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Short Notes 

An Optimal Broadcasting Algorithm without 
Message Redundancy in Star Graphs 

Jang-Ping Sheu, Chao-Tsung Wu, and Tzung-Shi Chen 

Abstract-Based on the Mendia and Sarkar's algorithm [8], we propose 
an optimal and nonredundant distributed broadcasting algorithm in 
star graphs. For an n-dimensional star graph, our algorithm takes 
O( n log, n )  time and guarantees that all nodes in the star graph receive 
the message exactly once. Moreover, broadcasting m packets in a pipeline 
fashion takes O( m log, n + n log, n )  time due to the nonredundant 
property of our broadcasting algorithm. 

Index Terms-Broadcasting, interconnection networks, star graphs. 

I. INTRODUCTION 
Broadcasting is an important issue for numerous applications in 

parallel or distributed computing [4]. The communication schemes 
are characterized by the time, the number of time steps required, and 
the trafJic, the total number of messages exchanged, to complete the 
communication [ 5 ] ,  [7]. Hence, it is desirable to develop a scheme 
for broadcasting that minimizes both time and traffic. Broadcasting 
algorithms in star graphs have been studied in much research [I], [3], 
[8], [9]. For an n-dimensional star graph, using a sequence generated 
through a permutation network, the broadcasting algorithm proposed 
in [ l ]  takes at most 3(nlog, n - n/2) time. The algorithm in [3], 
broadcasts a message by a scheme named recursively doubling and 
takes O(n  log, n) time. The algorithm proposed in [8] works by 
recursively partitioning the original star graph into smaller star graphs 
with the same sizes for broadcasting in O(n  log, n)  time. All of 
the above algorithms are optimal on the one-port communication 
model; however, they have the same drawback that some message 
redundancy incurs the additional amount of traffic in star graphs. 
The algorithm in [9] solves this drawback, i.e., it sends or receives 
no redundant messages, and only needs to take 2n - 3 time steps on 
the multi-port communication model. 

Our purpose in this paper is to develop an optimal broadcasting 
algorithm without message redundancy in star graphs on the one- 
port communication model. The proposed algorithm here is based on 
the algorithm in [8]. The main difference between our algorithm and 
the algorithm in [8] is that we use a different scheme to recursively 
decompose the original star graph into smaller disjoint star graphs 
with the different sizes in order to fulfill the purpose of no message 
redundancy. Our proposed algorithm takes O ( n  log, n) time in an 
n-dimensional star graph and guarantees that all nodes receive the 
broadcast-message exactly once during the broadcasting; that is, 
the total amount of traffic is minimal. Moreover, because of the 
characteristic of message nonredundancy, our algorithm can broadcast 
a stream of m packets in O ( m  log, n + n log, n) time in a pipeline 
fashion. 
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11. PRELIMINARIES 

In this section, we will introduce some definitions and notations 
related to star graphs and use them throughout the paper. A permu- 
tation of n distinct symbols in the set { 1,2, .  . - , n}  is represented 
by P = s 1 s 2 - . . s n  where sz,s, E { l , Z , . . . , n }  and st # s3 for 
i # j and 1 5 i , j  5 n. A star graph with dimension n is an 
undirected graph in which the nodes correspond to the elements of 
the permutations of { 1 , 2 , .  . . , n} and the edges correspond to the 
actions of generators. We formally define them as follows [ 11, [2]. 

Dejinition I [Generator g,]: 

Given a permutation P = SI s2 . . . s, , we define the generator gz 
as the function that interchanges the symbol sz with the symbol SI 
in P for 2 5 i 5 n. 

0 

Dejnition 2 [Star Graph]: 
An undirected star graph with dimension n is denoted by 

S, = (P,, E,) where the set of vertices P, is defined as 
{s1s,...snlsI,s3 E {1,2 , . . . ,n} , s t  # s3 f o r i  # j ,1  5 i,j 5 n} 
and the set of edges E, is defined as {(VI, v~)lvl, 'U, E P,, 2'1 # u2, 

such that v1 = gt(v,) for 2 5 i 5 n}. 
0 

In other words, any two nodes v1 and vz are connected by an 
undirected edge if and only if the permutation corresponding to the 
node U ,  can be obtained from that of V I  by interchanging the symbol 
s, of v1 with the symbol SI of v1 for 2 5 i 5 n. We use the notation 
S, to represent an n-dimensional star graph in this paper. Note that 
star graphs are edge and vertex symmetric [2]. Moreover, S, is a 
regular graph with degree n - 1, n! vertices, and ( n  - l)n!/2 edges. 
Each node in S, is connected to n - 1 adjacent nodes by n - 1 
edges. The edges are named dimensions which are similar to that in 
hypercubes [6]. 

