
IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 5, MAY 1997 593

Toward Optimal Broadcast in a Star Graph
Using Multiple Spanning Trees

Yu-Chee Tseng, Member, IEEE Computer Society,

and Jang-Ping Sheu, Member, IEEE Computer Society

Abstract —In a multicomputer network, sending a packet typically
incurs two costs: start-up time and transmission time. This work is
motivated by the observation that most broadcast algorithms in the
literature for the star graph networks only try to minimize one of the
costs. Thus, many algorithms, though claimed to be optimal, are only
so when one of the costs is negligible. In this paper, we try to optimize
both costs simultaneously for four types of broadcast problems: one-to-
all or all-to-all broadcasting in an n-star network with either one-port or
all-port communication capability. As opposed to earlier solutions, the
main technique used in this paper is to construct from a source node
multiple spanning trees, along each of which one partition of the
broadcast message is transmitted.

Index Terms —All-to-all broadcast, collective communication, multi-
computer networks, one-to-all broadcast, parallel architecture, routing,
star graph.

———————— ✦ ————————

1 INTRODUCTION

THE star graph interconnection network, since being proposed in
[1], is receiving increasing attention in the literature. A large num-
ber of references can be found in studying the star graph regard-
ing its topological properties [6], [7], [15], embedding capability
[10], [18], fault-tolerant capability [3], and even the construction of
incomplete stars [11]. Among the efforts in studying the star
graph, one of the central issues is around the various versions of
broadcasting problems, such as one-to-all broadcast [2], [12], [13],
[14], [16], [17] and all-to-all broadcast [8], [13].

In this paper, we study the one-to-all and all-to-all broadcast
problems in a star network using packet-switching (or store-and-
forward) technique. We consider the network with one-port or all-
port communication capability. Following the formulation of many
works (e.g., [9]), we assume that there are two kinds of cost,
namely start-up time and transmission time, associated with the
communication. Specifically, sending a packet of b bytes along a
link takes T bTs c+ time, where Ts is the time to initialize (or start-
up) the communication link and Tc is the latency to transmit a
byte. This work is motivated by the observation that most broad-
cast algorithms in the literature for star graph networks only try to
minimize either the start-up cost or the transmission cost, but both.
Typically, the start-up time is significant in current machines,
while the transmission time should not be ignored when the
packet is long. Thus, many broadcasting algorithms, though
claimed to be optimal, are only so when one of the costs is negligible.

In this work, we try to optimize both start-up and transmission
costs simultaneously. As opposed to earlier solutions, the main
technique used in this paper is to construct from a source node
multiple spanning trees, along each of which one partition of the

broadcast message is transmitted. For one-to-all broadcast, we
propose a new spanning tree in an n-star that has the nice property
that n - 1 copies of such trees can be embedded simultaneously in
the network with an edge congestion of at most 2. By concurrently
transmitting data along these trees in a pipelined manner, our
results improve over the scheme of [16] (under the all-port model)
and schemes of [2], [12], [13], [17] (under the one-port model) by
orders of O(n) and O(log n), respectively, in transmission time.
Under the one-port model, the recent result by [14] achieves the
same time complexity as ours, but the broadcast message will need
to be sliced into an impractically large (< n!) number of segments.
Section 6 gives detailed comparisons. For a quick overview and
comparison, see Table 1.

For all-to-all broadcast, we propose a general solution which
can be developed based on any spanning tree in the network. As
long as the spanning tree has an optimal height, our algorithms
achieve optimal start-up time and transmission time under the all-
port model, and optimal transmission time under the one-port
model. One main contribution of this result is its simplicity and
generality. Existing algorithms [8], [13] all try to optimize the
transmission time only. Our results reduce the high start-up cost
of [8] under the all-port model from an order of O((n - 1)!) to O(n),
and that of [13] under the one-port model from an order of O(n!) to
O(n2). For a quick overview and comparison, see Table 2.

To the best of our knowledge, this is the first work reporting
the possibility of embedding multiple (O(n)) spanning trees in an
n-star, while at the same time keeping the edge congestion con-
stant. Similar results for hypercubes can be found in [19]. The
technique of using multiple spanning trees for broadcasting has
been used in [9] for hypercube networks and in [4] for 2D meshes,
but no comparable result has been reported for the star graphs yet.

Section 2 gives some preliminary results. Section 3 constructs
the spanning trees that will be used throughout the paper. Our
one-to-all and all-to-all broadcast algorithms are then presented in
Section 4 and Section 5, respectively. We compare our results with
other related works in Section 6. Conclusions are drawn in Section 7.

