
ELSEVIER Parallel Computing 23 (I9971 3 1 l-33 I

PARALLEL
COMPUTING

Tolerating faults in injured hypercubes using
maximal fault-free subcube-ring *

Yuh-Shyan Chen a7*, Jang-Ping Sheu b72

’ Department of Computer Science, Chung-Hua Polytechnic Institute. Hsin-Chu, 30067, Taiwan
b Department of Computer Science and Information Engineering, National Central Universily, Chung-Li

32054, Taiwan

Received 20 April 1995; revised 30 August 1996

Abstract

In this paper, we present a reconfiguration approach to identify the maximal fault-free
s&cube-ring for tolerating faults in injured hypercubes. The fault-free subcube-ring is connected
by a ring of fault-free subcubes with dilation 3. By exploiting the size of fault-free subcubes as
large as possible, the maximal fault-free s&cube-ring with higher processor utilization is obtained.
Using this approach, we can tolerate more than n faults in n-dimensional hypercubes. To
demonstrate the fault-tolerant capability of our approach, we implement two fault-tolerant
algorithms, matrix-multiplication and sorting algorithms, on the nCUBE/2E hypercube machine
with 32 processors. The simulation results show that our reconfiguration approach has low
performance slowdown and high processor utilization.

Keywords: Fault tolerance; Injured hypercubes; Matrix-multiplication; Reconfiguration; Sorting

1. Introduction

The n-dimensional hypercuhe (n-cube), which interconnects exactly N = 2” proces-
sors, is one of the most popular interconnection topologies for parallel computers. As the
size of the hypercuhe system increases, fault tolerance has become an important issue
for such a large system to continue operations after failure of one or more

* Corresponding author. Tel.: + 886-3-537428 I ext. 83 13; fax: + 886-3-537377 1; e-mail; chenys@cs.

chpi.edu.tw.
’ This research is supported in part by the National Science Council, R.O.C., under grant number

NSC85-22 13-E-008-030.

2 E-mail: sheujp@axpl .csie.ncu.edu.tw.

0167-8191/97/$17.00 Copyright 8 1997 Elsevier Science B.V. All rights reserved,

PII SO167-8191(96)00056-7

312 Y.-S. Chen, J.-P. Sheu/Parallel Computing 23 (1997) 311-331

processors/links. In this paper, we study how algorithms that are originally designed for
fault-free hypercubes can be implemented on hypercubes that contain any number of
faults with reasonable slowdown. To measure the efficiency of processor utilization,
several researchers use slowdown ratio [10,25], which is the execution time in the
injured n-cube divided by its time requirement in the fault-free hypercube. The lower
the slowdown ratio is, the higher the processor utilization of system obtains.

Most of the recently proposed fault-tolerant strategies address the issue of reconfigu-
ration once the faulty processors are identified. These reconfiguration strategies have
been developed [10,12,13,17,19,20,24] without adding any redundancy to the desired
architecture. They attempt to mask the effects of faults by using the healthy part of the
hypercube architecture. The desired goal of these strategies is to obtain the same
functionality with a reasonable slowdown. One approach of the reconfiguration strate-
gies is to identify the largest fault-free subcube and use the subcube to emulate the
entire hypercube [12,17,19]. However, this approach results in a tremendous underuti-
lization of resource and high degree of performance slowdown. A different but related
approach, which is to identify the maximal incomplete subcube, is proposed by Chen
and Tzeng [13] by using a reject-region concept. The maximal incomplete subcube
involves one maximal complete subcube plus certain smaller complete subcubes, and
may accommodate multiple jobs with different size. Their approach cannot apply a
complete algorithm on such an identified maximal incomplete subcube.

An effective approach, namely the free dimension, is presented by Raghavendra,
Yang, and Tien [20] to achieve the fault tolerance in a faulty n-cube. Using free
dimension approach [25], simulation of any SIMD algorithm on faulty n-cube takes 2
slowdown ratio of computation and 4 slowdown ratio of communication when the
number of faulty nodes is no more than [n/21. Other application algorithms with the
free-dimension approach [20], such as embedding rings and meshes [27], embedding
binary tree [28], and a prefix computation [21], have been successfully developed on the
faulty n-cube. In addition, Sheu, Chen, and Chang [24] proposed a subcube partitioning
method for designing a fault-tolerant sorting algorithm that can tolerate at most n - 1
faulty processors on n-dimensional hypercubes. However, all of these algorithms are
restricted in the number of faulty processors. Their algorithms can tolerate at most n - 1
faulty processors.

Recently, Bruck et al. [lo] proposed a technique in n-cube using the subcube-parfi-
tioning approach. In the approach, any regular algorithm can be implemented on an
n-cube that has fewer than n faults with slowdown ratios of 2 for computation and 4 for
communication. Moreover, this is the first result showing that an n-cube can tolerate
more than n arbitrarily placed faults with a constant factor slowdown. The approach is
to partition a faulty hypercube into subcubes such that each subcube consists fewer
faults. Any regular algorithm can be performed on an n-cube by using a single healthy
node in each subcube to simulate all actions of the same subcube. The simulation action
of subcube-partitioning approach causes high computation and communication slow-
down. Developing an efficient reconfiguration strategy, which can tolerate arbitrarily
number of faulty nodes and reduce the performance slowdown for any regular algo-
rithms, is consequently the purpose of our study. Our fault model, similar to [lOI, is
defined as follows. All faults including node/link faults are permanent. We only

Y.-S. Chen, J.-P. Sheu/Parallel Computing 23 (1997) 3X1-331 313

consider node faults and an edge fault is assumed that one of the nodes incident upon it
is faulty. We also assume that faulty nodes can neither perform calculations nor route
data.

In this paper, we firstly present a recognition algorithm which can recognize all
possible largest fault-free subcubes in injured hypercubes. Each fault-free subcube with
same size is treated as a processing unit. Our reconfiguration approach identifies the
fault-free subcube-ring which is constructed by a ring of these processing units with
dilation 3 at most. Based on these recognized fault-free subcubes, we propose an
efficient algorithm to identify the maximal fault-free subcube-ring. Identifying the
maximal fault-free subcube-ring is achieved by exploiting the size of each fault-free
subcube and the number of fault-free subcubes as large as possible. For illustrating the
fault-tolerant capability of our approach, we implement two application algorithms,
fault-tolerant matrix-multiplication and sorting algorithm, on the nCUBE/2E hypercube
machines with 32 processors. If the number of faults is less than n, the slowdown ratio
for running these application algorithms on the maximal fault-free subcube-ring, com-
pared with fault-free algorithms, is smaller than 2. This is due to the reason that the
processor utilization of our approach is larger than 50%. Even when number of faults
< 2”- 2 the average slowdown ratio of these two algorithms with our fault-tolerant
scheme is smaller than 2.5.

The rest of this paper is organized as follows. The primary properties of maximal
fault-free subcube-ring are introduced in Section 2. Systematic technique for identifying
the maximal fault-free subcube-ring is addressed in Section 3. Two important applica-
tion algorithms, fault-tolerant matrix-multiplication and sorting algorithms, on the
maximal fault-free subcube-ring are implemented in Section 4. The performance im-
provement of our approach with the subcube-partitioning approach is analyzed in
Section 5. The conclusions will be finally given in Section 6.

