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Communication-Free Data Allocation Techniques 
for Parallelizing Compilers on Multicomputers 

Tzung-Shi Chen and Jang-Ping Sheu, Member, IEEE 

Abstract-In distributed memory multicomputers, local mem- 
ory accesses are much faster than those involving interprocessor 
communication. For the sake of reducing or even eliminating the 
interprocessor communication, the array elements in programs 
must be carefully distributed to local memory of processors for 
parallel execution. In this paper, we devote our efforts to the 
techniques of allocating array elements of nested loops onto 
multicomputers in a communication-free fashion for parallelizing 
compilers. We first analyze the pattern of references among 
all arrays referenced by a nested loop, and then partition the 
iteration space into blocks without interblock communication. 
The arrays can be partitioned under the communication-free 
criteria with nonduplicate or duplicate data. Finally, a heuristic 
method for mapping the partitioned array elements and iterations 
onto the fixed-size multicomputers under the consideration of 
load balancing is proposed. Based on our methods, the nested 
loops can execute without any communication overhead on the 
distributed memory multicomputers. Moreover, the performance 
of the strategies with nonduplicate and duplicate data for matrix 
multiplication is studied. 

Zndex Terms- Data allocation, data dependence, distributed 
memory multicomputers, interprocessor communication, paral- 
lelizing compilers 

I. INTRODUCTION 
EVELOPMENT of parallelizing compilers that extract D parallelism of sequential programs, generate parallel 

code, and map them onto various parallel machines has 
been the recent focus of researches. For distributed memory 
multicomputers, the memory access time from a processor to 
its own local memory is much faster than the time to local 
memory of the other processors. An efficient parallel executing 
program thus requires low communication overhead. Various 
compiler techniques have therefore been developed for the 
data allocation problem in order to reduce, or even eliminate, 
communication traffic on multicomputers. 

Previously, a number of researchers [I], [12], [13], [15], 
[22], [23] paid their attention to exploiting a large amount 
of parallelism in sequential programs. However, exploiting a 
large amount of parallelism in sequential programs may not 
promise that executing the parallelized programs can obtain 
more efficiency on distributed memory multicomputers. The 
main reason is that the extracted parallelism may possibly 
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give rise to additional communication overhead during parallel 
execution. Both factors, parallelism and communication over- 
head, that affect the execution efficiency should be considered 
together such that the parallelized programs can obtain better 
performance. Several researchers thus developed parallelizing 
compilers in which programmers must explicitly specify data 
allocation and in which the codes can then be generated with 
appropriate communication constructs [21, [lo], 11 13, [19]. 

Achieving automatic data management in designing paral- 
lelizing compilers is nevertheless difficult, because the data 
must be attentively distributed so that communication traf- 
fic is minimized in parallel execution of programs. Sev- 
eral researchers [4]-[7], [14], [21] focus the data allocation 
problem on automatically allocating the data or restructur- 
ing the programs in order to improve the efficiency of us- 
age of memory hierarchy or to reduce the interprocessor 
communication overhead in parallel machines. For shared 
memory multiprocessor systems, researchers Gannon, Jalby, 
and Gallivan [4], [5],  Hudak and Abraham [7], Irigoin and 
Triolet [8], Wolf and Lam [21], and Wolfe [24] proposed 
several approaches to automatically transform programs and 
partition data for improving data locality and enhancing cache- 
hit ratio on the complex memory hierarchy. In addition, 
large amounts of communication overhead for distributed 
memory multicomputers may seriously degrade performance 
during parallel execution of programs. Some researchers, such 
as Gallivan, Jalby, and Gannon [4], King, Chou, and Ni 
[9], Ramanaujam and Sadayappan [17], and Sheu and Tai 
[20], studied the problems of transforming programs into the 
parallel form and reducing the interprocessor communication 
overhead. Furthermore, Ramanaujam and Sadayappan [ 181 
focused on analyzing the For-all loops and partitioning these 
loops and the corresponding data such that the partitioned 
programs can be executed without communication overhead 
in distributed memory multicomputers. 

In this paper, we concentrate on automatically allocating 
the array elements of nested loops with uniformly gener- 
ated references [4] for communication-free execution on dis- 
tributed memory multicomputers for parallelizing compilers. 
First, we analyze the pattern of references among all arrays 
referenced in a nested loop and derive the sufficient con- 
ditions for communication-free partitioning of arrays. Two 
communication-free partitioning strategies, nonduplicate data 
and duplicate data strategies, are discussed. Based on the 
consideration of no interblock communication existing, those 
sufficient conditions can be used to exploit the parallelism of 
the nested loop as much as possible. Our method can obtain 
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more parallelism than the method proposed by Ramanau- 
jam and Sadayappan [18] in For-all loops with uniformly 
generated references. Then the communication-free code can 
be transformed to a parallel execution form. Finally, the 
parallelized nested loop and the corresponding array elements 
can be allocated to the fixed-size multicomputers under the 
consideration of load balancing. The performance of the data 
allocation with nonduplicate and duplicate data strategies is 
also discussed. 

