and y is either one or two (see Fig. 4). Now we
need to traverse nodes in X0. In the former case, a ring of
length 6r can be easily formed. In the latter case, a ring of
length 6r - 1 will be formed, which is impossible because
a star graph is bipartite [12] and any cycle must have an
even length. Hence, the lemma. �

3.2 Constructing a 3-Ring from a 4-Ring
Earlier in Lemma 2, we have shown how to construct a
three-ring from a given four-ring. However, care must be

Fig. 3 . Three adjacent three-substars X, Y, Z in an S5. In (a), condition dif(X, Y) = dif(Z, Y) holds and the graph is not Hamiltonian. In (b), dif(X,
Y) π dif(Z, Y) and a Hamiltonian path starting from node s to e can be found (shown in solid arrows).

Fig. 4. Proof of Lemma 3.
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taken to ensure that the three-ring satisfies P2 so as to be
used by Lemma 3. (By satisfying P2, we mean that every
three consecutive three-substars in the ring have property
(iii) in P2). For instance, suppose we have a four-ring […, X,
Y, Z, …], such that X, Y, Z are as shown in Fig. 2a. Observe
that the condition dif(X, Y) = dif(Z, Y) holds true. Suppose
we want to construct a three-ring which traverses all three-
substars in X, then all three-substars in Y, and then those in Z.
The following reasoning shows that such a three-ring can not
satisfy property P2.

1) As shown in Fig. 5a, substar a cannot be the first or last
one visited in Y, since it has no connection to X and Z.

2) Because dif(X, Y) = 5, by Lemma 1b, the difference
from any three-substar in X to any adjacent three-
substar in Y is five. Further, by Lemma 1b, the differ-
ence from substar a to any of b, c, d is also dif(X, Y) = 5.
So, a cannot be the second substar visited in Y
(otherwise, P2 is violated). The scenario is shown in
Fig. 5a.

3) Similarly, because dif(Z, Y) is five, the difference from
any three-substar in Z to any adjacent three-substar in
Y is also five. Further, the difference from substar a to
any of b, c, d is also dif(Z, Y) = 5. So, a can not be the
third substar visited in Y (otherwise, P2 is violated).

The scenario is shown in Fig. 5b. This is a dilemma,
since there is no proper position to put substar a.

As a counter-example, Fig. 6 shows three adjacent four-
substars X, Y, Z with dif(X, Y) π dif(Z, Y). A path satisfying
P2 can be found. This is formally reasoned below.

In general, consider any two adjacent four-substars X and
Y. After applying an appropriate cut on X and Y, let x be
the three-substar in X that does not have a connection to Y,
and similarly, let y be the one in Y that does not have a con-
nection to X. We propose two rules to visit the three-substars
in X and Y:

R1: arrange x as the first or second substar traversed in
X, and

R2: arrange y as the third or fourth substar traversed in Y.

These two rules are sufficient to ensure finding a three-ring
satisfying P2. This is justified below (but it would be help-
ful for the reader to first verify these rules using the exam-
ple in Fig. 6. To prove R1, first observe that any path in X
must satisfy P2, even if we arbitrarily visit the substars in X
(refer to Lemma 1a). By Lemma 1b, dif(Y, X) is the differ-
ence from any three-substar in Y to any three-substar in X.
Suppose we arrange some x¢ (π x) and x¢¢ (π x) as the third
and fourth three-substars, respectively, visited in X. One

Fig. 5. The construction of a three-ring from a four-ring […, X, Y, Z, …], which satisfies dif(X, Y) = dif(Z, Y): (a) substar a is the second substar
visited in Y, and (b) substar a is the third substar visited in Y. In both cases, the resulting three-rings violate property P2 (the positions of violation
are identified by bold lines).

Fig. 6. Three adjacent four-substars X, Y, Z with dif(X, Y) = 5 ≠ dif(Z, Y) = 3. A path satisfying P2 is shown by solid arrows from substar s to substar e.
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can easily show that dif(x¢, x¢¢) must be not equal to dif(Y,
X). So, a path established following rule R1 must satisfy P2.
We remark why x cannot be the third or last substar visited
in X. Apparently, x cannot be placed as the last substar as
there is no connection from x to Y. If x is placed as the third
substar, then, by Lemma 1b, dif(x, x¢) = dif(Y, X) for any
substar x¢ in X. As dif(Y, X) is the difference from any three-
substar in Y to any three-substar in X, such a path will vio-
late P2. This completes our remark.