2. Notation and preliminary

Let Q, be the n-dimensional Boolean cube, or n-cube, which consists of 2” nodes
with each node representing a processor and each edge between two nodes in Q,
corresponding to a communication link between two processors. Every node b has
address b,, b,, _ , . . . b, with bi E (0, 11, 1 s is n, where bi is called the ith bit (also
called the ith dimension or dimension i) of the address. Each m-dimensional subcube

Q ,,,, or m-subcube, has a unique address x,x,,_, . . . x, with xi E (0, 1, * 1, 1 4 i s n,
where exactly m bits take the value * (* is a do not care symbol). For example, :- ‘0
and :- ’ 1 denote the two (n - I)-subcubes separated by dimension 1, where * ’ stands
for i consecutive : s.

Now we introduce the concept of prime-subcube [12]. Let F denote a set of faulty
nodes in an injured n-cube. Given a non-faulty node P, a prime-subcube with respect to
a non-faulty node P is a fault-free subcube which involves P but is not contained
entirely in any other fault-free subcube involving P, where P E Q, - F. Note that there
may be more than one prime-subcube corresponding to P. For example, given an
injured 4-cube with set F = (0000, 0110, 1001) as shown in Fig. la, there exists one

314 Y.-S. Chen, J.-P. Sheu/Parallel Computing 23 (1997) 311-331

(a) A &!d with 3 faulty nodes and 3 largest fault-free sub&es.-

(b) A feasible fault-free subcube-ring$(l, 5) .

Fig. I. A feasible fault-free s&cube-ring R&l, 5) from a Ccube with 3 faulty nodes. (a) A Qq with 3 faulty
nodes and 3 largest fault-free subcubes. (b) A feasible fault-free subcube-ring R, (1, 5).

prime-subcube 0 * * 1 with respect to node 0001 and 3 prime-subcubes * 10 * , 1 * * 0, and
11* * with respect to node 1100. Recently, Chen and Tzeng [12] have proposed a
subcube identification algorithm to identify the fault-free subcubes in a faulty hyper-
cube. However, their algorithm may fail to identify the maximum fault-free subcube and
each healthy node must obtains all faulty nodes addresses before running their algo-
rithm. The work presented here is different from those carried out in [12] in the sense
that all maximum fault-free subcubes can be recognized by our algorithm and each
healthy node only keeps the status of its neighboring nodes. The maximum fault-free
subcubes exist in set of the prime-subcubes. Alternatively, in our algorithm, we will
recognize all prime-subcubes for each healthy node P. Our reconfiguration scheme with
more processor utilization can be identified from these recognized prime-subcubes.

Assume there exists a sequence of k disjoint fault-free m-subcubes [Qa, Qi, . . . ,
Qk]. Sequence [Qk, Qi,.. . , Qi] is selected from set of prime-subcubes which are
collected from all prime-subcubes of each healthy node. Each m-subcube is treated as a
processing unit and we reconfigure these processing units into a ring with dilation 3 at
most, namely fault-free subcube-ring R&m, k), which is defined as follows.

Definition 1. Fault-free subcube-ring R,(m, k). Let R&m, k) be a sequence pair ([Ql.

Qf...., Qkl, [j,, j,,..., j,_ ,, j,]> to denote a feasible fault-free subcube-ring, where

Y.-S, Chen, J.-P. Sheu/Parallel Campuring 23 (1997) 311-331 315

[Q:, Q:,..., Qbl is a sequence of k disjoint fault-j+ee m-subcubes and [j,, j,, . . . ,
j,_ I, j,] is a sequence of dimension sequences, for each dimension sequence jj =
(dj,..., d;), d;E{l, 2 ,..., n}, 1 I w ~3, and 1 pi I k. The R, (m, k) is
constructed by each node in QL connects to a node in Qz mod k)+’ along dimension
df,..., d:, . Therefore

If the connection Qk 2 Q!,, does not exist, then a fault-free subcube-chain, denote by

C,(m, k), is constructed. The processor utilization of RS(m, k) and C,(m, k) are
2” X k. The diameter of RS(m, k) and C,s(m, k) are at most 3 X [k/2] + m and
3 X k + m, respectively. Obviously, a fault-free subcube-ring R,(m, k) can be treated as
a fault-free subcube-chain C&m, k) with the same size of m-subcube. On the contrary, a
fault-free subcube-ring R,(m - 1, 2 X k) can be directly obtained from fault-free
subcube-chain C,(m, k) with double diameter. Recall above example, we may recognize
3 largest fault-free subcubes as shown in Fig. la. In Fig. lb, a fault-free subcube-ring R,

(1,5)=00”1 ‘2 01*1 ‘2 11*1
(1,3) (3) (3.1,4)
+B lO*O t, 11*0 t, OO*l isconstructed.

Throughout this paper, we will only focus our attention on constructing a feasible
fault-free subcube-ring R&m, k) in an injured hypercube. In order to preserve low
diameter and obtain better processor utilization, identifying the maximal fault-free
subcube-ring RS(m, k) is the main objective of this study. The value of m and k of
R&m, k) are the two major consideration factors. Determining the maximal fault-free
subcube-ring RS(m, k) is controlled by what values of m and k being are the best
selection. The maximal fault-free subcube-ring R,(m, k) is defined here that the
maximum value of m is determined firstly and then the maximum value of k is
exploited.

3. Identifying the maximal fault-free subcube-ring R,(m, k)

In this section, an efficient algorithm for identifying the maximal fault-free subcube-
ring R,(m, k) in an injured n-cube is proposed. The identification algorithm can be
categorized into two parts. First, a distributed algorithm is derived in Section 3.1 to
recognize all possible prime-subcubes with respect to each non-faulty node P, where
P E Q, - F. Second, a distributed algorithm is presented in Section 3.2 to efficiently
identify the maximal fault-free subcube-ring R,(m, k) based on the recognized prime-
subcubes.

3.1. Recognizing the prime-subcubes

In this subsection, we describe how to recognize all prime-subcubes corresponding to
each healthy node P, where P E Q, - F.

316 Y.-S. Chen, J.-P. Sheu/ Parallel Computing 23 (1997) 31 I-331

Without loss of generality, we focus on recognizing a set of prime-subcube with
respect to a given node P, where P E Q, - F. Assume that the i-dimensional neighbor-
ing node of P is P,!, where 1 I i I n. Before running our recognition algorithm,
non-faulty node P keeps a variable y = (‘y,, y,,_ , . . . , y, > to record the status of its
i-dimensional neighboring node P;; if P,! is non-faulty then set bit yi = 1; else set bit
yi = 0, for all 1 5 i I n. To demonstrate our algorithm, we first introduce some terms.
Assume that the address of node P is X,X,_, . . . xi+, xi. . . x, and address of node P;
is X,X,_, . . . xi+,Xi... x,, where xi E (0, 1) and 1 ZG i s n. Let HP represent an
i-subcube whose address is x,x,_ , . . . xi+, * ‘. We denote U,P as a set of prime-sub-
cube with respect to node P and subcube HP such that each subcube in set ‘CT,P
involving P is not contained entirely in part of any other fault-free subcube of HP,
where 1 I i I; n. Similarly, U is the set of prime-subcube with respect to nod P,f and
subcube Hip’,

Hi’
where 1 I i s n. As a consequence, U H,’ is the set of prime-subcube

with respect to node P and Q,. Each subcube x in set U,,P, 1 I i < n, has the property
that there is no larger subcube containing x in 7.l”;. As an example, consider an inured
hypercube Q, with F = {000} as shown in Fig. 2. For given node P is 011 and its
2-dimensional neighboring node P; is 001. Subcube Hi” is 0 * * and sets I.JH;~~ and
U,pl are {Ol* , 0” 11 and {O*j, respectively.