Definition 3 [ith Dimension]: 
The ith dimension of a node U in S, is defined as the edge along 

which the node U connects with the node v = g,(u) for 2 5 i 5 n. 
0 

Dejinition 4 [Substar Graph] [3]: 

Let pz+lp ,+2  . . ' p ,  be a permutation of n - i distinct symbols 
in { 1,2 , .  . . , n}  for 1 5 i 5 n. Then the substar graph denoted by 
S,(p,+lp,+z.~ ' p , )  is a subgraph (VS,, Es,)  of S,, where Vs, is the 
set of all nodes with the same last TI - i symbols p , + l ,  p 2 + 2 ,  . . . , p ,  
and Es, is the set of edges incident with any two of the nodes in VS, . 

0 
We can easily examine that the SI(pl+~p2+z...p,) is an i- 

dimensional star graph by the definition of star graphs. Through- 
out this paper, we use the notations substar S, to denote the 
SZ(p,+1pz+2.. . p n ) .  For example, the 4-star Sq is composed of four 
disjoint 3-substars SB ( 1) , Ss (2) , Ss (3), and Ss (4). Clearly, each 3- 
substar is isomorphic to one another. We can independently regard 
each 3-substar as an 5'3. Hence the S, can be simply decomposed 
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into n substars S,-] by varying the last position with n distinct 
symbols in { 1 , 2 , .  . . , n}. 

111. AN OPTIMAL BROADCASTING ALGORITHM 

We shall discuss how the proposed distributed algorithm works in 
details and analyze its time complexity in this section. A node is 
called a source node when this node wants to broadcast a specific 
message to all the other nodes in an n-star. Since star graphs are 
vertex symmetric, without loss of generality, we can consider the 
node 1 2 . . . n  as the source node in an n-star. 

At the beginning, given an n-star, we briefly describe our broad- 
casting algorithm proposed here consisting of three phases in below. 
In our proposed algorithm, while receiving the source message, nodes 
start with their individual process of broadcasting, performing their 
three-phase algorithm. In Phase 1, we claim that there exist n - 2 
designated intermediate nodes in the S,-1 (n )  which can receive the 
message from the source node. As soon as the source node or one of 
these intermediate nodes completes the operations in Phase 1 ,  it can 
at once apply Phase 2 to send the message to one of the n - 1 substars 
S, -1 except the S, -1 (n).  After performing Phase 1 and Phase 2, 
only the intermediate nodes continue to apply Phase 3. In Phase 3, 
the intermediate nodes in the S,-l(n) should send the message to 
other nodes in the S,-1 ( n )  and avoid sending a redundant message 
to the nodes held the message. 

The detail descriptions of our proposed algorithm with three phases 
are given as follows. 

Phase 1 :  In what follows we shall describe how the source node 
can distribute the message to the intermediate nodes. To make 
our algorithm optimal, the source node must generate such n - 2 
intermediate nodes in O(log, n )  time in the S,-l(n) instead of 
generating them step by step in O ( n )  time. These intermediate nodes 
can be generated by the way proposed in [E]. For this purpose, a 
variable Cardinality in each node to signify the generating order of 
those intermediate nodes is defined in [8]. The Cardinality of the node 
will be set to 1 as long as it is viewed as a source node. When any 
other node, the intermediate node, receives the source message, its 
Cardinality will be set to the dimension of the edge along which the 
intermediate node received the message. The node whose Cardinality 
is i will be denoted by C,. How Phase 1 works during broadcasting 
in an S, is illustrated below. In step i for 1 5 i 5 rlog,(n - 1)1, 
nodes C, will send the message to the other intermediate nodes 
C,+2t-~  along the ( j  + 2'-')th dimension if j + 2'-' 5 n - 1, 
for 1 _< 3 _< 2'-'. By this way, the intermediate nodes of an S, can 
be generated continuously until the last intermediate node C,-1 is 
generated. As a result, the source node in an S, takes [Iog,(n - 1)1 
time steps to distribute the message to these n - 2 intermediate nodes. 
The above described approach is simply called the intermediate node 
distribution approach. 