The rest of this paper is organized as follows. The nested- 
loop model, basic concept, and assumptions used in presenting 
the data allocation strategies are introduced in Section 11. In 
Section 111, the sufficient conditions for communication-free 
partitioning of array elements of nested loops are derived based 
on nonduplicate data and duplicate data strategies. Eliminating 
redundant computations is also considered in this section. 
Section IV states how to transform the partitioned nested 
loops into the parallel form and map the parallelized programs 
and the corresponding data onto the fixed-size multicomputers 
such that the processor workload is as balanced as possible. 
The performance of the strategies with nonduplicate and 
duplicate data for matrix multiplication is also studied. Finally, 
conclusions are summarized in Section V. 

11. BASIC CONCEPT AND ASSUMPTIONS 
Nested loops including a large number of referenced arrays 

are commonly used in scientific programs. In programs, nested 
loops usually provide a large amount of parallelism and are 
the most time-consuming parts. A normalized n-nested loop 
[23] with the following form is considered in this paper: 

for I1 = 1 to u1 
for I2 = 1 to U:! 

for I ,  = 1 to un 
[loop body] 

end 

end 
end 

where uj are integer-valued linear expressions possibly involv- 
ing 11, 12, ..., Ij-1 for 1 < j 5 ri. Let Z and R denote the 
set of integers and the set of real numbers, respectively. The 
symbols Z" and R" represent the set of n-tuple of integers and 
the set of n-tuple of real numbers, respectively. The iteration 
space [23] of an n-nested loop is a subset of Z" and is defined 
a s I n = ( ( I 1 , I 2 . ~ . . , I n )  1 1 1 1 j 5 u j , f o r 1 1 j . < n } . T h e  
vector i = (21, i z ,  . . ., in) in I" is represented as an iteration 
of the nested loop. The lexicographical order of the iteration 
i = (21, iz, . .- ,  i n )  is before that of the iteration E' = ( i i ,  

. . . , 26) if i l  = ii, iz = ik, ..., i,-l = z:-,, and ij < i$ 
for 1 5 j 5 n. 

In the nested loop, there may exist inpur, output, Jlow 
dependences, and antidependence [ 161, denoted as the respec- 
tive symbols S i ,  6", br,  and S a ,  which are referred to as 
datu dependence S in the following discussions. The symbol 
S ( i )  denotes a computation that statement S is performed at 

iteration ? E I". That a computation S'(j) is data dependent on 
a computation S(?) is denoted as S(E) S S'(j). Let the linear 
function h : Z" + Zd be defined as a reference function 

ad,,I,) and be represented by the following matrix: 
h ( I l . ' . . , I n )  (al , lI1 + . . . + a l , , l n ,  " ' ,  ad.111 + . " +  

yo.,;, .. ' a1.n 1 
= 

. : .  

where a',, E Z, for 1 5 i 5 d and 1 5 j 5 n. In the loop 
body, a &dimensional array element A[h(il ,  i z .  . . . , i n )  + C] 
may be referenced by the reference function h at iteration 
(i1. iz3.. . , I " )  in I",  where C is known as the constant offset 
vector in Zd [21]. The data space of array A is a subset of Zd 
and is defined over the user-defined array subscript index set. 
For array A,  all of s referenced array variables A[H,S + c ~ ] ,  
for 1 5 p 5 s, are called uniformly generated references [ 5 ] ,  
[21] if 

where Hp is the linear transformation function from Z" to 
Zd, 2 E I n ,  and C p  is the constant offset vector in Zd. Since 
little exploitable data dependence exists between nonuniformly 
generated references, we focus the data allocation to each array 
on the same reference function in a nested loop. The different 
arrays may have different reference functions. 

Example I :  Consider a two-nested loop Ll .  

for i = 1 to 4 
for j = 1 to 4 

Si : A[2i:j] := C[i,j] * 7 ; 
S 2  : S[ j , i  + 11 := A[2i - 2 . j  - I] 

+C[i-l,j-l]; ( L l )  
end 

end 

In this example, the iteration space is I 2  = { ( i , j )  I 1 < 
i , j  5 4). In loop L1, with three arrays A,  B,  and C, the 
following are the respective reference functions: 

There exists a flow dependence between the variables A[2i, j ]  
at statement S1 and A[2i - 2 . j  - 11 at statement S2, with 
the different offset vectors (0.0) and (-2, -l), respectively. 
For array C,  only read by loop L1, there exists an input 
dependence between the variables C[i,j] at statement S1 and 
C[i - 1. j - 11 at statement S2, with the different offset vectors 
(0,O) and (-1, -l), respectively. The array variable B[j ,  i + l ]  
is generated only at statement S2, and its offset vector is (0 , l ) .  
Loop L1 thus has uniformly generated references on arrays A,  
B, and C. 0 