2 PRELIMINARIES

An n-dimensional star graph, also referred to as n-star or Sn , is an
undirected graph consisting of n! nodes (or vertices). Each node is

assigned a unique label x0 x1 � xn-1, which is a permutation of n

symbols 0 1 1, , ,K n -m r . Given any node label x0 � xi � xn-1, let

function g i ni , 1 1£ £ - , be such that gi (x0 � xi � xn-1) = xi � x0

� xn-1 (i.e., swap x0 and xi and keep the rest of the symbols un-
changed). In Sn , for any node x, there is an edge joining x and

node gi(x), and this edge is said to be along dimension i. It is
known that Sn is node- and edge-symmetric and has a diameter of

Dn
n= -3 1
2

() .

Throughout this paper, for any graph G, we denote by VG and

EG the vertex set and edge set, respectively, of G. If node x has a

label of x0 � xi � xn-1, we may denote symbol xi by x[i]. Given two

nodes x and y, dif(x, y) is the smallest i > 0 such that x[i] π y[i]; if x =

y, then dif(x, y) = •. For instance, dif(0123, 0132) = 2. Given any
node x xi, ()r is the node obtained from x by cyclically shifting the
label of x to the right by i positions.

One-to-all broadcast refers to the problem of sending a message
from one source node to all other nodes in the network, while all-
to-all broadcast is n! copies of the former problem with every node

0018-9340/97/$10.00 © 1997 IEEE

————————————————

• Y.-C. Tseng is with the Department of Computer Science and Information
Engineering, National Central University, Chung-Li, 32054, Taiwan.

 E-mail: yctseng@csie.ncu.edu.tw
• J.-P. Sheu is with the Department of Computer Science and Information

Engineering, National Central University, Chung-Li, 32054, Taiwan.
E-mail: sheujp@mbox.ee.ncu.edu.tw

Manuscript received 27 July, 1995; revised 30 April, 1996.
For information on obtaining reprints of this article, please send e-mail to:
transcom@computer.org, and reference IEEECS Log Number C96102.

594 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 5, MAY 1997

acting as the source node. In this paper, we assume the packet-
switching (or store-and-forward) model, and thus the latency to
transmit a packet of b bytes along a link is T bTs c+ , where Ts is the
time to initialize the communication link and Tc is the time to
transmit a byte. Each (undirected) edge is regarded as two inde-
pendent directed links (or channels) pointing in opposite direc-
tions. Two communication models will be considered. In the one-
port model, a node can send and receive at most one packet at a
time, while in the all-port model, a node can simultaneously send
and receive packets along all n - 1 ports.

LEMMA 1. A lower bound for one-to-all broadcasting in a store-and-
forward Sn is max ,D T Tn s

m
n c-1n s under the all-port model, and

max , log ! ,D T n T mTn s s cn s under the one-port model, where m

is the size of the broadcast message.1

LEMMA 2. A lower bound for all-to-all broadcasting in a store-and-

forward Sn is max , (!)D T Tn s
n m

n c
-
-
1
1{ }under the all-port model, and

max , log ! , (!)D T n T n mTn s s c- 1n s under the one-port model,

where m is the size of the broadcast message.

1. All logarithm is based on 2 in this paper.

3 CONSTRUCTION OF MULTIPLE SPANNING TREES

DEFINITION 1. Given any node r in Sn, the directed graph /(r) is de-
fined such that V V and ESn/ /�U� �U�

= contains the directed edge

v g v, ()a for all vertices vŒV r/() - rl q , where

a =
Ÿ π

=
RST
i v r i i
dif v r v r

if [0] = []
if

0
(,) [0] [0]

. (1)

See Fig. 1 for examples. The following lemma can be proved
easily using the routing rules in [7].

LEMMA 3. The graph /(r) is a greedy spanning tree rooted from node r

in Sn. From each node v π r, the edge v g v, ()a leads to a node

closer to r.

The next lemma shows the possibility of simultaneously em-
bedding in Sn n - 1 copies of the above tree, which only incur an
edge congestion of at most 2, where the congestion of a set of di-
rected trees is defined to be the maximum number of times the
links of these trees overlapping on same edges. (Note: Here two
links of opposite directions are not considered overlapping.)

LEMMA 4. Given any r VSn
Œ , the n - 1 directed trees /(()),r1 r

/ /(()), , (())r r2 1r rnK - have an edge congestion of at most 2 in Sn .

Fig. 1. Spanning trees in S4: (a) /(0123), (b) /(3012), (c) /(2301), and (d) /(1230), where the circled nodes are roots. In (a), the dotted lines are
the edges in S4 that are not used by /(0123).

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 5, MAY 1997 595

PROOF. By definition, r[i] = rj(r)[(i + j) mod n] for any i and j. (All
arithmetics in the rest of the proof are based on “mod n,” so
we will omit saying so.) Consider the outgoing edges from
any node x. Let x[0] = r[i] for some i, 0 £ i £ n - 1. We con-
sider the value of i in two cases.

If i = 0, then for each j = 1..n - 1, x[0] = rj(r)[j]. Since j π 0,
in /(rj(r)) node x satisfies the first condition in (1). So there
is an edge from x to gj(x) along dimension j in /(rj(r)). It
follows that the n - 1 outgoing edges from x are all along
different dimensions and there is no congestion among
them.