A similar and symmetric argument can be extended to
prove that a path in Y constructed by following R2 will
satisfy property P2.

It remains to identify the kind of four-rings that would
enable us to apply rules R1 and R2 to construct a three-ring
satisfying P2. This is formulated in the next lemma.

LEMMA 4. Given a four-ring R X X Xr= -0 1 1, , ,K , such that

dif X X dif X Xi r i i r i- +π1 1a f a fe j e jmod mod, ,

for any i = 0..r - 1, it is possible to construct a three-ring
¢ = ¢ ¢ ¢ -R X X X r0 1 4 1, , ,K  from R such that

dif X X dif X Xi r i i r i¢ ¢ π ¢ ¢- +1 4 1 4mod mod, ,c h e ja f

for any i = 0..4r - 1.

PROOF. First, we apply any legal cut on R. Let x be any of
the three three-substars in X0 that have connections to
X1. We connect a path of three-substars from x to X1,
then to X2, then to X3, etc. In the process, rules R1 and
R2 must be both followed.

Note that there is no conflict between R1 and R2 due
to the condition dif X X dif X Xi i i i- +π1 1, ,c h c h . Let x¢ and

x¢¢ be the three-substars in Xi that do not have a connec-

tion to Xi-1 and Xi+1, respectively. By R2, x¢ must be

placed as the third or last three-substar in Xi, and, by R1,

x¢¢ must be placed as the first or second three-substar.
One question raised is: What if x¢ = x¢¢? By Lemma 1b,
for any three-substar y in Xi, other than x¢ and x¢¢, the

conditions dif x y dif X Xi i¢ = -, ,b g c h1  and dif(x¢¢, y) =

dif(Xi+1, Xi) hold. As dif X X dif X Xi i i i- +π1 1, ,c h c h , x¢ and

x¢¢ must be distinct and, hence, there is no conflict

between R1 and R2.
When the path is built up to Xr-1 , some care is

needed besides following rules R1 and R2. Suppose,
after running rules R1 and R2, x¢ and x¢¢ are the third
and last three-substars visited in Xr-1 . If x¢¢ is adjacent

to the starting three-substar x (in X0), it would be
impossible to join the other three unvisited three-
substars in X0 into R¢. If so, we can reverse the order x¢
and x¢¢ being visited. This does not cause any problem
because x¢ also has a connection to X0 (by R1, the

three-substar in Xr-1  that has no connection to X0 has
already been visited as the first or second three-
substar).

Now, only the second and third three-substars vis-
ited in X0 remain yet to be determined. The three-

substar, if any, that has no connection to X1 (resp.,
Xr-1) can be visited as the second (resp., third) one.
So, the lemma is proved. �

3.3 Constructing a 4-Ring from a 5-Ring
The next job is to construct, from a given five-ring, a four-
ring which satisfies the condition described in Lemma 4.
The following lemma shows that any five-ring can offer
such possibility.

LEMMA 5. Given any five-ring R X X Xr= -0 1 1, , ,K , it is pos-

sible to construct a four-ring ¢ = ¢ ¢ ¢ -R X X X r0 1 5 1, , ,K  from

R such that dif X X dif X Xi r i i r i¢ ¢ π ¢ ¢- +1 5 1 5a f a fe j e jmod mod, ,  for

any i = 0..5r - 1.

PROOF. First, we apply any legal cut on R. We will traverse
the four-substars in X0, X1, …, Xr-1  in that order. For
any two adjacent five-substars X and Y in R, let x be
the four-substar in X that does not have a connection
to Y, and y the one in Y that does not have a connec-
tion to X. Similar to R1 and R2, we use two rules to
construct our four-ring:

R1¢: x is the first, second, or third four-substar visited
in X, and

R2¢: y is the third, fourth, or fifth four-substar visited
in Y.