Our recognition algorithm is an ASCEND algorithm to recursively concatenate
smaller healthy subcubes into larger healthy subcube. Initially, sets of II,; and II,;,
are the respective addresses of node P and P;. The set II,; is derived by the SC(U,;lL,
0,~ ,) (subcube-concatenation or SC) operation. The SC NJ,;_ ,, 0,;: ,> operation is
defined here to repeatedly recognize ‘CT,;, where i is ranging from 1 to n. The SC
operation is divided into two phases as described in what follows.

In phase I, if node Pi’ is fault-free, then node P sends its set U,,P, to its
i-dimensional neighboring node PI and receives a set DcF,~;! from node Pi’. After this
phase, node P contains sets II,:, and zFH;;, and then continue to perform phase II of
SC operation. If node P; is a faulty node, then set II,; to be U,;_, and skip the phase
II of SC operation, where 1 I i I n.

In phase II, each node P performs the bit-concatenation (BC) operation (Y = CB (x,

(a) Recognizing UHr. (b) Recognizing U H,p. (c) Recognizing 2li H,p.

Fig. 2. Recognizing prime-subcubes on a 3-cube with faulty node 000.

Y.-S. Chen, J.-P. Sheu/Parallel Computing 23 (1997) 311-331 317

y)foreachelement ~=b,b,_,...b,EQ~;_,, y=bbbn_,...b’,EU,;;, torecognize
a new set U,P with (Y = z,z,_ ,...z, and lliln.The $ isabitwlseoperatoron
each pair of b; and b;, i.e., zk = b, @ b; for 1 I k I n. The bit operation CB is divided
into three cases and defined as follows. In case 1, it yields 0, 1, and * if the bits 6, and
b; have the same value ‘O’, ‘l’, ‘* ‘. In case 2, if one of bits is ‘0’ and another one is 1,
then it yields *. In case 3, if one of bits is ‘ * ’ and another one is ‘0’ (or ‘ 1’) then its
restores to 0 (or 1). Let subcubes x and y are neighboring subcubes, symbol x + y
denotes the union of subcubes x and y and all links between x and y.

Proposition 1. If subcubes x E U,:, and y E U,;;, are two disjoint neighboring
subcubes, then subcube 8 (x, y) is the prime-subcube containing node P and belong
to x + y.

Proposition 2. For any given two subcubes a and b, where a and b are not disjoint,
then subcube @(a, b) is the intersection subcube of subcubes a and b.

For instance, subcubes 01 * and 1* * are two disjoint neighboring subcubes as shown
inFig. 2b, @(Ol*, 1 * *) = * 1 * is the prime-subcube containing node 011 and belong to
01* + 1* *, Subcubes 01 * and 0 * 1 are not disjoint as shown in Fig. 2b, the intersection
subcubeofOl* andO*l is f~(Ol*,O*l)=Oll.

Algorithm: Recognizing prime-subcubes (RPS)

Input: Each nonfaulty node P maintains a variable y = (-y,,, m-1 . . ., -yl) for keeping status

of all neighboring nodes, where P E Q,, - F. The initial set of set ZJHl on node P

is its node address.

Output: Each nonfaulty node P obtains its set of prime-subcube UH~, where P E Q, - F.

Step 1: for i := 1 to n do step 2 through step 3

Step 2: if (7; = 1) then do step 3; else U,P = U,p_,;

Step 3: For each pair of neighboring nodes P and Pi along dimension i, applying the

SC(ZJliH~I, 7JH~,) operation:

(a) /* Phase I of SC operation */

Each node P sends its 7JH~, to neighboring node Pi and receives a set U H~1 from
node Pi.

(b) /* Phase II of SC operation */

For each subcube I in UH~, and subcube y in UH~, do:

Q = @(z, y); /* bit-concatenation (EC) operation */

if z = $(z, (Y) then adds Q into SIflp if Q is not existed in U,P;

else add z and cr into 7JH.p if z and cy are not existed in 7JHp;

Fig. 3. Recognizing prime-s&cubes (RPS) algorithm.

318 Y.-S. Chen. J.-P. Sheu/Parallel Compuring 23 (1997) 311-331

If (Y is a subcube of b then equation u = @(a, 6) holds. For each x E U,P and

YE%pl,. subcubes x and y are two disjoint neighboring subcubes and let a = ’ $ (X,
y), then set U,; is recognized as follows.

ZT

i

ZF,+JCf if x= @(X,(Y) and cugU,p
HP = u,;UxUa if x# @(x,(y) and xg’cF,p and (YOU,;

After applying the two phases of SC(U,; , , UHyJ operation for n times, in final, 0,;
is a set of prime-subcube for node P. Recall above example, for a given pair of
neighboring nodes P (011) and P; (Ill), the set ‘cFH;lI is {Ol*, O*l} and U,.,II~ is
{l* *}. To obtain U,pll, the SC operation is performed on sets U,oll = {Ol*, 0* lf and
U H4,, = {l* *). Equations @(Ol”, l”*)=*l* and @(O*l, l*‘f=%*l hold. Thus,
‘CT H3011=t*1*, * * l} is obtained.

Fig. 3 shows the distributed algorithm of recognizing all prime-subcubes (RPS) on
each non-faulty node P, where P E Q, - F. As an example, consider an injured
hypercube Q3 with F = {O}, each set of prime-subcubes U,,,P, U,;, and ZF,,; for each
non-faulty node P are respectively recognized as shown in Fig. 2a, b, c, respectively.

The following theorem states that all possible set of prime-subcube is recognized by
our recognition algorithm.

Theorem 1. The set of all prime-subcube with respect to each non-faulty node P is
recognized by applying the SC(U,; , , U,G ,> operation n times by varying i from I to n,
for all P E Q, - F.

Proof. Without loss of generality, consider that a pair of i-dimensional neighboring
nodes P (with set U,;_,) and P; (with set V,,P>, where P E Q, - F. We prove that
the SC operation can recognize all prime-subcubes by induction as follows.

Basis i = 1: Initially, sets of !.I,; and U,g are addresses of nodes P and P;,
respectively. If node P; is fault-free, set U,, P is easy to obtain since the addresses of p
and p’r differ in the first bit. Otherwise, set 0,; is original set ZF,:.

Hypothesis i = k - 1: After performing SC operations for k - 1 times, sets U,,;_ ,
and q-T, are assumed to be obtained with respect to P and Pf. Therefore, all
prime-subcubes on subcubes Hkp_ , and H,” , corresponding to nodes P and Pi__, are
constructed, respectively.