If i π 0, then for each j = 1..n - 1, x[0] = rj(r)[i + j]. Con-

sider the n - 2 trees /(rj(r)) such that j π 0 or n - i. Since i + j

π 0, in /(rj(r)) node x satisfies the first condition in (1) and
there is an outgoing edge from x to g xi j+ () along dimension

i + j. So there is no congestion for the n - 2 outgoing edges

from x in the above n - 2 trees. It remains one more tree,
/(rn i- (r)), yet to be considered, and, obviously, the conges-
tion is at most 2. �

An example of the above lemma is shown in Figs. 1b, 1c, and
1d, where the three trees /(r1(r)), /(r2(r)), and /(r3(r)) together
have only congestion of 2 in S4 .

4 ONE-TO-ALL BROADCAST

In this section, we consider the problem of a source node r broad-
casting a message M of size m to the rest nodes in Sn. As M may be
sliced into submessages, we assume for ease of presentation that m
is infinitely divisible.

DEFINITION 2. Given any node r, let pi be the (unique) path in the tree

/(ri(r)) leading from r to ri(r). Define $(())/ r i r , i = 1..n - 1, to be

the directed graph obtained from /(ri(r)) by reversing the direction

of all edges of /(ri(r)) except those edges that are along the path pi.

Now each $(())/ r i r is a tree, which spans, following the direc-
tions of the edges, from r to the rest of the network. Fig. 2 illustrates
the trees in Figs. 1b, 1c, and 1d after the above transformation.

LEMMA 5. The height of $(())/ r i r is Dn + n + gcd(n, i) - 2.

PROOF. The height is Dn plus the length of pi. Observe that r is a
permutation of r i r() . A permutation can be viewed as a set

of cycles [5], [7], such that each cycle is a sequence of dimen-
sions, say, d d d0 1 2, , ,Kc h in which the desired position of the

symbol in dimension di is dimension di+1. (For instance, con-

sider r = 01234567, which is a permutation of r6(r) =

23456701. Node r can be viewed as two cycles C0 = (0, 6, 4, 2)

and C1 = (1, 7, 5, 3). See Fig. 3.) Also observe that ri(r) is ob-
tained by cyclically shifting the label of r. It is a simple fact
from number theory that there are gcd(n,i) cycles, namely

C k k i n k i n k i nk = + + +(, () mod , () mod , () mod ,),2 3 K (2)

where k = 0..gcd(n, i) - 1. Because /(ri(r)) is greedy, the
length of pi is the minimum distance from r to ri(r). By [1],
this distance equals the number of misplaced symbols plus
the number of cycles minus 2. As the number of misplaced
symbols is always n, the height then follows. �

Fig. 3. The node r represented as a permutation of r6
(r) using two

cycles.

LEMMA 6. Given any r VSn
Œ , the n - 1 directed trees $(()),/ r1 r

$(()), , $(())/ /r r2 1r rnK - have a congestion of at most 2 in Sn .

PROOF. Since the edges in pi are not reversed in the translation

from /(ri(r)) to $(()),/ r i r it is easy to see that excluding those

edges in pis, the trees $(()),/ r i r i = 1..n - 1, still have a con-
gestion of at most 2 in Sn . So it remains to calculate the con-

gestion for the edges in pi s. Observe that any two pis are
edge disjoint (this can be proved by showing that each

node v π r in pi has v[i] = r[0]). So the proof will be com-
plete if we can show that for any edge e = x y pi, ,Œ

there exists at most one edge e¢= y x, in the trees

/ / /(()), (()), , (())r r r1 2 1r r rnK - . Note that e¢ (if any) will be
reversed by Definition 2 and cause congestion with e.

In order to have an edge e¢= y x, , there must exist one

Fig. 2. The three congestion-2 spanning trees rooted at 0123 in S4: (a) $/(3012), (b) $/(2301), and (c) $/(1230).

596 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 5, MAY 1997

tree such that y satisfies one of the conditions in (1). Fur-
thermore, we could obtain two such edges only if there are
two trees in one of which y satisfies the first condition in (1),
and in another of which y satisfies the second condition.
This is impossible as shown below.

Now suppose x = gd(y). We view r as a permutation of
ri(r) by representing r as a set of cycles Ck, k = 0..gcd(n, i) - 1,
where Ck is as defined in (2). From (1), observe that path pi
will pass the sequence of dimensions:

seq trail C C first C C first C C first C

C first Cn i n i

=

- -

(), , (), , (), , (),

, , (),gcd(,) gcd(,)

0 1 1 2 2 3 3

1 1K

where the function first(s) returns the first element of a se-
quence s, and function trail(s) is sequence s with first(s) re-
moved. In the following, we consider the location of d in seq
in two cases.

Case 1: d located in first(Ck) for some k. We first observe
two facts:

F1: After finishing routing the dimensions up to trail(C0), the
end node has ri(r)[0] as its first symbol.