Dejinition 1 [Data-Referenced Vector]: In an n-nested loop 
L with uniformly generated references, if there exist two 
referenced array variables A [ H i  + C1] and A[Hi + CZ] for 
array A, then the vector = el - E2 is called data-referenced 
vector of array A .  0 

~.. .. . _I . - _. . . .. .. .." ..... , _.. . . 
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Fig. 1. Data spaces and their corresponding data-referenced vectors for 
arrays -4, E ,  and C in loop L1. (a) Array .4[0 : 8 . 0  : 41. (b) Array 
E[1 : 4 . 2  : 51. ( c )  Array C[0 : 4,0 : 41. 

The data-referenced vector 7 represents the vector difference 
between two array elements A[Hi+cl ]  and A[HG+Cz], which 
are referenced by an iteration i. Note that any data dependence 
in loop L exists between two distinct referenced array variables 
A [ H i  + cl] and A [ H i  + C2]; i.e., two iterations E1 and i 2  can 
reference the same array element if and only if HE1 + C1 = 
Hi2 + C2; i.e., H ( &  - ?I) = 1;. Communication overhead is 
therefore not to be incurred if the iteration space is partitioned 
along the direction 112 - into iteration blocks and if the data 
space of array il is partitioned along the direction 7; into data 
blocks. 

Example 1 is presented here to illustrate the ideas of 
communication-free data allocation strategy. The arrays A, 
B, and C of loop L1 have the referenced array variables 
A[2i , j ] ,  A [ 2 & 2 , j - l ] ,  B[j;i+l], C[ i , j ] ,  and C [ i - l , j - l ] ,  
respectively. The data-referenced vectors of arrays A and C 
are = ( 2 , l )  and T2 = (1, l), respectively. There exists no 

data-referenced vector of array B, because there only exists 
one referenced array variable on array B. All of the data spaces 
of arrays A, B, and C, and their data-referenced vectors of 
each array element are shown in Fig. l(a), l(b), and l(c), 
respectively. In Fig. 1, solid points represent array elements 
that are used in loop L1, and empty points represent that array 
elements are not used in loop L1. 

At iteration (1, l ) ,  the array element A[2,1] is generated by 
S1, and A[O, 01 is used in S2. Then, at iteration ( 2 . 2 ) ,  the array 
element A[4,2] is generated by 5’1, and A[2,1] is used in Sz, 
and so on. Restated, two iterations, = (1.  1) and cz = ( 2 , 2 ) ,  
satisfying the condition HA(& - El) = can access the same 
array element A[2,1]. The data space of array A is therefore 
partitioned along the data-referenced vector 7;1 into the data 
blocks B t  for 1 5 j 5 7 ,  enclosing the points with lines, as 
shown in Fig. 2(a). These used and generated array elements 
grouped in the same data block are then to be allocated to 
the same processor. Similarly, the array C is also partitioned 
along data-referenced vector T2 into their corresponding data 
blocks, BF for 1 5 j 5 7, as shown in Fig. 2(c). It is easy 
to show that if the iteration space is partitioned along the 
direction (1,  l ) ,  as shown in Fig. 3, there exists no interblock 
communication for arrays A and C. Therefore, array B must 
be partitioned along the direction ( 1 , l )  into the corresponding 
data blocks BJ”, 1 5 j 5 7, as shown in Fig. 2(b), such that 
the partitioned iteration blocks B3, 1 5 1 5 7, can be executed 
in parallel without interblock communication. 

It is not hard to see from Fig. 2 that there exists no 
data transfer between processors while the corresponding 
data blocks B f ,  Bf, and Bf are assigned to the processor 
PE, for 1 5 j I: 7 .  For cases where the number of 
iteration blocks is larger than the number of processors, see 
Section IV for discussion of how to make the workload as 
balanced as possible among processors. In the next section, 
given a nested loop, we analyze the relations of references 
among array elements and derive the sufficient conditions for 
communication-free partitioning of arrays in the nested loop 
on multicomputers. 

111. COMMUNICATION-FREE ARRAY PARTITIONING 
In this section, we describe the communication-free array 

partitioning schemes that analyze the data usage of each 
array and derive the sufficient conditions for determining the 
partition pattems of array elements in nested loops. 

A. Communication-Free Array Partitioning 
Without Duplicate Datu 

In this subsection, we discuss the communication-free array 
partitioning without duplicate data; i.e., there exists exactly 
one copy of each array element during execution of the 
program. No data transfer existing during parallel executing 
programs will obtain better efficiency in distributed memory 
multicomputers. However, having no interprocessor commu- 
nication is impossible if a certain data dependence exists 
between partitioned programs. As long as those related data 
can be found and then grouped together, assigned into one 
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On the other hand, a partitioned iteration block and the 
corresponding partitioned data block of each array must be 
allocated to the same processor so that no data transfer during 
parallel execution is incurred. Our methods proposed in this 
paper can make the size of partitioned iteration blocks as small 
as possible to achieve a higher degree of parallelism. 