Induction i = k: Now apply the SC(zF,l_ ,, 0,~; ,> operation along dimension k. For
each x E set II,/_ ,, y E U,r; , xand yarepartofsubcubes X,X,_, . . . x~+,x~*~-’
and X,X,_, . . . xk+,zi * k”: respectively. Since subcube x containing node P and y
containing neighboring node Pi, subcubes x and y are two disjoint neighboring
subcubes. By proposition 1, @(x, y> is the prime-subcube containing node P and
belong to x + y. For each x E set U,,;_ ,, all y E ZF,;;, are selected to validate whether
a larger prime-subcube on H/’ exists or not. In other words, it is guaranteed that a larger
prime-subcube can be recognized by the @(x, y) operation if it exists. Consequently,
set II,: can be constructed by SC(UH;_ ,, ZF,;;, > operation. By induction, we conclude
that the recognition algorithm recognizes all prime-subcubes. 0

Y.-S. Chen. J.-P. Sheu / Parallel Computing 23 (1997) 31 I-331 319

The time complexity TRPs of algorithm RPS is analyzed as follows. In step 1, we
perform n loops of step 2 and step 3. The time cost of step 2 and step 3(a) is constant. If
the number IFI is larger than n, the number of II,;_, on each iteration is 1 < Iu!;_,I I
C;‘i,z,, for 1 ZG i I II. We need 0((C(i,,,)2) times to perform the BC operations m step
3. The execution time of the BC operation is O(n). Another time cost O(n) is needed to
check weather a given element exists in set II,! or not (using the conventional hashing
technique). Thus, the total time cost of Taps can be measured by the following equation.

T RPS
=O(n’.N), where N=2”.

Note that if IFI I n, the size of I.I,p_, is 1 I lU,p_,l~ i. The total time cost of TRps
becomes O(2n. Cl= ,i2) = O(n(n(n + lX2n + 2)/(6)) = O(n4).

3.2. Identifying the maximal fault-free subcube-ring R,(m, k)

Using the algorithm RPS, each healthy node can construct its corresponding prime-
subcubes. In this subsection, we show how to effectively identify the maximal fault-free
subcube-ring R,(m, k) from these prime-subcubes. The proposed algorithm is a
distributed one. The algorithm of identifying maxima1 fault-free subcube-ring R,(m, k)
(IMSR) is divided into four steps and given in Fig. 4. Each step of algorithm IMSR is
described in the following.

First, in step 1, all prime-subcubes are collected into set ‘CT and each healthy node P
obtains set II, where P E Q, - F. This is because that we will distributively select all
subcubes of R,(m, k) from the set II. This tasks can be achieved as the following

Algorithm: Identifying maximal fault-free subcube-ring R,(m, k) (IMSR)

Each healthy node P has its corresponding prime-subcubes, where P E Qn - F. Input:

Output: Two sequences [Qh, Q$, . ., Qi, Q!,,] and [it,jz,...,L,,j~l of K(m,k) are

step 1:

step 2:

Step 3:

step 4:

obtained for each node P.

Each node P obtains all prime-subcubes from all other fault-free nodes.

Each node P constructs a subcube, namely maximum bridge-&cube, and then use

the maximum bridge-sub&e to eliminated useless subcubes existed in set of all

prime-subcubes.

Each node P constructs a tree, called subcube-lme T, from the remanding subcubes

of all prime-subcubes. Fully using the sub&e-tree T, a largest fault-free subcube-

ring with dilation 3 is identified.

Host node determines the maximal fault-free subcubering R,(m,k) among these

largest fault-free subcube-ring and broadcasts RS(m, k) to each node P.

Fig. 4. Identifying maximal fault-free subcube-ring R,(m, k) algorithm.

320 Y.-S. Chen, J.-P. Sheu/ Parallel Computing 23 (1997) 311-331

description. It is assumed that the hypercube has one host (also known as the service
node of system manager), which has a direct connection to each cube node, like the
nCUBE/2E [2] and the Intel iPSC/860 [l]. Each non-faulty node sends its own
prime-subcubes to host by the direct connection. Host node combines all prime-subcubes
into a set U and broadcasts the collected set ZF to each non-faulty node by the direct
connection.

Second, in step 2, let’s recall the description of maximal fault-free subcube-ring.

R,(m, k) = ([QL, Qi,. . . , Qk, Q,!J, [j,, j,, . . . , j,_ ,, j,]). For each subcube of Q’,,
Q:,..., and Qi, we observe the fact that all ‘ x ’ occur on the same positions of each
subcube’s address. In the following, we explain how to obtain these subcubes from set
0. We firstly define the subcube-sequence. For given a subcube x = b, b,_ , . . . b, . . . b,,
bi = (0, 1, *) and 1 < i I n, let subcube-sequence 9(x) be (sj, sj_ ,, . . . , s, > such that
bsk = { “) and b, = {O, l}, where 1 I k I j, 1 I h I n, and h E sj, sj_ ,, . . . , s,. For
instance, subcube-sequences A? * 0 * 1) and P(* 1 * 0) are (4, 2), so subcubes * 0 * 1
and * 1 * 0 have same subcube-sequence (4, 2). For given a subcube x, the subcube-se-
quence 9’(x) is used to eliminate useless subcubes existed in set 0. The useless
subcube is one existed in set ZF has different subcube-sequence Y(x).

Before describing how to select subcubes from set U, we must exploit a subcube and
then use this subcube to eliminate useless subcubes in set 7l. Such subcube is called as
the bridge-subcube throughout this work. We devoted to the basic aspects of finding the
bridge-subcube in the following. For each non-faulty node P, considering each pair of
nodes P with U,P and P; with ZF,;,, for 1 5 i < n, all pair of x E !.J,P and y E ‘CT,P
are selected to find the bridge-subcube. At the beginning, the bridge-s&cube or BS(i,
Y) is defined as follows. First, if x and y are not disjoint, then bridge-subcube is the
intersection subcube of x and y; that is, BS(x, y) = @(x, y) by proposition 2. Second,
if x and y are two disjoint neighboring subcubes, then BS(x, y) is the intersection
subcube of x and Ce(x, y); that is, BS(x, y) = @(x, @(x, y)), where @ (x, y) is the
prime-subcube containing node P and belong to x + y by proposition 1. For instance,
consider nodes P and P; are 0101 and 1101, respectively. If x = 0” * 1 and y = *j 1 x 1,
thenBS(O*“l, *l*l)is f3 (O**l, * 1 x 1) = 01” 1 as shown in Fig. 5a. Fig. 5b shows
thatif x=O’“l and y= ll**, thenBS(O’*l, ll”*)is @(O**l, @(O**l,ll“))=
$ (0 * * 1, * 1* 1) = 01 * 1. Note that, the criterion to determine R,T(m, k) is the maximum

(a) subcubes x andy are not disjoint (b) subcubes x and y are disjoint

Fig. 5. Constructing bridge-subcube of P = 0101 and PA = 1101.

Y.-S. Chen, J.-P. Sheu / Parullel Computing 23 (1997) 311-331 321

value of m will be exploited and then to identify R,(m, k) with largest value of k.
Therefore, we select the maximum bridge-subcube which is denoted as MBS. The
selected MBS should satisfy the following max function.