F2: After finishing the routing up to first(Ck) for any k, the
end node still has ri(r)[0] as its first symbol. (This can be
proved by simple induction.)

So y[0] = ri(r)[0]. This implies that the second condition of (1)
cannot be satisfied for any tree. Otherwise, suppose there

is a tree /(r¢) having the edge e¢ by satisfying this condition.

Then r¢[0] = y[0] = ri(r)[0], implying that r¢ = ri(r) (because r¢

is cyclically shifted from r). So e¢ is an edge in /(())r i r and a

cycle consisting of e and e¢ is formed in /(())r i r .
Case 2: d not located in any first(Ck). Observe that this d is

the first such value appearing in seq. Therefore, x[d] = r[d] =
y[0]. This implies that the first condition of (1) cannot be
satisfied by any tree. Otherwise, suppose tree /(r¢) having
the edge e¢ by satisfying this condition. This means r¢[d] =
y[0] = r[d], implying r¢ = r, which is impossible. So there is at
most one edge of type e¢. �

4.1 All-Port Model
In the proposed algorithm, time will be slotted by fixed length and
all nodes in the network are assumed to perform broadcast syn-
chronously. In each time slot each node will transmit a packet of a
fixed size 2

1
m

p n() ,- where m is the size of the message M and p is an

integer to be determined later. So each time slot is of length
T Ts

m
p n c+ -

2
1() .

Algorithm 1: /* One-to-all-broadcast, all-port */

1) Slice the message M evenly into p(n - 1) parts, each called a
“message segment” and of size m

p n() .-1

2) In each time slot, node r issues n - 1 message segments to

the network, each along one of the trees $(())/ r i r , i = 1..n - 1.
A message segment is then propagated along the tree it is
issued. In each time slot, each node helps propagating all
message segments it received in the previous time slot to the
subsequent nodes in the corresponding trees.

Note that a packet can hold two message segments generated
by step 1. However, in each time slot, node r only issues one mes-
sage segment along each tree. This is because the maximum edge

congestion of the trees $(())/ r i r , i = 1..n - 1, is two. So in each time
slot, every node will be able to propagate all message segments it
received in the previous time slot without any delay.

Next, we analyze the communication latency of the algorithm.
The computational time (such as making routing decision or
packing/unpacking packets) will be ignored in the analysis. Let h

be the maximal height of $(())/ r i r , i = 1..n - 1. Note that by Lemma 5,

Dn + n - 1 £ h £ 2Dn. The broadcast algorithm will take

T h T
m

p n
T p T

m
p n

Ts c s c= + -
F
HG

I
KJ + - + -

F
HG

I
KJ

2
1 1

2
1() () () (3)

time to finish, where the former term is the time for the first packet
to arrive at the bottom of the tallest tree and the latter term is due
to the pipelined effect. To minimize (3), let the derivative of T with
respect to p equal to 0,

∂
∂
T
p

T
m h T

n ps
c= -

-

-
=

2 1

1
02

()

()
. (4)

So we obtain

p
m h T
n T

O
mT
T

c

s

c

s
=

-
- =

F
HG

I
KJ

2 1
1

()
() . (5)

THEOREM 1. Under the all-port model, one-to-all broadcast can be per-
formed in Sn within time

h
m h T
n T

T
mT T

n h

O nT mT T
mT

n

c

s
s

s c

s s c
c

+
-

- -
F
HG

I
KJ

+ - -
F
HG

I
KJ

= + +
F
HG

I
KJ

2 1
1 1

2
1 1

()
() ()()

.

By Lemma 1, a lower bound for this problem is W(nTs + (m/n) Tc).

When n2Ts @ mTc, the above order reduces to O(nTs). When n2Ts !

mTc, the above order reduces to O((m/n)Tc). So our algorithm is
asymptotically optimal.

4.2 One-Port Model
A node with one-port communication capability can simulate the
communication activity of an all-port node in one time slot using
n - 1 time slots. The simulation can be done as follows: In the first
time slot, the one-port node simulates the all-port node¢s activity
along dimension 1; in the second time slot, the one-port node
simulates the all-port node¢s activity along dimension 2; etc.
Clearly, the communication follows the one-port model. By simu-
lating Algorithm 1 at every one-port node in Sn , the following
theorem is readily seen.

THEOREM 2. Under the one-port model, one-to-all broadcast can be
performed in Sn within time

()
()

() ()()

.

n h
m h T
n T

T
mT T

n h

O n T n mT T mT

c

s
s

s c

s s c c

- +
-

- -
F
HG

I
KJ - -
F
HG

I
KJ

= + +

+1
2 1

1 1
2

1 1

2e j
By Lemma 1, a lower bound for this problem is

W((log))n n T mTs c+ . When n Ts
2 @ mTc , the above order reduces to

O n Ts()2 , which is an order of O n n(/ log) higher than optimum.