From the definition of a vector space, an n-dimensional 
vector space V over R can be generated using exactly n 
linearly independent vectors. Let X be a set of p linearly 
independent vectors, where p 5 n. These p vectors form a 
basis of a p-dimensional subspace, denoted by span(X), of V 
over R. The dimension of a vector space V is denoted by 
dim(Y). In the following, a formal definition of partition of 
iteration space is given. 

Dejnition 2 [Iteration Partition]: The iteration partition of 

. . ., iu}), where El E R", 1 < 1 5 U ,  denoted as Pq,(P),  is 
to partition the iteration space I" into disjoint iteration blocks 
B1 , B2,. . . , B,, where q is the total number of partitioned 
blocks. For each iteration block B,, there exists a base point 
b, E R" and the following: 

B,  = 

4 

3 

2 

1 

i 
0 1 2 3 4 5  

(a) 

j 
A an n-nested loop L partitioned by the space 9 = span((f1, &, 

B; Bf B: 84" 

3 

2 {aEInI ,=b,+al f1+a2t2+. . .+a, f~ ,a l  E R , 1  < E < u } ,  

' I  

0 1 2 3 4  
(C) 

Fig. 2. Partitioning arrays .-I, B. and C of loop L1 into their corresponding 
data blocks. (a) A m y  .4[0 : 8.0 : 11. (b) Array B[1 : 1.2 : 51. (c) Array 
C[O : 4.0 : 41. 

processor, the partitioned data and programs may be executed 
in a communication-free fashion. 

Given an pi-nested loop L, the problem is how to parti- 
tion the data referenced in loop L such that not only the 
communication overhead is not necessary but also the degree 
of parallelism can be extracted as large as possible. We first 
analyze the relations among all array variables of loop L .  The 
iteration space is then partitioned into iteration blocks such 
that no interblock communication exists. For each partitioned 
iteration block, all data, referenced by those iterations, must 
be grouped into their corresponding data block for each array. 

for 1 5 j 5 q, where: 

I" = U B,. 0 
1 9  I 9  

Note that if dim($') = n, there exists only one iteration 
block, the whole iteration space I",  while we apply the 
iteration partition P*(I") to loop L. If dim(@) = 0, one 
iteration is an iteration block while we apply the iteration 
partition Pq,(I") to loop L.  

Definition 3 [Data Partition]: Given an iteration partition 
PU(I"), the data partition of array A with all s referenced 
array variables A[HAE + C l ] ,  . . ., A[HAE f C,], denoted as 
Pq, (A) ,  is the partition of data space of array A into q data 
blocks B t ,  Bf, . . . , B t .  For each data block B f  correspond- 
ing to one iteration block B, of Pq,(I") for 1 < j 5 q.  there 
exists the following condition: 

B , A = { A [ U ] ( U = H A ~ + C ~ , ~ E  B,,1<1 IS}. U 

Consider Example 1. If $' = span({ ( 1 , l ) ) )  is chosen as the 
space of the iteration partition P,p(12) in loop L1, the iteration 
space can be partitioned into seven iteration blocks as shown 
in Fig. 3. Points enclosed by a line form an iteration block, and 
the dotted points represent the base points of the corresponding 
iteration blocks. For example, the base point b j  of iteration 
block B5 = { E  E 121i = $5 + a(1, l ) ,  0 <_ U < 2 )  is ( 2 , l ) .  
Based on the iteration partition P*(12), the arrays A,  B, and 
C are partitioned into the corresponding data blocks by using 
the respective data partition P,p(A) ,  Py(B),  and P*(C), as 
shown in Fig. 2. 

Example 2: Consider a two-nested loop L2. 

for i= 1 to 4 
for j = 1 to 4 

S l : A [ i + j , i + j ]  := B [ 2 i , j ] * A [ i + j - l . i + j ] ;  
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Fig. 3. 
iteration blocks. 