Fig. 7. The construction of a four-ring from a five-ring. Even if the condition dif X X dif X X
i i i i- +=

1 1
, ,a f a f  holds, there is no conflict in satisfying both R1¢

and R2¢, since we can still arrange the four-substar ***6*21 (which has no connection to both X
i -1

 and Xi+1) as the third substar traversed in Xi.
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Using similar arguments for rules R1 and R2, we can
show that any four-ring constructed following rules
R1¢ and R2¢ will satisfy our need. We omit the de-
tails. However, as opposed to Lemma 4, we note
that this lemma does not rely on any relationship
among Xi-1, Xi, Xi+1 because even if the condition
dif X X dif X Xi i i i- +=1 1, ,c h c h  holds true, the four-substar

in Xi that does not have a connection to both Xi-1 and

Xi+1 still can be the third substar traversed in Xi. An ex-
ample is in Fig. 7 to show such a scenario. The main rea-
son is that there is an intersection position (the “third”
position) in rules R1¢ and R2¢, while no such intersection
exists in rules R1 and R2. �

3.4 The Embedding Algorithm
Below, we put together the above lemmas into a complete
algorithm. The algorithm finds a Hamiltonian cycle in any
Sn with n ≥ 6.

Algorithm Ham();

1) Apply an n-cut on Sn. Construct an (n - 1)-ring (referred

to as Rn-1) of length n from Sn.
2) for k = n - 1 downto 6 do

Apply a k-cut on Rk and then use Lemma 2 to con-

struct, from Rk, a (k - 1)-ring (referred to as Rk-1 ).
3)  Apply a five-cut on R5 and construct, from R5, a four-

ring (referred to as R4), using Lemma 5.
4)  Apply a four-cut on R4 and construct, from R4, a

three-ring (referred to as R3), using Lemma 4.
5)  Construct from R3, a one-ring R1, using Lemma 3.

Note that, when n = 5 (resp., 4), we can consider the S5
(S4) as a trivial five-ring R5 (four-ring R4) with a single node
and directly run the algorithm from Step 3 (Step 4).

The embedding complexity can be analyzed as fol-
lows. Consider the construction of Ri, i = n - 1, n - 2, …,
3. We need to break Ri+1 into i-substars and traverse all
of them. The traversal cost of each (i + 1)-substar is pro-
portional to the number of i-substars in this (i + 1)-
substar. So, the construction cost of Ri is proportional to
the length of Ri. Similarly, the cost to construct R1 is pro-
portional to the length of R1. This gives the embedding
complexity of

n n n n n n
n

n O n+ - + - - + + + =1 1 2 3a f a fa f a fL
!
! ! ! .

4 RING EMBEDDING WHEN SOME LINKS FAIL

In the previous section, we have developed an algorithm
Ham(), which can construct a Hamiltonian cycle in an Sn.
The algorithm is not fault-tolerant, because any faulty com-
ponent may destroy the cycle. In this section, we enhance
Ham() to tolerate at least fe £ n - 3 faulty links. We first
show how to tolerate one faulty link in Lemma 3.

LEMMA 6. In Lemma 3, if there exists a faulty link e which falls
between two substars Xi and Xi+1, a one-ring R’ can still be
constructed without using link e.

PROOF. Without loss of generality, we can assume that e
falls between X0 and X1. Recall the proof of Lemma 3.
The starting node x can be chosen as any node in X0,
with a link connecting to X1. Simply choosing an x
that is not incident by link e as the starting node
would give an R’ without passing e. �

Recall Lemma 2, Lemma 4, and Lemma 5, in each of which
we discuss the construction of a (k - 1)-ring from a k-ring for
some k. Let’s regard the connection between two adjacent (k - 1)-
substars as faulty if it contains at least one faulty link. Simi-
larly, we can extend each of these lemmas with the capability
of tolerating one faulty connection in the embedding.

LEMMA 7. In Lemma 2, Lemma 4, and Lemma 5, if there exists a
faulty edge e falling between two adjacent k-substars Xi
and Xi+1 in R, a (k - 1)-ring R’ still can be constructed
without using link e.