When n Ts
2 ! mTc , the above order reduces to O mTc(), so our al-

gorithm is asymptotically optimal when the broadcast message is
sufficiently large. Algorithms which use optimal start-up time do
exist [2], [12], [17], but the transmission time is not optimal. Hence,
the algorithm presented here provides an alternative when a large
message needs to be broadcast.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 5, MAY 1997 597

5 ALL-TO-ALL BROADCAST

To perform all-to-all broadcast, each node will use n - 1 spanning
trees. These trees are obtained from two special operations called
label change (LC) and dimension change (DC) as defined below.

DEFINITION 3. Let x x x xn= -0 1 1K be any node in Sn . Given any span-
ning tree T of Sn , define LC(x,T) to be the tree obtained from T
by translating each node y y yn0 1 1K - in T into node
x x x xy y yn

=
-0 1 1

K

DEFINITION 4. Given any spanning tree T rooted at r and any integer i,
we define DC(i,T) to be the tree obtained from T by performing the
following two steps:

1) Translate each link, say, along dimension d, into one along di-
mension ¢ = + - - +d d i n[() mod()]1 1 1 (i.e., cyclically increase
d by i to obtain d’).

2) Let the root of DC(i,T) be labeled r and modify the labels of all
other nodes according to the dimensions defined in step (1).

The LC operation will modify the labels of nodes in T to gener-
ate a new tree. The DC operation will modify the dimensions of
links in T to generate a new tree (note that in doing so, the node
labels may also be modified). For instance, Fig. 4a shows the undi-
rected version of tree T = /()0123 . Fig. 4b shows LC(3021, T),
where symbols 0, 1, 2, 3 in T are changed to 3, 0, 2, 1, respectively.
Fig. 4c shows DC T(,),1 where dimensions 1, 2, 3 are modified to 2,
3, 1, respectively. Since star graphs are node- and edge-symmetric,
it is easy to see that LC x T(,) and DC i T(,) are both spanning trees.

Next, we need to identify a link¢s location in a tree. Intuitively,
the distance of a link from the root node indicates when the link
needs to help propagating a message. The following definition is
intended for this purpose. Note that in a tree we number links as
level 1, level 2, º, etc, starting from the root.

DEFINITION 5. Let T be any spanning tree and t be any integer. Given
any link e, define

f e t T
e T t

(, ,) = RST
1
0

if is located in at level
otherwise . (6)

LEMMA 7. Let T be any spanning tree and t be any integer. Suppose that
integer i is ranging from 0 to n - 2 and labels x is ranging from

the n! possible node labels in Sn. Then for every link e ESn
Œ , the

value of the following expression is always the same:

f e t LC x DC i T
i x

(, , (, (,))).
," "

Â (7)

PROOF. There are () !n n- 1 trees in (7). First, consider the n! trees
LC x T(,) for all permutations of x. Let e be any link along
dimension d such that f(e, t, T) = 1. Link e will be translated
into n! distinct links in these n! trees. As all these n! links are

also along dimension d, they actually contain all the links in
Sn along dimension d. We thus conclude that every link
along the same dimension will have the same value of

f e t LC x T
x

(, , (,)).
"
Â

Second, for any fixed i, consider the n! trees
LC x DC i T(, (,)). It is nature to extend the above argument.
So links along the same dimension will have the same value

f e t LC x DC i T
i x

(, , (, (,)))
" "
Â .

It remains to prove the equivalence for links along dif-
ferent dimensions. This follows from the observation that
the links located at level t in the n - 1 trees,
DC i T i(,), = 0 ..n - 2 , are evenly distributed into every di-
mension. Hence, the lemma. �

5.1 All -Port Model
The main idea is as follows. Let T be any spanning tree rooted at
the identity node I n= -01 1K() . Each node x will use n - 1 span-
ning trees LC(x, DC(i, T)), i = 0..n - 2, to broadcast its message.
These trees are all rooted at x. At time step t, all communication
links located at the tth level of these trees will help propagating x¢s
broadcast message. Concurrently and synchronously, all nodes
will follow such scheduling. If so, by Lemma 7 all communication
links in Sn will be equally loaded.

The algorithm is spelled out below for node x, where T is as-
sumed to be /().I All nodes perform this algorithm concurrently.

Algorithm 2: /* All-to-all-broadcast, all-port */
1) Slice the message evenly into (n - 1) message segments. We

associate each message segment to one of the spanning trees
LC(x, DC(i, T)), i = 0..n - 2, along which the message seg-
ment will be propagated.

2) for t = 1 to Dn do
At time step t, every node in Sn helps propagating message
segments along their associated spanning trees. Along each
link e, a node needs to transmit a packet containing

f e t LC x DC i T
i x

(, , (, (,)))
," "

Â
message segments.