Partitioning the iteration space of loop L1 into the corresponding 

5'2: A [ i + j - l , i + j - l ]  := B[2i- l , j -1] /3;  ( L 2 )  
end 

end 

In loop L2, the following are the respective reference 
functions of arrays A and B: 

The data-referenced vectors ?I, between A[i + j ,  i + j] and 
A[i + j - l , i  + ,j - 11, F a ,  between A[i + j - 1,i + j - 11 
and A[i + j - 1. i + j], and T3 ,  between A[i + j - 1, i  + j] 
a n d A [ i + j , i + j ] , o f a r r a y A a r e ( l , l ) ,  (0 , - l ) ,and(- l ,O),  
respectively. The data-referenced vector Tq of array B is (1,l). 
Consider the equation H.4t2 = F 2 .  Two iterations E1 and E2 

can access the same element of array A if the equation L.2 - 
= f a  is satisfied. Because there exists no solution in the 

equation H A f 2  = fa ,  there exists no data dependence between 
A[i+j-1, i+j-1] and A[ i+ j - l , i+ j ] .  However, solving the 
equation HBF4 = F~ can exactly obtain a solution f q  = (f, 1). 
It is impossible for the data dependence vector f~ between 
two iterations, because f 4  does not belong to 2'. Also there 
exists no data dependence on array B. Let the symbol O d  E 
Zd be denoted as a zero-vector where each component is equal 
to 0. Consider the equation H f  = 7;. In the special case that 
F = O d ,  the set of solutions f of equation Hf = O d  is Ker(H), 
the null space of H .  The vector f indicates the difference of 
two iterations accessing the same element of a certain array 
variable. For example, Ker(H.4) is span( { (1 , - 1))) in loop L2. 
On variable A[i+. j ,  i+j], the array element A[4,4], referenced 
by the iteration (1,3), can be referenced again by iterations 
(1.3) + span({(l, -l))), i.e., ( 2 , 2 )  and ( 3 ,  l ) ,  of loop L2. 

U 
In the following, we discuss how to choose the better 

space to partition the iteration space and data spaces without 
duplicate data such that there exists no interblock communi- 
cation and parallelism is extracted as large as possible. The 
following definition is given for discussing the dependency 
among elements of an array. 

Dejinition 4 [Reference Space]: In an n-nested loop L,  if 
a reference function H.4 and s variables A[H~ak + Cl],  ..., 
A[HA: + Cs] for array A exist, the data-referenced vectors are 

- -  rp  = cj - ck for all 1 5 j < k 5 s and 1 5 p 5 w, then 
the reference space of array A is as follows: 

where 
s(s-1) 
2, must satisfy the following conditions: 

is the basis of Ker(H;1), and f, E R", 1 5 j 5 

1)  f j  is a particular solution of equation H,qt = ~ j .  

2) A solution f' E fJ+ Ker(H.4) exists such that f' E Z'l 

U. 
The reference space used here is similar to the group- 

temporal reuse vector space previously defined by Wolf and 
Lam [21]. The reference space represents the relations of all 
data references between iterations. For array A, there exists no 
data dependence between iteration blocks when the iteration 
space I" is partitioned with the reference space Q-4. This 
is because all data dependences are considered in 9.4 such 
that data accesses are not needed between iteration blocks. In 
each iteration block, iterations according to the lexicographical 
order are executed to preserve the dependency in the loop. 

Consider Example 2. In loop L2, the reference space Q,4 

of array A is span(((1.-1), ( i ,  i)}), because Ker(H.4) = 
span({ (1, -1))) and there exists a particular solution fl = 
( 4 ,  i) of equation H.4f = 7;l that satisfies conditions (1) and 
( 2 )  of Definition 4. The reference space Q B  of array B is 
span(d), because Ker(HB) = { 0 2 } ,  and the only solution f4 
= (i, 1) $! Z2 that does not satisfy condition ( 2 )  of Definition 
4. 

In the above discussions, only the communication-free itera- 
tion partition P*.4 ( I " )  and data partition Pa,4 ( A )  of an array 
A are considered in the nested loop. Among these iteration 
blocks, several data references may, however, exist in the other 
arrays. Whenever partitioning the iteration space, not only the 
data references that occur in an array must be considered 
but also the other data references that occur among arrays 
in a nested loop. Given an ri-nested loop L with k array 
variables, let the reference space QA, be span(Xj) of array 
Aj for 1 5 j 5 IC.  Then 9 = span(X1 U X2 U . . . U X,) 
is the partitioning space for communication-free partition of 
arrays in loop L without duplicate data. All iteration blocks 
partitioned by Pq(I")  can be correctly executed in parallel. 
This is proven in Theorem 1 of the Appendix. 

By Theorem 1, when dim(9) < n, this means that there 
exists parallelism in loop L for the iteration partition PQ(I") .  
By Definition 2 ,  the smaller the value of dim(Q) is, the higher 
the degree of parallelism has. In general, when dim(Q) < 71-1, 

our method can exploit more parallelism than Ramanaujam 
and Sadayappan's method [IS] in For-all loops with uniformly 
generated references. This is because Ramanaujam and Sa- 
dayappan's method uses only ( n  - l)-dimensional hyperplanes 
to partition the arrays in For-all loops. To illustrate the 
communication-free array partitioning without duplicate data, 
consider the following example. In Example 1, the reference 
spaces are QA = QC = span({(l,l)}), and 9~ = { 0 2 }  
for respective arrays A, G, and B. Therefore, by Theorem 1 ,  
the partitioning space is 9 = span({(l. 1)) U { (1,l)) U 4) 
for communication-free iteration partition P ~ ( I ~ )  of loop ~ 1 .  

and f' = E2 - T1 where T l ,  i2 E I" .  
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Because dim(!P) = 1 (< 2),  there exists a large amount of 
parallelism in loop L1. The overall results of partitioned data 
and iteration blocks in loop L1 have been shown in Fig. 2 
and Fig. 3, respectively. Because loop L1 is not a For-all 
loop, Ramanaujam and Sadayappan's method cannot solve it 
in parallel execution. 