PROOF. Still, we assume without loss of generality, that e
falls between X0 and X1. Recall the proofs of these
lemmas. After an appropriate cut on R, link e will fall
between some connection between a (k - 1)-substar in
X0 and a (k - 1)-substar in X1. Simply starting our
construction from a (k - 1)-substar in X0 that is not in-
cident by this faulty connection will do the job. �

It is to be noted that, in the above lemma, e is not neces-
sarily the only faulty link in R. However, avoiding e already
serves our need in developing a fault-tolerant embedding.

Using Lemma 6 and Lemma 7, we can tolerate at least
one faulty link in each construction from Rn-1  to Rn-2 , from
Rn-2  to Rn-3 , …, from R3 to R1 (here, we are following the
same notation as in Ham()). Thus, we should be able to tol-
erate at least n - 3 faulty links.

However, to use these two lemmas, we need to make
sure that the faulty links are falling between two k-substars
in Rk (observe that, on the contrary, faulty links may be
“encapsulated” within some k-substars). This can be done
by applying an appropriate cut on Rk+1. For instance, if a
faulty link e along dimension j falls inside a (k + 1)-substar
in Rk+1, then we can apply a j-cut on Rk+1 when constructing
Rk. Then, two cases may happen:

1) e is not used in Rk at all (which is fine for us), or
2) e falls between two k-substars in Rk.

If it is the latter case, Lemma 6 and Lemma 7 already provide
the possibility of avoiding e in the construction from Rk to Rk-1
(note the change of indices in the process: a cut on Rk+1 along
the dimension of e should be made first, and then, later, e can
be avoided in the construction from Rk to Rk-1 ).

We summarize the embedding as follows. The algorithm
works for any Sn, n ≥ 6, with fe £ n - 3 faulty links.

Algorithm Link-Failure();

1) Sort the n - 1 dimensions of the Sn according to the
numbers of faulty links falling on them in the de-
scending order. Let D d d dn n= -, , ,1 4Kc h  be the se-
quence of the first n - 3 dimensions after the sorting.

2) Execute Steps 1 to 4 of algorithm Ham(), but apply a
dk-cut while constructing an Rk-1  from Rk. Use Lemma
7 to avoid at least one (if any) faulty edge falling be-
tween two k-substars.
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3) Construct from R3 a fault-free one-ring R1 using
Lemma 6.

In Step 1, the number of faulty links along dimension di

is no less than that along dimension di-1 . The intention here
is to let faulty links be cut (and, thus, be avoided) as early
as possible. As each application of Lemma 6 and Lemma 7
is guaranteed to avoid only one link, without this sorting
step, the resulting R3 may contain more than one faulty

link. Note that all faulty links will fall along dimensions dn,

dn-1, …, d4, as there are at most n - 3 faulty links. Also, note
that the above algorithm can be modified, as we have done
for Ham() in Section 3, to run for cases of n = 4 and 5.

THEOREM 1. Given an Sn, n ≥ 4, with fe £ n - 3 faulty links, al-
gorithm Link-Failure() can find a fault-free Hamiltonian
cycle in Sn.

As to the embedding complexity, Step 1 will take O(fe log fe)
= O(n log n) for sorting. Steps 2 and 3 incur the same com-
plexity, O(n!), as by Ham(). This can be justified from the
proofs of Lemma 6 and Lemma 7, where we only require

that a faulty link fall between X0 and X1.

5 RING EMBEDDING WHEN SOME NODES FAIL

When there are some faulty nodes in an Sn, finding a Ham-
iltonian cycle is impossible. So, in this section, we study the
following problem: Given an Sn with fv faulty nodes, find a
ring that is as large as possible without passing through any
faulty node. Our main result shows that for any fv £ n - 3 a
ring of length at least n! - 4fv can be found.