Now we analyze the time complexity of the algorithm. We as-
sume that in each iteration of step 2, all message segments can be
combined into one packet and sent at one time. So the start-up
overhead is D Tn s . To calculate the transmission time, let m be the

size of broadcast messages. To propagate a message segment (of
size m

n-1)along a spanning tree (of n ! - 1 links), network bandwidth

of m n
n cT(!)-

-
1

1 is required. There are totally () !n n- 1 message seg-

ments being transmitted. So the total network bandwidth required

Fig. 4. (a) The spanning tree /(0123) in S4, (b) the tree LC(3021, /(0123)) obtained from label change, and (c) the tree DC(1, /(0123)) obtained
from dimension change.

598 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 5, MAY 1997

is m n n Tc(!) !- 1 . Since the network is equally loaded at every time

step, the bandwidth will be evenly distributed to all () !n n- 1
links in the network. So the transmission time is

m n n T
n n

m n
n

Tc
c

(!) !
() !

(!)
()

-
- =

-
-

1
1

1
1 . (8)

THEOREM 3. Under the all-port model, all-to-all broadcast can be per-
formed in Sn with time

D T
m n

n
Tn s c+

-
-

(!)
()

1
1 .

By Lemma 2, the above time is optimal in both start-up time
and transmission time. Also, note that the assumption T I= /() is
not a necessary condition. Any spanning tree will work for our
algorithm. As long as T has an optimal height of Dn (which does
not necessarily imply that T is a greedy tree), the communication
latency remains optimal.

5.2 One-Port Model
A node with one-port communication capability can simulate an all-
port node by a delay factor of n - 1. By simulating Algorithm 2, all-to-
all broadcast can be performed in Sn within () (!)n D T m n Tn s c- + -1 1
under the one-port model.

6 COMPARISON WITH RELATED WORKS

6.1 One-to-All Broadcast
Under the all-port model, it is common to use one spanning tree to
solve this problem. Sheu et al. [16] suggests a spanning tree of
height 2 3n - . A better tree, which is greedy and has height of Dn ,
is proposed by Day and Tripathi [7]. Without using the pipe-
lining technique, broadcasting along these trees needs

¢ + = +h T mT O nT mnTs c s c() () time, where h’ is the height of the
tree. This has used the optimal start-up time, but the transmission
time is an order of O(n2) higher than optimum. By applying a
pipelining technique as in Section 4.1 (by slicing the broadcast

message), the time complexity can be reduced to
O nT nmT T mTs s c c()+ + (we leave the detailed derivation to the

reader, as the approach is similar), which is asymptotically optimal
in start-up time, but is still an order of O(n) higher than the opti-
mal transmission time. In this paper, by using the pipelining tech-
nique along multiple spanning trees, both start-up time and
transmission time are minimized. See Table 1 for a summary.

Under the one-port model, many broadcast solutions have been
proposed [2], [12], [13], [14], [17]. The algorithm by Misic and

Jovanovic [13] requires n(n - 1)/2 phases to complete, where in
each phase the whole message is transmitted. So the latency is
n n T mTs c()() /- +1 2 . The algorithms by Akl et al. [2] and Mendia
and Sarkar [12] further reduce the number of phases required to

i
n i O n n=Â =2 log (log), resulting in a time complexity of

O n n T mTs c(log ())+ . The start-up time is asymptotically optimal,
but the transmission is an order of O(n log n) higher then optimum.

Sheu et al. [17] observe that in the above algorithms [2], [12], [13],
a node may receive the broadcast message more than once. This
would make applying the pipelining technique difficult (if not im-
possible), as the flow of the pipeline may be impeded. Sheu et al. [17]
shows how to broadcast a packet in i

n i O n n=Â =2 log (log)

phases. Furthermore, pipelining is possible because the next packet
can be issued in log n phases after the previous one was issued.

Suppose we slice the message into p segments (or packets) each of size

m/p. Then the time it takes is T p n n n T Ts
m
p c= - + +() log log .1c he j T

is minimized when p O nmT Tc s= /e j (following similar formula-

tion as in Section 4.2). So the time complexity becomes

O n nT nmT T mTs s c clog .+ +e je j The start-up time is asymptotically

optimal, but the transmission time is still an order of O(log n)
higher than optimum. Consequently, under the one-port model,
our result improves over [17] in transmission time by an order of
O(log n), but has a start-up cost of O(n/log n) higher than opti-
mum. Our algorithm provides an alternative to [17] when a large

TABLE 1
COMPARISON OF ONE-TO-ALL BROADCAST ALGORITHMS ON START-UP COST, TRANSMISSION COST, AND OVERALL TIME COMPLEXITY

Model Algorithm Start-up comp. Trans. comp. Overall complexity
Sheu [16] O nTs() O mTc() O nT nmT T mTs s c c()+ +

all-port Day [7] O nTs() O mTc() O nT nmT T mTs s c c()+ +

Ours O nTs() O mT / nc() O nT mT T mT / ns s c c()+ +

Misic [13] O n Ts()2 O n mTc()2 O n T mTs c()2 2+ n

Akl [2] O n nTs(log) O nm nTc(log) O n n T mTs c(log ())+
one-port Mendia [12] O n nTs(log) O nm nTc(log) O n n T mTs c(log ())+