The strategy allowing nonduplicate data for communication- 
free array partitioning in nested loops has been described in 
this subsection. Allowing duplicate data for some array ele- 
ments can actually make it possible that several loops may ex- 
ist with a great amount of parallelism for communication-free 
array partitioning. The communication-free array partitioning 
by duplicate data strategy for extracting more parallelism than 
the nonduplicate one is discussed in the next subsection. 

B. Communication-Free Array Partitioning 
with Duplicate Data 

In this subsection, we consider the communication-free 
array partitioning with duplicate data; i.e., there may exist 
more than one copy of an array element allocated onto local 
memory of processors. Because of communication overhead 
being most time-consuming in parallel executing programs, 
it is worthwhile to duplicate referenced data onto processors 
such that a high degree of parallelism can be exploited; 
meanwhile, the computations should be correctly performed in 
a communication-free fashion. Duplicate data strategy, in com- 
parison with nonduplicate one, may extract more parallelism 
of programs based on communication-free array partitioning. 
Before describing our duplicate data strategy, we shall give 
the following definition for data arrays. 

Dejinition 5 [Fully and Partially Duplicable Arrays]: If 
there exists no flow dependence on an array A ,  then the array 
A is called a fully duplicable array; otherwise, the array A is 

U 
Note that the fully duplicable arrays may incur antidepen- 

dence, output, or input dependence; however, the partially 
duplicable arrays can incur flow dependence. For the two kinds 
of arrays, we next discuss how to choose the better space to 
partition the iteration space and arrays with duplicate data such 
that there exists no interblock communication. 

First, we examine the fully duplicable arrays in loop L.  
Because there exists no flow dependence on array A,  any 
iteration will not use the elements of array A generated by 
other iterations; therefore, the data can be arbitrarily distributed 
onto each processor, and the original loop can be correctly 
executed in parallel. Therefore, the reference space 9~ can be 
reduced into span(4) denoted as the reduced reference space 
QL. That is, 92 is the subspace of ! P A .  

Next the partially duplicable arrays are to be examined. 
Assume that there exist p flow dependences on a partially 
duplicable array A in loop L.  The reference space ! P A  of array 
A can be reduced into the reduced reference space 92 = 
(p U {El, tz, .--, ta} ) ,  where p is the basis of Ker(HA) 
and E,, 1 5 j 5 p ,  which lead to flow dependences, are 
particular solutions satisfying the conditions (1) and (2) in 
Definition 4. The reducible reason for the reference space is 
that only the flow dependences can actually cause the data 

called a partially duplicable array. 

transfer between execution of iterations. That is, only flow 
dependence is necessary to be considered during execution of 
programs; however, input, output dependences, and antidepen- 
dence merely determine the precedence of executing iterations 
so that they cannot make any data transfer. 

As for partitioning the iteration space, data references that 
occur among all arrays in a nested loop must be considered. 
Given an n-nested loop L with IC array variables, let the 
reduced reference space 92, be span(X,') of each either fully 
or partially duplicable array A, for 1 5 j 5 I C .  It is proven in 
Theorem 2 of the Appendix that 9' = span(X[UX,'U. . uXL) 
is the partitioning space for communication-free partitioning 
with duplicate data by using the iteration partition P*.(I"). 

To illustrate the communication-free array partitioning with 
duplicate data, consider the following two examples. First, 
Example 1 is considered again. The reduced reference spaces 
are 92 = span(((1, 1))) and !Pb = !P> = span(4) for 
respective arrays A, B,  and C. Therefore, by Theorem 2, the 
partitioning space of loop L1 is V = span(((1, I)} U 4 U 4) 
for communication-free iteration partition PQr (1'). For loop 
L1, the duplicate data strategy obtains the same results as the 
nonduplicate one. That is, loop L1 does not need to duplicate 
data for enhancing the parallelism. 

Next consider Example 2. By Theorem 1, while we ap- 
ply the iteration partition Pu(1') to loop L2, where = 
span({ (1, - l ) ,  (f, i)}), loop L2 needs to be executed se- 
quentially based on the nonduplicate data strategy. Because 
both arrays A and B in loop L2 are fully duplicable arrays, 
the partitioning space 9' is span(4) by Theorem 2. While 
we apply the iteration partition Pqr(12)  to loop L2, it can be 
executed fully in parallel. 