MBS= max
X~U,:,Y~D,,;

BS(x, Y)

Since each subcube Qb of R&m, k) = ([Qh, Qi,. . . , QL, Qll. [j,, j,, . . . , j,_ ,, j,l)
has the same subcube-sequence Y<Qm). for 1 < i s k, therefore, we only keep subcubes
from set U with same subcube-sequence Y(MBS). This work can be achieved as
follows. All subcubes x E U with the same subcube-sequence &%IBS) are collected
into set ty. If 1x1 > m, then subcube x is partitioned into m-subcubes with the same
subcube-sequence Y(MBS) and collected into set ?P.

Third, in step 3, each node P constructs a subcube-tree T based on q and MBS.
Fully using the whole subcube-tree T, a feasible fault-free subcube-ring with dilation 3
is identified. The subcube-tree T is constructed as follows. Each node of subcube-tree T
is a subcube of set q. The total nodes of subcube-tree T is at most 2” - m and all
subcubes in set ?P construct T. The subcube-tree T is a Breadth-First-Searching
spanning tree. Root of tree T is the selected MBS and branches of tree T represent the
possible neighboring subcubes. Each node u of subcube-tree T probes each of the
n - m - 1 neighboring m-subcubes. If the neighboring m-subcubes exist in set ?P but
not exist in subcube-tree T, node u connects to the m-subcube. Repeatedly performing
above operations until no neighboring m-subcube can be further found, the subcube-tree
T is constructed.

Continually, the whole subcube-tree T is used to identify the R,(m, k) for the
purpose of maximizing the processor utilization. It is known that an N-node ring can be
on-to-one embedded with dilation 3 in any connected N-node network [5]. A subcube-tree
T is a connected network, as a consequence, a largest fault-free subcube-ring with
dilation 3 can be identified. Consider an injured hypercube Q4 with F = (6, 9). All
prime-subcubes are collected into set V;={*O*O, OO**, O**l, O’O*, **OO, *Ol*,
11, *1*1, *lo* lO, ll**, l*l*). The MBS isOO*l and subcube-sequence ~7

Fig. 6. Constructing a subcube-tree T, where MBS = 00 * 1, subcube-sequence 9(00*~1) = (3, and set

Y={00’0,10’0,00’1,01’1, 11’1, 11’0).

322 Y.-S. Chen, J.-P. Sheu/Parallel Computing 23 (1997) 311-331

(OO*l)is(2),soset!P is{OO*O, 10*0,00*1,01*1, ll*l, ll*O}.Rootofsubcube-tree
T is 00 * 1, therefore the subcube-tree T is easily constructed from set W as shown in
Fig. 6. Fig. 7a displays how to identify a largest fault-free subcube-ring R,(l, 6) from
the subcube-tree T. Consequently, a largest fault-free subcube-ring R,(l) 6) = ([00 * 1,
ll*l, ll*O, Ol*l, lO*O, OO*O, 00’11, [(3, 4), (l), (1, 4), (3, 1, 4), (4), (l)]) is
constructed as shown in Fig. 7b.

Finally, in step 4, the maximal fault-free subcube-ring R,(m, k) is determined among
these largest fault-free subcube-ring. Each non-faulty node P E Q, - F has constructed
its largest fault-free subcube-ring. Then each node P sends its largest fault-free
subcube-ring to host node by the direct links. The host node determines the maximal
fault-free subcube-ring R,(m, k) from the view of the processor utilization. If there
exist more than one of largest fault-free subcube-ring with same processor utilization,
host node randomly selects one from them. Finally, host node broadcasts the final Rs(m,
k) to each non-faulty node P by the direct links.

We now analyze the total time cost T,MSR of algorithm IMSR. The maximum number
of prime-subcubes with respect to a given non-faulty node P is CT,“,,,,, [13], where
P E Q, - F. From Stirling’s approximation, C,“,,,, = (2n)/(G) for a large n [13]. In
step 1, time 0((2”)/(\/;;) X nN) is needed for each non-faulty node sending its
prime-subcubes to host node. In step 2, we take time 0(n2 X (2”/ &)“) to determine to
MBS. We take times 0((2”)/ 6) X nN> to keep elements in set II with the same
subcube-sequence Y(MBS). The total number of nodes in the subcube-tree T does not

It-free subcube-ring from a subcube-tree T.

(b) A largest fault-free subcube-ring i&(1,6).

Fig. 7. Identification of a largest fault-free subcube-ring R,(l, 6) from the subcube-tree T.

Y.-S. Chen. J.-P. Sheu / Parallel Computing 23 (I 997) 31 I-331 323

exceed 2” and each probing step takes O(n) to probe whether its children exist or not.
The time cost of step 3 is O(nN). In step 4, time cost O(N), where N = 2”, is needed.
Thus, the total time cost of r,,,, can be measured by the following equation.

= 0(&i x N’) + 0(n x N2) + O(J;; X N’) + 0(nN) + O(N)

=O(nXN*)

The total time cost T of T,,,, = O(n* X N) + O(n X N2) = O(n X N2>.

4. Fault-tolerant algorithms on the R&m, k) and C,(m, k)

Many scientific algorithms already successfully developed on the n-cube. The main
objective of our fault-tolerant scheme is to tailor these existed algorithms onto R, (m,
k). Two application algorithms, matrix-multiplication and sorting, are respectively
presented in Sections 4.1 and 4.2 to illustrate the work of designing the fault-tolerant
algorithms on the R,(m, k) and C, (m, k).

4.1. Fault-tolerant matrix-multiplication algorithm on R, fm, k)

Bemtsen [9] proposes a communication efficient matrix multiplication algorithm on
n-cube. The n-cube includes a two-dimensional mesh interconnect with wrap around
which is mapped by a binary Gray code. The matrix multiplication C = A X B is
performed where C, A, and B are full N X N matrices. Since there are P = 2” identical
processors, the matrices are distributed on a 6 X 6 mesh of processors. In order to
compute C, the neighbor to neighbor communication and computation for each proces-
sor are needed to perform [9]. Based on Bern&en’s algorithm, we simulate each
fault-free subcube of R&m, k) as a processing unit. Our major concentration then is to
arrange the jobs between each pair of neighboring processing units of the maximal
fault-free subcube-ring R&m, k). Our algorithm is divided into two phases. The first
phase is to redistribute the matrices C, A, and B onto a Rs(m, k). Consider a R,(m, k),
there are k m-subcubes each containing 2” nodes. Each m-subcube of R$(m, k)
includes a ring which is mapped by a binary Gray code. A two-dimensional mesh
interconnect with wrap around containing k X 2” processors is formed. The matrices C,
A, and B are distributed into a k X 2” mesh of processors as follows. Let LCM(x, y)
denote the least common multiple of x and y. First, we split the full N X N matrices
into p X p submatrices, where p = LCM(2”, k). The matrix C is divided in square
submatrices C,,, holding the elements cik, with Na/p 4 i < N(a + 1)/p, Nb/p 5 k <
N(b + 1)/p and 0 I a, b < p. Similarly, matrices A and B are split up in the same
way. Second, we evenly partition the p X p submatrices onto k x 2” processors of
R,(m, k). As a result, each processor contains (~/2~) X (FL/k) submatrices of C, A,

and B.
The second phase is to rearrange the jobs of the neighbor to neighbor communica-

324 Y.-S. Chen, J.-P. Sheu/Parallel Computing 23 (1997) 311-331

tions and computations of each processor of R$m, k). Since each processor contains
c/~/2”‘) X (p/k) submatrices of C, A, and B, it can be viewed as a matrix with
(~/2~) rows and (p/R) columns. The communication and computation are modified
as follows. First, each processor must multiply the respectively submatrices of A and B
and sum the product to the respective part of C. Then, we let all submatrices of A shifts
let one row. The shift left operation of boundary column is achieved by sending the
leftmost column with (p/2”‘) submatrices of A to the west and receiving a column
with (p/2’? submatrices of A from the east. Third, we let all submatrices of A shifts
up one row. The shift up operation of boundary row is achieved by sending the top row
with (p/R) submatrices of B to the north and receiving a row with (p/k) submatrices
of B from the south. After executing above communication and computation steps p
times, matrix C is thus obtained.