We first consider the construction of a one-ring from a
three-ring which has some faulty nodes. In Fig. 8a, we show
two adjacent three-substars, through which a one-ring passes
(indicated by solid lines). Now suppose one node in the sec-
ond three-substar becomes faulty. In Fig. 8b-g, we show how
to “route around” the faulty node under six possible fault
scenarios. Note that the routing is based on a simple greedy
strategy, by including as many nodes in these two three-
substars as possible. As one can observe, the number of
nodes (both faulty and nonfaulty) lost due to the failure is, at
most, four. This leads to the following lemma.

Fig. 8. (a) The original routing on two adjacent healthy three-substars, and (b)-(g) the fault-tolerant routing when one node in the second three-
substar becomes faulty. (b) loss = 4, (c) loss = 3, (d) loss = 3, (e) loss = 3, (f) loss = 4, (g) loss = 1.
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LEMMA 8. Given a three-ring R X X Xr= -0 1 1, ,  in which

a)  no two consecutive three-substars both contain faulty
nodes,

b)  each three-substar contains at most one faulty node,
and

c)  dif X X dif X Xi r i i r i- +π1 1a f a fe j e jmod mod, ,  for any i,

it is possible to construct a one-ring R’ of length at least

6r - 4f from R, where f is the total number of faulty nodes
in R.

PROOF. By a), let Xi be healthy and Xi+1 contain a faulty

node. By b), let x be any node in Xi whose neighbor

in Xi+1 is healthy. We traverse R from x toward sub-

stars Xi+1, …, Xr-1 , X0, …, Xi-1. In the traversal,
when two consecutive three-substars are both
healthy, we apply the technique used in Lemma 3 to
connect all nodes. But, when there exists a faulty
node, we should apply the greedy strategy as indi-
cated in Fig. 8. As indicated earlier, we will lose, at
most, four nodes per faulty node. So, we may lose,
at most, 4f nodes.

When the path returns back to Xi, the end node
may be at a distance of one or two from x (the sce-
nario is similar to that in Fig. 4). As Xi is fault-free, in
the former case, all nodes in Xi can be included in the
ring, while, in the latter case, one more node will be
excluded from the ring. Thus, the ring has a length
≥ 6r - 4f - 1. As the ring length must be even, the
lemma then follows. �

Note that, in the above lemma, condition a is essential
(otherwise, one can easily construct a scenario in which
finding a one-ring is prohibitive). In the next lemma, we
point out when such a desired three-ring can be found from
a four-ring.

LEMMA 9. Given a four-ring R X X Xr= -0 1 1, ,  in which

1) one of the four-substars is fault-free,
2) each four-substar contains at most one faulty node,

and

3) dif X X dif X Xi r i i r i- +π1 1a f a fe j e jmod mod, ,  for any i,

it is possible to construct from R a three-ring R’ satisfying
the conditions (a)–(c) in Lemma 8.

PROOF. We apply the techniques used in Lemma 4 to con-
struct an R’ from R. Clearly, by conditions 2 and 3, R’
will satisfy the conditions b and c in Lemma 8. It re-
mains to ensure condition a, which can be done by
interleaving faulty three-substars by healthy ones, as
shown below.

Without loss of generality, let X0 be healthy (by
condition 1). If we can enforce that the last three-
substar visited in each Xi, i = 1..r - 2 be healthy, then
every faulty three-substar in R’ will be interleaved by
at least one healthy three-substar. Observe that the
third and fourth three-substars visited in Xi must both
have connections to Xi+1 (recall rule R1, which re-
quires that the three-substar in Xi without connection
to Xi+1 be visited in the first or second position). As

one of these two three-substars must be healthy, we
are allowed to reorder the way that they are traversed
if the fourth three-substar contains a faulty node.

Note that the above rule need not be followed
when traversing the three-substars in Xr-1 . This is be-

cause X0 is fault-free, and, thus, the three-substar in
Xr-1  containing a fault (if any) has already been
interleaved by healthy three-substar(s). However, we
still have to ensure that the last three-substar visited
in Xr-1  be not adjacent to the starting three-substar in

X0 (refer to the proof of Lemma 4). �

To prepare a four-ring used in the above lemma, we
need the next lemma, which shows how to cut Sn into four-
substars, each containing at most one faulty node.