Clearly, using duplicate data strategy can obtain more 
parallelism than using the nonduplicate one in loop L2. By 
duplicate data strategy, the overall results of partitioned data 
and iteration blocks in loop L2 are shown in Fig. 4 and Fig. 5 ,  
respectively. Note that the data blocks BtJ and BF, and 
iteration block Bz,,, where 1 5 i . j  5 4, will be assigned 
to the same processor. 

However, several redundant computations possibly exist in 
the nested loops such that the partitioning spaces proven in 
Theorem 1 and Theorem 2 cannot achieve minimum; namely, 
the dimensions of partitioning spaces are not minimal. Given 
some sufficient conditions, the minimal partitioning spaces can 
be obtained. The details are discussed in the next subsection. 

C. Eliminating Redundant Computations 

Suppose each computation of nested loops is meaningful 
for programmers. However, there still possibly exist several 
redundant computations in programs. If two 'computations 
can generate values to an identical array element and the 
array element referenced by the first computation cannot be 
referenced until the second computation is executed, then the 
first computation is redundant. Thus, eliminating the redundant 
computations cannot affect the final results after executing 
a nested loop. For simplicity, we assume that the reference 
function HA of each array A in an n-nested loop L is 
nonsingular, i.e., Ker(HA) = {On}. 
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Fig. 4. Partition of arrays .I and B in loop L2 using the data partition 
P,p(.I) and Pq?(L?), respectively. (a) Partition of data space of array 
-411 : 8.1 : SI. (b) Partition of data space of array B[1 : 6.0 : 41. 

In this subsection, the main goals are stated as follows. First, 
all redundant computations in a nested loop can be eliminated 
by our proposed approach. Next the minimal partitioning 
spaces can be derived for communication-free partitioning 
without and with duplicate data after eliminating those re- 
dundant computations from the nested loop. The following 
definition is first given for describing the reference relationship 
among elements of an array. 

Dejinition 6 [Data Reference Graph]: For an array A in 
loop L ,  a directed data reference graph is defined as G" = 
(V", E"). The set of vertices, V" = W A  U R4, consists of 
the sets W" and R 4  of referenced array variables appearing 
in the respective left-hand side (performed by write operations 
to these variables) and right-hand side (performed by read 
operations from these variables) of the assignment statements. 
The set of edges, E", is the set of data dependences between 

Let the sets W 4  and R-' in V "  consist of vertices w,,  
1 5 i 5 vi, and r J ,  1 5 j 5 T I ,  respectively. Because of 

two referenced array variables. 0 

Fig. 5. Partition of iteration space of loop L2 using the iteration partition 
Pq P ( I* ) . 

data dependences with transitive relation, if data dependences 
exist between any two referenced array variables, then the 
connection of G" can be connected as: 

1 )  the edges (w;:wj) with output dependences for all 

2 )  the edges ( r i , r j )  with input dependences for all 1 5 

3) the edges ( w l , r j ) ,  ( w ~ , r j ) ,  ..., (wT, , r j )  with flow 

4) the edges (rj lwTJ+l),  ( r j , % J + 2 ) 3  .-., ( r j , ~ , )  with 

1 5  a < j 5 m, 

i < : , I v ,  

dependences, and 

antidependences, 0 5 rj 5 m, for each vertex rj E RA, 

In general, if all of the above four types of connections appear 
in array A ,  the data reference graph G" of array A will be 
as shown in Fig. 6. 

1 5 :; 5 U. 

Example 3: Consider a two-nested loop L3. 

for i = 1 to 4 
for j = 1 to 4 
Si: A[i , j ]  := A[i - 1 , j  - 11 * 3 ; 
5'2: A [ i , j  - 11 := A[i + 1 , j  - 2]/7 ; (L3)  

end 
end 

The set of vertices for array A is V" = W" U RA = 
{w1,w2} U { T - ~ , T Z } ,  where the vertices w1, w2, T I ,  and T-2 

are the variables A[i,j] ,  A [ i , j  - 11, A[i + l , j  - 21, and 
A[i - 1,j - 11, respectively. There are edges (w1,wa) with 
output dependence So, and (rl ,  T - 2 )  with input dependence 
S i .  For vertex rl, r1 = 0, so that there are edges ( q , w 1 )  
and ( ~ 1 ~ ~ 2 )  with antidependences 6". For vertex T P ,  7 2  = 
2, so that there are edges (wl , r2 )  and ( w 2 , ~ 2 )  with flow 
dependences Sf. As a consequence, the data reference graph 

0 
In what follows, we describe what redundant computations 

are. An array element that is in the left-hand side of a compu- 
tation is called a write. Two cases of redundant computations 
can be identified. First, for any two contiguous writes writing 
to the same identical array element of a nested loop, if the first 
write is not read by any computation until the second write is 
performed, then the first write is a redundant write. Next, if the 

G" of array A for loop L3 is shown in Fig. 7. 
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Fig. 6. 