Phase 2: Let C1 = 1 2 .  . . n be the source node in an S,. After 
applying the intermediate node distribution approach in Phase 1, each 
of the n - 2 intermediate nodes C, has the symbol j in its first 
position, 2 5 j 5 n - 1. We shall state this property in Lemma 
1 which has been proven in [E]. Directly derived from Lemma 1, 
the source node and the n - 2 intermediate nodes in this phase can 
broadcast the message to the other n - 1 substars S,-I except the 
Snwl (n )  in the S, along the nth dimension in one time step. Thus, 
the source node in S, takes [log, (n  - 1)1+ 1 time steps to broadcast 
the message to the other n - 1 substars S,-1 by finishing Phase 1 
and Phase 2. Hence, each of the n - 1 ( n  - 1)-substars is able 
to broadcast the message within itself recursively by applying our 
three-phase broadcasting algorithm. The source node C1 in the S, 
will terminate in our algorithm when it completes the broadcasting 
in Phase 2. 

: the node with the source message 
Fig. 1. The substar graphs and subgraphs in an S4. 

For example, consider the substar S3(4) in which there are three 
nodes held the source message after performing Phase 1: the source 
node C1 = 1234, and two intermediate nodes CZ = 2134 and 
C3 = 3214 as shown in Fig. 1. Within Phase 2, the above three 
nodes can send the message to the respective nodes 423 1, 4132, and 
42 13 along the 4th dimension. Thus the three substars S3 ( 1 ) , S3 (2) , 
and S3 (3) can recursively broadcast within themselves. 

Phase 3: We shall describe how the intermediate nodes in the 
S,-l(n) deliver the message continuously in this phase. There are 
n - 1 nodes in the SnPl (n )  holding the source message: the source 
node and n - 2 intermediate nodes. We can decompose the substar 
S,-](n) into n - 2 substars Sn-l,n - 3 substars Sn-3,. . . ,  an 
SI, and the source node. To make our description simple, the n - 2 
substars Sn-2, n - 3 substars Sn-3,. . . , and an SI are denoted as 
symbols SG,-l, SG,-2,. . . , SG3, and SG2, respectively. A node 
which needs to broadcast a message to all the other nodes in an SG, 
is also called a source node in the SG, , 2  5 j 5 n- 1. We shall prove 
it in Lemma 2 that each intermediate node C, is the source node in 
the SG,, for 2 5 j 5 n - 1. For avoiding the message redundancy, 
each source node in SG,, 2 5 j 5 n - 1, should independently 
broadcast the message within itself. 

We shall describe how the source node broadcasts the message in 
a particular SG, as follows. Note that an SG, has m - 1 substars 
Sm-l. Given a source node in an SG,, it is in one of the m - 1 
substars Sm- 1 and needs to broadcast the message to the other m - 2 
substars S, in the SG, . Applying the same intermediate node 
distribution approach as in Phase 1, the source node in SG, will 
distribute the message to m - 2 intermediate nodes and complete the 
three-phase algorithm. On the other hand, the m - 2 intermediate 
nodes will send the message to the other m - 2 substars S,-I by 
applying their Phase 2. We shall prove that the message of the source 
node in an SG, can be broadcast through the m - 2 intermediate 
nodes to other m - 2 substars S,-I in [log,(m - 1)1+ 1 time steps 
in Lemma 3. Thus each of the m - 2 substars S,-I with a source 
node can recursively broadcast the message within itself. 

Moreover, the substar S, - 1 with the source node in the SG, can 
be also decomposed into SG,- 1, SG,-z, . . . , SG2, and the source 
node. Of course, by Lemma 2, each SG,, 2 5 i 5 m - 1, has 
an intermediate node as its source node. Hence, we can recursively 
apply the Phase 3 to each intermediate node for sending the message 
to each SG, for 2 5 i 5 m - 1. 
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For making the description of Phase 3 clear, consider a 5-star as an 
example. Fig. 2 shows the S 4  (5) out of an SS after executing Phase 1 
and Phase 2 in our broadcasting algorithm. The SG4, SG3, and SG:, 
decomposed from the S4 (5) are also shown in Fig. 2. In the S4 ( 5 ) ,  
the intermediate nodes 21345,32145, and 41325 are the source nodes 
in SG2, SG3, and SGI ,  respectively. In the SG4,  the source node 
41325 distributes the message to two intermediate nodes 14325 and 
31425. Then the source node 41325 completes its Phase 3 and the two 
intermediate nodes apply their Phase 2 to send the message to nodes 
24315 and 21435 in s3(15)  and S3(35), respectively. So, each of the 
S ~ ( 1 5 )  and the S3(35) has a source node to broadcast the message 
within themselves recursively. 