Sheu [17] O n nTs(log) O m nTc(log) O n nT nmT T mTs s c c(log (+))+

Qiu [14] O n Ts()2 O n n + m Tc((log)) O n n n m Tc(log +)2Ts + ()

Ours O n Ts()2 O mTc() O n T n mT T mTs s c c(+)2 +

TABLE 2
COMPARISON OF ALL-TO-ALL BROADCAST ALGORITHMS ON START-UP COMPLEXITY, TRANSMISSION COMPLEXITY, AND OVERALL LATENCY

Model Algorithm Start-up comp. Trans. comp. Overall time
Frago. HAM [8] O n Ts((1)!)- O Tn m

n c()(! 1)
1

-
- (1)! (! 1)

1n T Ts
n m

n c- + -
-

all-port Frago. NL [8] O nTs() O Tn m
n c()(! 1)

1
-
- Dn s

n m
n cT T+ -

-
(! 1)

1

Ours O nTs() O Tn m
n c()(! 1)

1
-
- Dn s

n m
n cT T+ -

-
(! 1)

1

one-port Misic [13] O n Ts(!) O n mTc(!) (! 1)()n T mTs c- +

Ours O n Ts()2 O n mTc(!) (1) (! 1)n D T mT nn s c- + -

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 5, MAY 1997 599

message (i.e., n Ts
2 ! mTc) needs to be broadcast.

Recently, Qiu [14] proposed a new algorithm that uses
O n n m Tc((log))+ transmission time (the work did not try to opti-
mize the start-up cost). The algorithm is based on a divide-and-
conquer approach. First, Sn is partitioned into n substars Sn-1 and
the message is sliced into n segments. Each segment is then sent to
one of theSn-1 , in which the broadcast will proceed recursively.
Finally, the message segments are combined in each node. This
uses O mTc() transmission time. Note that the above statement has
assumed that a message segment can always be sliced into smaller
ones. This may not be possible when m is too small. Thus, Qiu [14]
suggests to apply the algorithm of [2], [12] in the recursion when
the size of message segments reaches some constant. This incurs
O n nTc(log) transmission time. A serious problem in this ap-
proach is that to achieve the previous order O mTc(), the broadcast
message needs to be sliced into n! segments (e.g., when n = 8, n! <
40,000). This number of message segments is much larger than

ours of O mT
T

c

s

FH IK (see (5)). Also, the computational overhead to

pack and unpack message segments will be significantly higher
than ours. We summarize the above discussion in Table 1.

6.2 All-to-All Broadcast

Under the all-port model, Fragopoulou and Akl [8] propose to use
n! isomorphic trees. Each node uses one tree. Altogether these n!
trees incur equal communication load on all links. There are two
ways to construct such trees. The first way is to partition the Sn

into n Sn-1s and find a Hamiltonian path in each Sn-1 . So the

height of the trees is < (n - 1)!. The second way is based on

grouping nodes in Sn into a number of necklaces. The height is re-

duced to Dn. Both ways achieve the optimal transmission cost of
(!)n m

n cT-
-
1
1 . But the first tree will have a high start-up cost of

()!n Ts- 1 , while the second will only take D Tn s start-up time. So
the second tree can give the same performance as ours. In our al-

gorithm, each node uses n - 1 trees and there are totally (n - 1)n!
trees. Our result is more general—as commented in Section 5, any

tree of height Dn can be used to achieve the same performance.
Under the one-port model, Misic and Jovanovic [13] develops a

scheduling that can perform all-to-all broadcast in optimal trans-

mission time of (n! - 1)mTm, but high start-up time of (!)n Ts- 1 .

Fragopoulou and Akl [8] suggest using a Hamiltonian cycle in Sn
and every node simply propagates its message along the cycle.
This has the same problem of high start-up time as in [13]. It
would be more efficient to simulate an all-port algorithm, such as
the necklace scheme of [8] or our all-port algorithm, as suggested
in this paper.

The above discussions are summarized in Table 2. The two
trees used in [8] under the all-port model are denoted as HAM
(Hamiltonian path) and NL (necklace).

7 CONCLUSIONS

We have shown how to solve various versions of broadcast prob-
lems in a star graph using multiple spanning trees to simultane-
ously optimize both start-up and transmission costs. For one-to-all
broadcast under the all-port model, our algorithm is optimal in
both start-up time and transmission time, while existing results
only achieve optimal start-up time. For one-to-all broadcast under
the one-port model, our algorithm is optimal in transmission time,
while existing results either only achieve optimal start-up time or
achieve the same performance as ours but having a much higher
computational overhead. For all-to-all broadcast under the all-port

model, our algorithm is optimal in both start-up time and trans-
mission time. For all-to-all broadcast under the one-port model,
our algorithm is optimal in transmission time.