LEMMA 10. In an Sn, n ≥ 4, with fv £ n - 3 faulty nodes, there
always exists a D-cut, |D| = n - 4, on Sn which results in
four-substars each containing at most one faulty node.

PROOF. Let F be the set of faulty nodes, |F| £ n - 3. If |F| £ 1,
the lemma is trivially true. Otherwise, we can apply
an appropriate j-cut on Sn so that F falls into at least
two (n - 1)-substar. (Such a j is easy to find. For in-
stance, if F = {123456, 123654}, a four-cut or six-cut
will work. In general, we simply select a j such that, in
F, there exist two nodes whose jth symbols differ.)

After the above j-cut, let F be split into m
nonempty subsets F1, F2, …, Fm, each falling in one
(n - 1)-substar. If each subset has a cardinality of
one, then we are done. Otherwise, we can select any
Fi such that |Fi| ≥ 2, and apply another j’-cut so as
to split Fi further into more subsets. This process can
be repeated recursively. Clearly, |D| = n - 4 cuts
are sufficient to partition fv £ n - 3 elements into
subsets each containing a single element. �

EXAMPLE 1. Consider an S7 with faulty set F = {1234567,
1342567, 4312567, 4321657}. We examine from posi-
tion 7 to position 2. A seven-cut will not work because
all faulty nodes will still fall in one six-substar. So, we
apply a six-cut, which splits F into subsets F1 =
{1234567, 1342567, 4312567} and F2 = {4321657}. Next,
we need to split F1. However, a five-cut will not work.
So, we apply a four-cut, which splits F1 into subsets
F11 = {1234567} and F12 = {1342567, 4312567}. Finally, a
three-cut can split F12 into two subsets. So, a D-cut
with D = (6, 4, 3) is the desired cut.

Below, we summarize the above discussion into an algo-
rithm for ring embedding in an Sn, n ≥ 6, with fv £ n - 3
faulty nodes.

Algorithm Node-Failure();

1) Use Lemma 10 to find a sequence of dimensions
D d d dn n= -, , ,1 4Kc h .

2) Execute Steps 1 to 3 of algorithm Ham(), but apply a
dk-cut in the construction from Rk to Rk-1 .

3) Construct, from R4, a three-ring R3, using Lemma 9.
4) Construct, from R3, a 1-ring R1, using Lemma 8.

After steps 1 to 3, a four-ring R4 is obtained. Note how
conditions 1-3 in Lemma 9 are satisfied. Condition 3 is
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guaranteed by algorithm Ham(). Condition 2 is ensured by
Lemma 10. Condition 1 holds because the number of four-
substars (n - 4)! > n - 3 ≥ fv for any n ≥ 6. The correctness
then follows directly from Lemma 9 and Lemma 8. Again,
note that the above algorithm can be easily modified to run
for cases of n = 4 and 5.

THEOREM 2. Given an Sn, n ≥ 4, with fv £ n - 3 faulty nodes,
Algorithm Node-Failure() can find a fault-free ring of
length ≥ n! - 4fv.

As to the embedding complexity, Step 1 takes time
O f O nv( ) ( )2 2= . The cost of Step 2 is the same as that of
Ham(). The cost of Steps 3 and 4 is also the same as that in
Ham(), because, in the proofs of Lemma 9 and Lemma 8, the
construction only involves local adjustment on the traversal
of adjacent substars (four-substars and three-substars). So
the total cost is bounded by O(n!).

6 RING EMBEDDING WHEN BOTH LINKS AND NODES
FAIL

In the previous two sections, we assume that either links or
nodes may fail. In this section, we extend our result to deal
with both cases simultaneously. We consider the problem
of embedding a large ring in an Sn with fe ≥ 1 faulty links
and fv ≥ 1 faulty nodes, where fe + fv £ n - 3. Without loss of
generality, throughout we assume that fe + fv = n - 3
(otherwise, we can arbitrarily regard some healthy links as
faulty to satisfy this condition).

The algorithm combines the techniques used in Link-
Failure() and Node-Failure(). Mainly, we will first apply a De-

cut, which is then followed by a Dv-cut, on Sn, to obtain a

four-ring. The lengths of sequences De and Dv are fe and fv - 1,

respectively. To tolerate the fe faulty links, we will generate

a sequence of rings R R Rn n n fe- - -1 2, , ,K  using a De-cut.