We shall formally describe our three-phase distributed broadcast- 
ing algorithm, shown at the bottom of the page, without message 
redundancy. In our algorithm, nodes held the message send the 
broadcasting requests to other nodes. Every node individually starts 
to perform its broadcasting algorithm while receiving a request. A 
request Broadcast(Data, Edge, StarDimension, Steps) consists of the 

following four parameters. 

1) Da ta  
2) Edge 

3) StarDimension 

4) Steps 

Message to be broadcast. 
Dimension or edge along which 

request was sent or received. 
Dimension of a substar that the 

node will be broadcast to. 
Used far determining the 

ordering of the intermediate 
nodes. 

The broadcasting in an n-star is simply initialized by the source 
node with issuing the call: Broadcast(Message, n,  n,  0), where the 
Message is the message to be broadcast from the source node and n 
is the allocated dimension of the star graph involved. 

Fig. 3 illustrates the broadcasting in an S4 by applying our 
algorithm. The number-labeled edges denote the time steps during 
broadcasting. It can be shown that our algorithm completes the 
broadcasting of an S4 in 6 time steps, and receives or sends no 
redundant messages. Fig. 4 shows the broadcasting tree generated by 
applying our algorithm in an S4. 

Algorithm Broadcast(Data, Edge, StarDimension,  Steps) 
begin 

get Da ta  from buffer; 
if (StarDimension 5 I) then terminate; 
I* terminate while broadcasting to itself *I 

begin 
Phase 1: 

if (Edge 2 StarDimensaon)  then Cardinal i ty  = 1; 
else Cardinal i ty  = Edge; 
for i = (Steps + 1) to [log, (StarDimension - 1)1 do 
begin 

Dimension = Cardinal i ty  + 2'-'; 
if (Dimension < StarDimension)  then 

Broadcast(Data, Dimension, S t a r  Dimension, i) 
along the Dimension-th dimension; 

end; 
end; I* end of Phase 1 * I  

Phase 2: 
begin 

Broadcast(Data, StarDimension,  S ta r  Dimension - 1, 0) 
along the StarDimension-th dimension; 

end; I* end of Phase 2 *I 

begin 
Phase 3: 

if this node is an intermediate one I* Cardinal i ty  > 1 *I then 
begin 

Cardinal i ty  = 1; 
Steps = 0; 
StarDimension = Edge; 
I* here the intermediate nodes serve as the source nodes in S G E d g e  *I 
for i = (Steps + I )  to [log, (StarDimension - 1)1 do 
begin 

Dimension = Cardinal i ty  + 2'-'; 
if (Dimension < StarDimension)  then 

Broadcast(Data, Dimension, StarDimension,  i )  
along the Dimension-th dimension; 

end; 
end; 

end; I* end of Phase 3 * I  
end; I* end of Algorithm *I 
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Fig. 3. Time steps of broadcasting in an Sq. 

Before we prove that our broadcasting algorithm is nonredun- 
dant and optimal, some notations used in the proofs are first de- 
fined. Let the function Last , (U)  obtain the last z symbols of 
c' = u 1 u z ~ ~ ~ ~ , , - ~ + ~ u , - ~ + 2  " ' U ,  which is a permutation of 
{1 ,2 , . . . ,m};  that is, Last,(U) = ~,-~+lu,-~+2 " ' U , .  For the 
source node C1 = u1 U, . . . um in a particular S,, the m - 2 inter- 
mediate nodes are of the form u , ~  . . . P ~ - I I % , + ~  . . . U ,  where the 
q. . . x , -1  is aparticularpermutationof symbols U ~ , U ~ ; ~ ~ , ~ ~ - ~ ,  
for 2 5 J _< m - 1. The following Lemma and Corollary will 
show the two properties about the intermediate nodes in an S,. 
Note that not all of the nodes which satisfy the two properties can 
be the intermediate nodes. 