ACKNOWLEDGMENTS

Dr. Yu-Chee Tseng’s research is supported by the National Science
Council of the Republic of China under Grant # NSC85-2213-E-
216-021. Dr. Jang-Ping Sheu’s research is supported by the
National Science Council of the Republic of China under
Grant # NSC 85-2213-E-008-032.

REFERENCES
[1] S.B. Akers, D. Harel, and B. Krishnameurthy, “The Star Graph:

An Attractive Alternative to the n-Cube,” Proc. Int’l Conf. Parallel
Processing, pp. 393-400, 1987.

[2] S.G. Akl, K. Qiu, and I. Stojmenovic, “Fundamental Algorithms
for the Star and Pancake Interconnection Networks with Applica-
tions to Computational Geometry,” Networks, vol. 23, no. 4,
pp. 215-225, July 1993.

[3] N. Bagherzadeh, N. Nassif, and S. Latifi, “A Routing and Broad-
casting Scheme on Faulty Star Graphs,” IEEE Trans. Computers,
vol. 42, no. 11, pp. 1,398-1,403, Nov. 1993.

[4] J.-C. Bermond, P. Michallon, and D. Trystram, “Broadcasting in
Wraparound Meshes with Parallel Monodirectional Links,”
Parallel Computing, vol. 18, pp. 639-648, 1992.

[5] J.A. Bondy and U.S.R. Murthy, Graph Theory with Applications.
Amsterdam: North Holland, 1979.

[6] T.-S. Chen, Y.-C. Tseng, and J.-P. Sheu, “Balanced Spanning Trees
in Complete and Incomplete Star Graphs,” IEEE Trans. Parallel
and Distributed Systems, vol. 7, no. 7, pp. 717-723, July 1996.

[7] K. Day and A. Tripathi, “A Comparative Study of Topological
Properties of Hypercubes and Star Graphs,” IEEE Trans. Parallel
and Distributed Systems, vol. 5, no. 1, pp. 31-38, Jan. 1994.

[8] P. Fragopoulou and S.G. Akl, “Optimal Communication Algo-
rithms on Star Graphs Using Spanning Tree Constructions,” J.
Parallel and Distributed Computing, vol. 24, pp. 55-71, 1995.

[9] S.L. Johnsson and C.T. Ho, “Optimal Broadcasting and Personal-
ized Communication in Hypercubes,” IEEE Trans. Computers, vol.
38, no. 9, pp. 1,249-1,268, Sept. 1989.

[10] J.-S. Jwo, S. Lakshmivarahan, and S.K. Khall, “Embeddings of
Cycles and Grids in Star Graphs,” Proc. Symp. on Parallel and
Distributed Processing, pp. 540-547, 1990.

[11] S. Latifi and N. Bagherzadeh, “Incomplete Star: An Incrementally
Scalable Network Based on the Star Graph,” IEEE Trans. Parallel
and Distributed Systems, vol. 5, no. 1, pp. 97-102, Jan. 1994.

[12] V.E. Mendia and D. Sarkar, “Optimal Broadcasting on the Star
Graph,” IEEE Trans. Parallel and Distributed Systems, vol. 3, no. 4,
pp. 389-396, July 1992.

[13] J. Misic and Z. Jovanovic, “Communication Aspects of the Star
Graph Interconnection Network,” IEEE Trans. Parallel and Distrib-
uted Systems, vol. 5, no. 7, pp. 678-687, July 1994.

[14] K. Qiu, “Broadcasting on the Star and Pancake Interconnection
Networks,” Proc. Int’l Parallel Processing Symp., pp. 660-665, 1995.

[15] K. Qiu, S.G. Akl, and H. Meijer, “On Some Properties and Algo-
rithms for the Star and Pancake Interconnection Networks,” J.
Parallel and Distributed Computing, vol. 22, pp. 16-25, 1994.

[16] J.-P. Sheu, W.-H. Liaw, and T.-S. Chen, “A Broadcasting Algo-
rithm in Star Graph Interconnection Networks,” Information Proc-
essing Letters, vol. 48, pp. 237-241, 1993.

[17] J.-P. Sheu, C.-T. Wu, and T.-S. Chen, “An Optimal Broadcasting
Algorithm without Message Redundancy in Star Graphs,” IEEE
Trans. Parallel and Distributed Systems, vol. 6, no. 6, pp. 653-658,
June 1995.

[18] Y.-C. Tseng, S.-H. Chang, and J.-P. Sheu, “Fault-Tolerant Ring
Embedding in Star Graphs,” Proc. Int’l Parallel Processing Symp.,
pp. 660-665, 1996.

[19] Y.-C. Tseng, T.-H. Lai, and L.-F. Wu, “Matrix Representation of
Graph Embedding in a Hypercube,” J. Parallel and Distributed
Computing, vol. 23, pp. 215-223, 1994.