The derivation of time cost 7’,, of the fault-tolerant matrix-multiplication algorithm
is described as follows. Assume that r is the time to do a floating multiplication or
addition, r,,,, is the time to communicate a single real word and rstan is the startup
time. Our algorithm performs p iterations of the neighbor to neighbor communication
and computation operations. Time cost of computation operations is 2 X (~)/(2”) X

(P)/(R) X ((N)/(c1.))3T. Time cost of communication operations is t,,,, + 3 X
((/d/(2”) x (W)/(/-d)*)~,,,, + rstan + 3 X ((P)/(k) X (N/P)*)&,,.

Therefore, the total time cost TFM is

N3
=2pr+2/Lt.tan+

3x(k+2”)N2
t

P comm

where P = 2” X k.

4.2. Fault-tolerant sorting algorithm on C,(m, k)

A C,(m, k) can be directly obtained from R,(m, k), which is described in Section 2.
Based on the Batcher’s bitonic sorting algorithm [8] and odd-even sorting algorithm [3],
our fault-tolerant sorting algorithm is developed on C,(m, k) as.follows. For a given
identified C,(m, k), there is a sequence of fault-free m-subcube {Qh, Qi.. . . , Qh.. . . ,
Qk} with 2” x k processors. Depending on the value of i is odd or even, sequence IQ:,
QZ, . . . , Q;, . . . , Qk} is classified into odd-numbered and even-numbered subcubes,
where 1 < i I k. Assume each processor has [M/(2” X k)l unsorted elements, where M
is the number of total unsorted elements. Initially, we let each node execute the bitonic
sorting algorithm such that unsorted elements on each m-subcube of C,(m, k) are
sorted. That is,] M/(2” x k)l unsorted elements on each subcube have been sorted such
that data elements located on each odd-numbered subcube are sorted in ascending order
and located on each even-numbered subcube are sorted in descending order. Next, each
fault-free m-subcube of C,(m, k) is viewed as a processing unit and we repeatedly
perform the odd-even-like sorting operations on each pair of processing units C,(m, k)
as follows.

Y.-S. Chen, J.-P. Sheu/ Parallel Computing 23 (1997) 311-331 325

The odd-even-like sorting operations is divided into two steps as follows. First, all
odd-numbered s&cubes Ql are activated, where i is the odd number. Consider an
odd-numbered subcube Q6 and its neighboring subcube Qr I. The compare-exchange
and merge-compare-exchange operations of bitonic sorting algorithm IS] are performed
on each pair of processors P and P’, where P and P’ existed in subcubes Q6 and

Q:“, respectively. Thus smaller data elements of subcubes Qi and Qc ’ are reserved
to subcube Q6 and larger data elements are sending to subcube Qc ‘. Performing the
bitonic sorting algorithm again on each subcube so that data elements of each subcube
are sorted to be ascending or descending order according to its subcube address is odd or
even, respectively. The second step is identical to the first one except that this time
even-numbered subcubes are activated. These two steps are repeatedly performed in this
order. After [k/2] iterations, no further exchange data can take place. Finally, data
elements of all subcubes will be sorted in the ascending order by using the bitonic
sorting algorithm.

The derivation of total time cost Trs of fault-tolerant sorting algorithm is described
as follows. Time cost of sorting data elements on each m-subcube is 0 (](M)/(2m X k)l
log ([(M)/(2” X k)l) + dm + 1)/(2X[(M)/(2” X k)l)). Our algorithm performs [k/2]
iterations of odd-even-like sorting operations. Time cost of odd-even-like sorting
operations is 0([(3 X M)/(2” X k)l + dm + l)/(2) (](M)/(2” X k)l)) = o([(m(m +
7))/(2)](M) (2” X kl). Therefore, the total time cost T,, is

+0 [k/2) 2x
((yz”‘[&l)

+ m(m(k+ 1) +7k+ 1)

2

In the case of log ([(M)/(2” x k)l) 2 (m(m(k + 1) + 7k + l))/(2), our fault-tolerant
sorting algorithm is a time-cost optimal algorithm.

5. Performance analysis and experiment results

The largest fault-free subcube scheme [12,17,19], free-dimension scheme [ZO], and
subcube-partitioning scheme [101 are the present reconfiguration strategies for tolerating
faults in injured hypercubes. The largest fault-free subcube scheme results in a tremen-
dous under-utilization of resource and high performance slowdown. The free-dimension
scheme [20] has the shortcoming that the number of faults is limited to the order of
hypercube dimensions. Here, simulations then mainly compare the execution time of
two application algorithms (as described in Section 4) that are respectively use subcube-
partitioning scheme [lo] and our reconfiguration scheme.

The percentage of processor utilization of R,(M, k) is analyzed as follows. It is

326 Y.-S. Chen, J.-P. Sheu/ Parallel Computing 23 (1997) 311-331

obviously that the processor utilization of R,(m, k) is 2” X k and a healthy Q, can be
transferred to R&n -s, 2’), where s < n. The R,(n - s, 2”) has 2”-” x 2” = 2”
processors and the Rs(m, k) has 2”-” X k = k. 2”-2 processors if n - s = m. The
percentage of processor utilization of R,(m, k) is evaluated by the ratio of number of
processors used in R,(m, k) to total number of processors of n-cube. That is,
(k2”-S)/(2” X 2”-‘) = (k)/(2”). If k= 2” - 1, then the best percentage of processor
utilization is (2” - 1)/(2”). The larger value s is, the higher percentage of processor
utilization and the higher diameter of R,(m, k) will be. There is a tradeoff to determine
a suitable value of s such that both the high percentage of processor utilization and the
low diameter are achieved. In our scheme, we consider to possibly select the largest
subcube to avoid the high diameter problem. Let there exist two suitable fault-free
subcube-rings R, (3, 3) (the best selection by identification algorithm described in
Section 3.2) and R,(2,7) in an injured Q, with only one faulty node. The percentage of
processor utilization of R&3, 3) and R, (2, 7) are respective 75% and 87.5%, and the
diameter of R,(3, 3) and R,(2,7) are respective 9 and 15. Here we select the R,(3, 3) as
our result.