Lemma I :  [8] If C1 = u l u z . .  . U ,  is the source node in an S,, 
each intermediate node C, has the symbol u J  in its first position, for 
2 5 j 5 m - 1, after finishing Phase 1. 

Corollary I :  If C1 = u1uz "'U,,, is the source node in 
an S,, then each intermediate node C, has the property 
that Last,-,(C,) = Last,-,(Cl) and Last,-,+1(C1) # 
Lost,-,+I(CI), for 2 5 2 5 m - 1, after finishing Phase 1. 

source node 

4213 

Proofi The reader is referred to the proof of Lemma 2 in [8] 
0 

Lemma 2: If C1 = u1 uz ' ' . U ,  is the source node in an S,  or 
SG, , each intermediate node C, is the source node in the SG, , for 
2 5 3 5 m - 1, after finishing Phase 1 or Phase 3. 

Pro08 We can decompose the substar Sm-i (um)  = 
Sm-l(Lastl(C1)) into a substar Sm-2(Last2(C1)) and the 
subgraph S,-l(Lastl(CI)) - Sm-z(Last2(C1)) which is 
composed of m - 2 substars Sm-z and is denoted as the 
SG,-l. Each node C' in the SGmPl has the property that 
Las t l (U)  = Lastl(C1) and L a s t z ( U )  # Lastz(C1). It 
has been shown in Corollary 1 that each intermediate node 
C, has the property that Last,-,(C,) = Last,-,(Ci) and 
Lastm-,+l(C,) # L a ~ t , - , + ~ ( C ~ ) , 2  5 5 m - 1, when 
applied Phase 1 or Phase 3 in an S,  or SG,. Clearly, only the 
intermediate node C,-1 is in the SG,-1 and the others are in 
the S,-z(Last,(C1)). Thus, the intermediate node C,-1 is the 
source node in the SG,-1. Similarly, the Sm-z(Last2(Ci)) 
can be also decomposed into the Sm-3(Last3(C1)) and the 
SG,-2 = S,-z(Lastz(C1)) - Sm-3(Last3(C1)) which is 
composed of m - 3 substars Sm-3. Only the intermediate node 
Cm-2 can be the source node in the SG,-,. If we decompose 
the SG,-, continuously, the Sz(Last,-z(Cl)) can be finally 
decomposed into the source node C1 and the SGZ in which the 
intermediate node C2 is the source node. 

Therefore, each intermediate node C, is the source node in the 
U 

Lemma 3: By applying Phase 3, the source node in a particular 
SG, can broadcast the message to the other m - 2 substars S,-1 
in [log, ( m  - 1)1 + 1 time steps, where 2 5 m 5 n - 1. 

Proof: By Lemma 2, the source node in an SG, is the node C, 
previously used as an intermediate node. Because the two properties 
in Lemma 1 and Corollary 1 also hold in the SG,, the source 
node C, can distribute the message to m - 2 intermediate nodes in 
[log, ( m  - 1)1 time steps in Phase 3. The source node C, terminates 
its broadcasting algorithm after distributing the message to m - 2 
intermediate nodes. Then the m - 2 intermediate nodes can send 
the messages to the other m - 2 substars S,-1 along their mth 
dimensions in their Phase 2, respectively; it only takes one time step. 
Thus by applying Phase 3, the source node in the SG, can broadcast 
the message to the other m - 2 substars Sm-1 in [log, ( m  - 1)1+ 1 

for the proof of this Corollary. 

SG,, 2 5 j 5 m - 1 after executing Phase 1 or Phase 3. 

time steps. 0 
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Theorem 1: The proposed broadcasting algorithm can send a 
message from the source node to each of the other nodes in the 
S,  exactly once. 

Proof: We shall prove this theorem by mathematical induction. 
Basis: Clearly, the theorem is true for n = 1. 
Induction hypothesis: Assume that the theorem holds for 

Induction: In this step, we shall prove that the theorem also 
holds for Sk. Assume that u1uz...uk is the source node in the 
Sk. After finishing Phase 1 and Phase 2 of our algorithm, we can 
decompose the Sk as: 

sn,l 5 n 5 k - 1. 