These fe cuts make faulty links fall between substars in these
rings. Using the techniques in Link-Failure(), at least one
faulty link will be avoided in each construction from Rk to

Rk-1 , k = n - 1..n - fe, unless the ring is fault-free. Note that
this may leave, at most, one faulty link in the last ring Rn fe- ;

the faulty link (if any) must fall between two adjacent (n - fe)-
substars in Rn fe-  and will be avoided when constructing

Rn fe- -1.

To tolerate the fv faulty nodes, we will generate, from the
previous ring Rn fe- , a sequence of rings R R Rn f n fe e- - - -1 2 4, , ,K

using a Dv-cut. These fv - 1 cuts are sufficient to spread the fv
faulty nodes each into a distinct four-substar. The resulting R4

will satisfy Lemma 9. Finally, using the techniques in Node-

Failure(), a ring of length ≥ n! - 4fv can be found. Note that, as
Algorithm Node-Failure() is not able to tolerate any faulty link,
we make a slight adjustment on it as follows: In the construc-
tion from Rn fe-  to Rn fe- -1, if there exists one faulty link in

Rn fe- , then Lemma 7 should be used to avoid this faulty link.

The embedding algorithm is outlined below.

Algorithm Link-Node-Failure();

1) Sort the n - 1 dimensions of Sn according to the num-
bers of faulty links falling on them in the descending

order. Let D d d de n n n fe
= - - +, , ,1 1Ke j  be the sequence of

the first fe dimensions after the sorting. Run Algorithm
Link-Failure() to obtain rings R R Rn n n fe- - -1 2, , ,K , but

apply cuts as specified in De.

2) Consider the faulty nodes in the (n - fe)-substars of

Rn fe- . Use Lemma 10 to find a Dv-cut on these (n - fe)-

substars to obtain four-substars each containing, at
most, one faulty node. Run Algorithm Node-Failure()
to obtain rings R R Rn f n fe e- - - -1 2 4, , ,K .

3) Run the last two steps of Algorithm Node-Failure() to
generate R3 and R1.

THEOREM 3. Given an Sn with fe ≥ 1 faulty links and fv ≥ 1 faulty
nodes, where fe + fv £ n - 3, Algorithm Link-Node-Failure()
can find a fault-free ring of length ≥ n! - 4fv.

7 CONCLUSIONS

In this paper, we have shown how to find a ring in an in-
jured n-star. With fe £ n - 3 faulty links, we prove that a
Hamiltonian cycle can always be embedded in an n-star. It
is impossible to find a Hamiltonian cycle if there exist n - 2
faulty links all incident to a same node. So, the degree of
fault tolerance, n - 3, provided in this paper is optimal.
With fv £ n - 3 faulty nodes, we are able to find a large ring
that may sacrifice at most 4fv nodes in the network. The
number of nodes sacrificed is optimal, within a factor of
two, as in a bipartite graph (to which star graphs belong)
the number of nodes sacrificed in a ring is at least 2fv in the
worst case. We have also combined the above two results
and shown that, with fe faulty links and fv faulty nodes,
where fe + fv £ n - 3, a large ring that may sacrifice, at most
4fv nodes can be found.

We review some related works on fault-tolerant ring
embedding in a hypercube below. In [15], [23], [28], it is
shown that, with n - 2 faulty links, a Hamiltonian cycle still
can be found in a binary n-cube. In [7], it is shown that with
f n£ +1

2  faulty nodes, a ring of length at least 2n - 2f can be

found. In [25], it is shown that, given a binary n-cube with
fe £ n - 4 faulty edges and fv £ n - 1 faulty vertices, such that

fe + fv £ n - 1, a ring of length at least 2n - 2fv can be ob-
tained. However, the derivation in this paper for star
graphs is more complicated than that in [25] for hyper-
cubes. It is interesting to compare the similarity between
the results cited above for the fault-tolerant ring embedding
in hypercubes and the results established in this paper for
star graphs.
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