Our simulation is executed on an nCUBE/2E hypercube machines with 32 proces-
sors each contains 4 Mbytes of local memory. In our simulation, two cases of number of
faulty processors are assumed. The address of faulty processors are randomly generated
on each of 10000 simulations for fixed n and (Fl. In the case of I RI< n, the
requirement of processor utilization is demand to at least larger than 50% for improving
the slowdown factor. If percentage of processor utilization of R&m, k) is larger than
50%, the slowdown factor of computation will reduce to be smaller than 2. The
percentage of processor utilization of any recognized maximal fault-free subcube-ring
R,(m, k) is larger than 50% when the number of faulty nodes is smaller than n. This is
because that there at least existed a R,(O, 2”- ‘) on an injured n-cube with n - 1 faulty
nodes [26]. All possible maximal fault-free subcube-ring R&m, k), processor utilization,
and distributed percentage of processor utilization under fixed n and IF I, where n = 5,
1 < IF I I 4 are shown in Table 1. For instance, when n = 5 and I FI = 4,7.65% cases of
Q, can be identified into R,(2, 4) with 50% processor utilization, 38.53% cases can be
identified into R,(2, 5) with 62.5% processor utilization, 50.67% cases can be identified
into R,(2, 6) or R&3, 3) with 75% processor utilization, and 3.15% cases can be
identified into R,(2, 7) with 87.5% processor utilization. As shown in Table 1, lOO%,
84.6%, 65.45% and 50.67% cases to exploit the 75% processor utilization in an injured
Q, when IFI is 1, 2, 3, and 4 respectively. This indicates that the percentage or
processor utilization of maximal fault-free subcube-ring R,(m, k) is always larger than
50% if IFI < n. Furthermore, if the number of F is larger than n, we exploit the
maximal fault-free subcube-ring R,(m, k) such that the processor utilization of R,(m,

k) is as high as possible. Two factors, the value of I FI and the locations of faulty nodes,
mainly effect the processor utilization. The percentages of processor utilization under the
fixed n and IF 1, where n = 5 and 5 I IF I 5 8, are also shown in Table 1. For instance,
there are 96.67%, 89.41%, 79.23%, and 66.74% cases to exploit the processor utilization
higher than 50% in an injured Q5, where I FI is 5, 6, 7, and 8, respectively. The smaller
the value of IFI is, the maximal fault-free subcube-ring with high processor utilization
generally be determined.

Y.-S. Chen, J.-P. Sheu / Parallel Computing 23 (1997) 31 I-331 321

Table 1
Distributed percentage of processor utilization of the maximal fault-free s&cube-ring R&m, k) in injured

5-cube with IFI 1, 2, and 8

Percentage of processor utilization R,(m, k) IFI = 1 IFI= IFI = 3 IFI = 4

lO%-20% (I, 2),(1, 3) 0 0 0 0
2096-301 (174) 0 0 0 0
30%~40% (2.3) 0 0 0 0

40%-50% (I, 7) 0 0 0 0

.50%-60% (2,4) 0 4.74 5.64 7.65

60%-70% (2,5) 1: 4.6 26.54 38.53

70%-80% (2,6), (3,3) 84.6 65.45 50.67

80%~90% (2.7) 0 6.25 4.37 3.15

Percentage of processor utilization R,(m, k) IFI =5 IFI = 6 IF)=7 l~I=8

IO%-20% (1,2),(1,3) 0 0 0 0.02

20%-30% (I, 4) 0 0.05 0.11 0.53

30%~40% (2.3) 0.51 1.26 3.01 5.51

40%-50% (I,71 2.82 9.28 17.65 27.20

50%~60% (2.4) 2.70 8.84 16.10 20.85

60%-70% (2,5) 60.28 64.06 55.98 42.74

70%~80% (2.6). (373) 31.35 15.99 7.05 3.12

80%~90% (2.7) 2.34 0.52 0.10 0.03

We simulate our fault-tolerant algorithms on R,(m, k). The proposed algorithms
have been simulated of the n-dimensional hypercubes for n = 5. In the following, we
will discuss these two simulation results. First, the execution result of our fault-tolerant
matrix-multiplication algorithm is described. Simulation here compares the execution
time of our fault-tolerant matrix-multiplication algorithm and Bemtsen’s [9] matrix-mul-
tiplication algorithm with subcube-partitioning scheme [lOI in an injured hypercube.
Using subcube-partitioning scheme, J. Bemtsen’s matrix-multiplication algorithm at
least has 2 performance slowdown if IFI < n. The simulation of our matrix-multiplica-
tion algorithm on R,(m, k) is depicted in Fig. 8. The number of data elements of
matrices C, A, and B are ranged from 64 X 64 to 320 X 320. As illustrated in Table 1,
if Q, with IF] < 4, R&2, 71, R,(3, 31, R,(2, 5), R&2, 4) are identified. The slowdown
ratio of our algorithm in R&2, 71, R,(3, 31, R,(2, 6), R,(2, 4) is less than 2 since
processor utilization is larger or equal than 50%. As depicted in Fig. 8, when JFI < 5,
average slowdown ratio of our fault-tolerant matrix-multiplication algorithm running on
maximal fault-free sub&e-ring R,(m, k) is smaller than 2. This indicates that the total
execution time of the matrix-multiplication algorithm with our scheme is better than the
Bern&n’s [9] matrix-multiplication algorithm with subcube-partitioning scheme [lo].
For illustrating algorithms running on our reconfiguration scheme with reasonable
slowdown even when IF I > n, we also simulate above fault-tolerant matrix-multiplica-
tion in faulty 5-cube with different value of set IF I, where 5 s IF I I; 8. As illustrated in
Fig. 8. the more date element is, the low the slowdown ratio obtains. The average
slowdown of all cases of running the matrix-multiplication algorithm are smaller than
2.5.

328 Y.-S. Chen, J.-P. Sheu/Parallel Computing 23 (1997) 311-331

Number of faulty
nodes

Matrix size N * N

Fig. 8. The average slowdown of the fault-tolerant matrix multiplication algorithm running on 5-cube with set
IFI whose value is ranging from 1 to 8.

Continually, the simulation result of our fault-tolerant sorting algorithm on C,(m, k)
is discussed. Simulation here compares the execution time of our fault-tolerant sorting
algorithm and Batcher’s [8] bitonic sorting algorithm with subcube-partitioning scheme
[lo]. Using subcube-partitioning scheme, the bitonic sorting algorithm running on

injured hypercube at least has 2 performance slowdown. The simulation result of our
sorting algorithm running on maximal fault-free subcube-than C,(m, k) is illustrated in
Fig. 9. The number of data elements is ranged from 1.28 X IO4 to 1.28 X 105. From
Table 1, when IF] < 5 on Q,, R,(2, 7), R, (3, 3), R,(2, 6), R&2, 5), R,(2, 4) are
identified, the C,(2, 7), C,(3, 3), C,(2, 5), C,(2, 4) can be obtained. As depicted in Fig.
9, in the case of IF\ < 5, the average slowdown of the our fault-tolerant sorting
algorithm running on C,(m, k) shown by simulation results is better than the bitonic
sorting algorithm using subcube-partitioning scheme. This indicates that the total
execution time of sorting algorithm with our scheme is better than the Batcher’s [8]
bitonic sorting algorithm with subcube-partitioning scheme [lo]. On the other hand, in
the case of 5 < IFI < 8, the average slowdown ratio of al cases of running the sorting
algorithm are only slightly larger than 2.