AMOL 
TABLE I 

JNT OF TRAFFIC COMPARISONS WITH OTHER BROADCASTING ALGOR] 

1 

SG, U sourcenode 

Directly derived from Lemma 1, each of the Sk-I(Uz) for 1 5 
i 5 k - 1 has a source node after applying Phase 2. Hence, these 
k - 1 substars Sk-1 in expression (1) hold the criteria by induction 
hypothesis. We have shown it in Lemma 2 that each of the k - 2 
intermediate nodes is the source node in an SG, in expression (l), 
2 5 i 5 k - 1. After applying Phase 3, we have proven that the 
source node in a particular SG, can broadcast the message to the 
other i - 2 substars S,-1 in Lemma 3, 2 5 i 5 k - 1. So, we can 
decompose a particular SG, as: 

SG, iU  25252-1 

U ) source node 

Hence, each S,-1 in expression (2) also holds the criteria. Any SG, 
in expression (1) can be decomposed into substars with dimensions 
less than k - 1. Therefore, by the induction hypothesis we can prove 
that our algorithm can broadcast the message from the source node 

U 
Theorem 2: Given an n-star, our proposed broadcasting algorithm 

completes the broadcasting in O ( n  log, n )  time. 
Pro08 It has been shown that the source node in an S,  

broadcasts the message to each of the n - 1 substars S,-1 in the first 
two phases in [log, (n  - 1)1 + 1 time steps. Next, in Lemma 3, the 
source node in the SG, by applying Phase 3 can also broadcast the 
message to the other i - 2 substars in the SG,, 2 5 i 5 n - 1. 
They take at most [log, (n  - 2)1 + 1 time steps, which is the 
same as that taken by the other substars S,-1 to broadcast the 
message to n - 1 substars Sn-,. In other words, our algorithm can 
reduce the broadcasting problem size in an n-star by at least 1 in 
[log, (n  - 1)1 + 1 time steps recursively. Therefore, the following 
equation gives the number of time steps required for broadcasting a 
message in an n-star. 

in the S, to each of the other nodes exactly once. 

n 

Total time steps = E( [log, ( i  - 1)1 + 1) 
2=2 

= (n - l)llog, (n  - 1)J - 2L10gZ(n-1)J 

= O(nlogz n). 0 
+ 2 n - l  

THMS 

An optimal broadcasting algorithm in an n-star takes the time com- 
plexity O ( n  log, n )  [8]. Hence our proposed broadcasting algorithm 
which takes O(n  log, n )  time steps is optimal. 

IV. PERFORMANCE ANALYSIS 
In multicomputer systems or communication networks, interpro- 

cessor communication occurs when a node senddreceives a message 
through the edge to/from its neighbor, respectively. While running an 
application, communication with high probability may cause message 
transmission delay due to the heavy traffic incurred by a broadcasting 
scheme. Especially, it is the case that a node wants to broadcast a 
lot of messages or packets divided by a large amount of data to the 
other nodes [6]. Thus the performance of such an application which 
uses the broadcasting as a basic step highly depends on the amount of 
traffic incurred by the broadcasting algorithm. Because our proposed 
algorithm has the nonredundant property, this yields the minimum 
traffic for broadcasting a message from the source node to all the 
others. 

We exhibit the performance of our algorithm by comparing the 
total amount of traffic with two other algorithms proposed by Akl, 
Qiu, and Stojmenovic [3], and Mendia and Sarkar [8] as follows. We 
compare with those algorithms since they are all time optimal on the 
one-port communication model and run in a recursive manner as our 
algorithm does. First, given an n-star for n 2 2, the total amount of 
traffic for the algorithm proposed in [3] can be directly derived and 
be expressed as below. 

TA = c(3i - 5 ) ( i  - l)! 
1=2 

Next the total amount of traffic for the algorithm proposed in [8] can 
be also directly derived and be expressed as below. 

(2 i  - 3)n! 
T B = C T .  

1=2 

Finally, our proposed algorithm always produces the minimum 
amount of traffic 

Tc = n! - 1. 

Obviously, TA 2 Tc and TB 2 Tc. In terms of the total amount of 
traffic illustrated in Table I, our algorithm has greater improvement 
over the algorithms in [3] and [8]. There exists a large amount of 
traffic in their algorithms since they use intermediate nodes repeatedly 
in the process of broadcasting. Hence our algorithm can significantly 
improve the performance when applications use the broadcasting 
frequently. 

There is another merit of our algorithm while a node needs to 
broadcast m packets to all the others. By applying the broadcasting 
algorithms in [3] and [8], broadcasting the first packet to all the 
others requires to take O(n log, n )  time. Then, the second packet 
can be consecutively broadcast until the source node completes the 

http://u1uz...uk
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broadcasting of the first packet in a recursive manner. This is because 
their algorithms have to perform the broadcasting one by one; that is, 
it can not be performed in a pipeline fashion. In total, broadcasting 
the m packets can be completed in O(mn log, n)  time. In contrast, 
because of the message nonredundancy in our algorithm, the source 
node can start to broadcast the next packet while the first two phases 
of our algorithm are completed. Since performing the first two phases 
of our broadcasting algorithm takes O(log, n)  time, the m packets 
can be broadcast in O(m log, n+n log, n)  time in a pipeline fashion. 
Hence our nonredundant broadcasting algorithm takes less time and 
produces less traffic than the redundant ones for broadcasting a stream 
of packets. 

V. CONCLUSIONS 
In this paper, we proposed a distributed broadcasting algorithm 

with time and traffic optimum in star graphs on the one-port commu- 
nication model. By recursively partitioning a star graph into smaller 
disjoint substar graphs, our algorithm can broadcast a message to all 
the other nodes in the given n-star in O(n log, n )  time. We also 
showed the traffic improvement of our algorithm over two other 
algorithms proposed by [3] and [8]. Besides, our algorithm is more 
efficient than the above algorithms while broadcasting a stream of 
packets. 
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Performance Characterization 
of the Tree Quorum Algorithm 

Her-Kun Chang and Shyan-Ming Yuan 

Abstruct- The tree quorum algorithm, which logically organizes the 
sites in a system to a tree structure, is an efficient and fault-tolerant 
solution for distributed mutual exclusion. In this paper, the performance 
characteristics of the tree quorum algorithm is analyzed. A refinement 
algorithm is proposed to refine a logical tree structure by eliminating 
nodes or subtrees which do not improve the performance. Thus the refined 
tree performs better than the original. 

Index Term- Distributed mutual exclusion, tree quorum algorithm, 
availability, communication cost. 

I. INTRODUCTION 

A distributed system consists of a set of sites which are loosely 
coupled by a computer network. One advantage of distributed systems 
is resource sharing. That is the resources in a distributed system 
can be shared among the sites in the system. Examples of sharable 
resources are memory, peripheral, CPU, clock, etc. The sites in 
a distributed system may issue requests to a shared resource at 
arbitrary time. When two or more sites intended to access the same 
resource, a conflict occurs. A mechanism is required to synchronize 
conflicting requests so that at most one site is allowed to access the 
resource at any time instant. This problem is known as distributed 
mutual exclusion [ 11-[ 111. A survey of various algorithms for mutual 
exclusion can be found in [6] and a simple taxonomy for distributed 
mutual exclusion algorithms was reported in 171. 

A central controller can be used to control mutually exclusive 
access to a shared resource. All requests intended to the resource are 
sent to the controller and scheduled by the controller. Using a central 
controller is simple and easy to implement. However, the controller 
is vulnerable to site failure. When the controller fails, no access to 
the resource is allowed, i.e., the entire system is hafted. It is desirable 
to reduce the probability that the system is halted by using more than 
one sites to participate the decision making. For example, majority 
consensus [ 111 can be used to achieve mutual exclusion wherein a 
site is allowed to access the resource if it can get permissions from 
a majority of all participating sites. 

Majority consensus can tolerate at most N / 2  sites failures, where 
N is the number of participating sites. On the other hand, the 
communication overhead is costly, since at least N messages ( N / 2  
for request and N / 2  for reply) are required to be exchanged. Several 
algorithms try to reduce the communication overhead by imposing 
logical structures to the sites [l], [4]. The tree quorum algorithm [l], 
which logically organizes the sites to a tree structure, can reduce the 
number of messages exchanged to O(1og N) in the best case. In this 
paper, the performance characteristics of the tree quorum algorithm 
is analyzed. 

The avaifabilify, which is defined to be the steady-state probability 
that the system is up (not halted), is usually used to evaluate a 
distributed algorithm. Another important performance measure for a 
distributed algorithm is its communication cost. Certainly, the purpose 
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