Compared with matrix-multiplication algorithm, sorting algorithm has low communi-
cation/computation ratio. From the results of Figs. 8 and 9, the maximal fault-free

Y.-S. Chen, J.-P. Sheu / Parallel Computing 23 (1997) 31 l-331 329

Y (FI=2

IFI=

Number of faulty
nodes

Fig. 9. The average slowdown of the fault-tolerant sorting algorithm running on 5-cube with set IFI whose

value is ranging from 1 to 8.

subcube-ring R,(m, k) is more suitable for running algorithms with low communica-
tion/computation ratio. Moreover, when fixed the number of faults, the more data
element is sorted, the low the slowdown ratio is obtained. The proposed scheme, in
comparison, is better than the subcube-partitioning scheme of the two fault-tolerant
algorithms. As a consequence, using the maximal fault-free subcube-ring R,(m, k), the
reasonable performance slowdown can be obtained.

6. Conclusion

In this paper, a new reconfiguration approach, identifying the maximal fault-free
subcube-ring R,(m, k), is presented for tolerating more than n arbitrarily placed faults
in hypercubes. We can reconfigure an injured hypercube into the maximal fault-free
s&cube-ring R,(m, k) with dilation 3 so as lower potential performance degradation is
obtained. To demonstrate the fault-tolerant capability of our approach, we implement
two fault-tolerant algorithms, matrix-multiplication and sorting, on the nCUBe/2E
hypercube machines with 32 processors. Using the approach, if the number of faults is
less than n, the slowdown ratio of running the application algorithms on R,(m, k) is

330 Y.-S. Chen, J.-P. Sheu/Parallel Computing 23 (1997) 311-331

smaller than 2. Moreover, if number of faults is not larger than 2”- *, the average
slowdown ratio of running the application algorithms on Rd(~, k) is smaller than 2.5 by
our simulation results.

References

[I] Intel Corporation, iPSC/2 and iPSC/860 User’s Guide, Intel Corporation, June 1990.
[2] NCUBE Corporation, nCUBE/2 Processor Manual, NCUBE Corporation, 1990.
[3] S.G. Akl, Parallel Sorting Algorithms (Academic Press, Inc, 1985).
[4] S.G. Akl, The Design and Analysis of Parallel Algorirhms (Prentice-Hail International Editions, 1989).
151 F.T. Leighton, Introduction to Parallel Algorithms and Architecture: Array-Tree-Hypercube (Morgan

Kautinann Publishers, 1992).
(61 M.S. Alam and R.G. Melhem, An efficient modular spare allocation scheme and its application to fault

tolerant binary hypercubes, IEEE Transactions on Parallel and Distributed Systems 2(l) (Jan. 1991)
117-126.

[7] P. Banerjee and J.T. Rahmeh, Algorithm-based fault tolerance on a hypercube multiprocessor, IEEE
Transactions on Computers 39(g) (Sep. 1990) 1132- 1145.

[8] K. Batcher, Sorting networks and their applications, Proc. 1968 Spring Joint Comput. Con& Reston, VA,
Vol. 32 (AFIPS Press, 1968) pp. 307-314.

[9] J. Bemtsen, Communication efficient matrix multiplication on hypercubes, Parallel Computing 12 (1989)
33.5-342.

[IO] J. Bruck, R. Cypher and D. Soroker, Tolerating faults in hypercubes using subcube-partitioning, IEEE
Transactions on Computers 41(5) (May 1992) 599-605.

[I I] J. Bruck, R. Cypher and C.T. Ho, Fault-tolerant mesh and hypercube architectures with minimal number
of spares, IEEE Transactions on Computers 42(9) (Sep. 1993) 1089- 1104.

[121 H.L. Chen and N.F. Tzeng, Quick determination of subcubes in a faulty hypercube, Proc. 1992 Inr. Conf
on Parallel Processing III (1992) 338-345.

[13] H.L. Chen and N.F. Txeng. Distributed identification of all maximal incomplete subcubes in a faulty
hypercube, Proc. of the 8rh Inr. Parallel Processing Symp. (1994) 723-728.

[141 J. Hastad, T. Leighton and M. Newman, Reconfiguring a hypercube in the presence of faults, Proc. of the
19th Annual ACM Symp. on Theory of Computing (1987) 274-284. ’

[15] K.H. Huang and J.A. Abraham, Algorithm-based fault tolerance for matrix operations, IEEE Transac-
tions on Compurers C-33(6) (June 1984) 518-528.

(161 S.L. Johnsson, Combining parallel and sequential sorting on a Boolean n-cube, Proc. 1984 Int. Conf on
Parallel Processing (1984) 21-24.

[171 S. Latifi, Distributed subcube identification algorithms for reliable hypercubes, Information Processing

Lerrers 38(6) (June 1991) 315-321.
[18] V.P. Nelson, Fault-tolerant computing: Fundamental concepts, Compurer (July 1990) 19-25.
[191 F. &giiner and C. Aykanat, A reconfiguration algorithm for fault tolerance in a hypercube multiproces-

sor, Informarion Processing Letters 29(5) (Nov. 1988) 247-254.
[20] C.S. Raghavendra, P.J. Yang and S.B. Tien, Free dimension - An effective approach to achieving fault

tolerance in hypercubes, Int. Symp. Faulr-Tolerant Compuring (1992) 13% 177.
[21] C.S. Raghavendra, M.A. Sridhar. Prefix computation on a faulty hypercubes, Proc. I993 International

Conference on Parallel Processing III (1993) 280-283.
[22] S.R. Seidel and L.R. Ziegler, Sorting on hypercubes, Proc. of the Second Conference on Hypercube

Multiprocessors (1987) 285-29 1.
[23] J.P. Sheu, Fault-tolerant parallel k selection algorithm in n-cube. networks, Information Processing

Letters 3!3(2) (July 1992) 93-97.
[24] J.P. Sheu, Y.S. Chen and C.Y. Chang. Fault-tolerant sorting algorithm on hypercube multicomputers,

Journal of Parallel and Distributed Compuring 16(2) (Oct. 1992) 185- 197.

Y.-S. Chen. J.-P. Sheu/Purullel Computing 23 (1997) 311-331 331

[25] S.B. Tien and C.S. Raghavendra, Simulation of SIMD algorithms on faulty hypetcubes, Proc. 1991
Internutional Conference on Parullel Processing I (1991) 7 16-717.

[26] Y.C. Tseng and T.H. Lai, Ring embedding in an injured hypercube, Proc. 1993 Internutioml Conference
on Parallel Processing 111 (1993) 149-152.

[27] P.J. Yang, S.B. Tien and C.S. Raghavendra, Embedding of rings and meshes onto faulty hypercubes
using free dimensions, IEEE Trunsactions on Computers 43(5) (May 1994) 608-613.

[28] P.J. Yang and C.S. Raghavendra. Embedding and reconfiguration of binary trees in faulty hypercubes,
Proc. of the 7th Int. Parallel Processing Symp. (1992) 2-9.