Fig. 7. Data reference graph GA of array A for loop L3 

first write is read only by the redundant computations until the 
second write is performed, the first write is also a redundant 
write. Thus, any computation S(a) for E I" is a redundant 
computation if it will generate a redundant write. For clearly 
illustrating the redundant computation, consider the following 
example that we substitute the two statements SI and S2 of 
loop L3 into the following four statements: 

Si: A [ i , j ]  := C[ilj] * 3 ; 
s;: B[ i , j ]  := A[i , j  - l ] /D  ; 
Si: A[i  - 1 , j  - 11 := E [ i , j  - 1]/F + 11 ; 
Si: B[i , j  - 11 := G * 5 - K ; 

For the first case, S;(&) for E1 = ( 2 , 2 )  is a redundant 
computation. This is because the array element B[2,2]  written 
by the computation Si(?1) is immediately overwritten by the 
computation Si(;,) for 22 = ( 2 , 3 )  in the next iteration, 
without being read during these two computations. For the 
next case, the array element A[2, I] written by the computation 
Si(&) for ;3 = ( 2 , l )  is read only by the computation Si(il) 
until it is overwritten by Si(&) for = (3 ,2) .  Because Sa(al) 
is a redundant computation from the above analysis, Si(&) is 
also a redundant computation. 

93 1 

We formalize the method of eliminating redundant compu- 
tations of the nested loop L based on the above described 
concept. Assume that there are a assignment statements Sj 
for 1 5 j 5 a in the nested loop L. By Definition 6, we 
assume that vertex wk in W A  corresponds to statement sk, 
1 _< Ic _< m, and that rj in RA corresponds to statement S,,, 
1 5 xj 5 a and 1 5 j 5 w, for G A  of array A in the nested 
loop L. Assume that two contiguous writes are generated by 
the respective computations Sk(;) and Sp(;  + i j  for i E 1". 
That is, S,(i+f) is output-dependent on Sk(a), with the output 
dependence vector contributed by ( W k ,  w p )  E E" and p is 
the smallest index between k + 1 and m. Then the computation 
Sk($ is a redundant computation if one of the following two 
cases is held. 

Case 1: The data generated by &(i) are not read by any 
computation until the computation S p ( i  + 9 is executed. 
Case 2: The data generated by Sk(;) are read only by 
the redundant computations S,, (5  + fj), which are flow- 
dependent on sk (;), with the respective flow dependence 
vectors f j  contributed by ( W k ,  r j )  E E A ,  1 5 j 5 w, until 
the computation Sp(i +' f )  is executed. 
Obviously, all redundant computations in the nested loop L 

can be recursively examined by the above two cases. Let the 
set N(Sk)  = { T  E I" I sk(E) is not redundant computation} 
be the set of all iterations without redundant computations on 
statement sk, 1 5 5 a. For example, considering Example 
3, the sets N(S1)  = {(2,4) 1 1 5 i I 4) and N ( S z )  = { ( i , j )  1 
1 5 i , j  5 4) of all iterations without redundant computations 
on the respective statements S1 and S2 can be derived from 
the method of eliminating redundant computations. 

After eliminating redundant computations, several data de- 
pendences possibly can be deleted in the nested loops. Let the 
symbol V U ~ ( A [ H A ;  + e], s k )  denote the set { A [ H A ~  + I?] 1 
? E N ( S k ) ) ,  where the array variable A [ H A ~  + E] appears 
in statement sk. That is, these nonredundant computations 
on statement sk with the array variable A[HA;  + E ]  actually 
need to access the set of array elements V a l ( A [ H A i f  E ] ,  sk). 
Therefore, the data dependence, corresponding to an edge 
( q b )  in E A ,  is a false data dependence if V a l ( a , S )  n 
VaZ(b,S') = 4. That is, those redundant computations can 
result in the false data dependence between two vertices a 
and b. In contrast, a useful dura dependence, not a false data 
dependence, can actually make dependence relations between 
variables in the nested loop L. After eliminating the redundant 
computations and the false data dependences from the nested 
loop L, the degree of parallelism can be increased. Based on 
the above analysis, considering Example 3, since V a l ( w l ,  Sl) 
n Val(7-2, SI) = 4, the flow dependence (tu1, r 2 )  in E A  is a 
false flow dependence. This is because the computations of the 
array elements that are generated by w1 ( A [ i ,  j]) and then used 
in 7-2 (A[ i  - 1, j - 11) are redundant on statement SI. Similarly, 
the output dependence (w1, W Z ) ,  the antidependence ( r l ,  tu1), 
and the input dependence ( T I !  T Z )  are all false. Thus, the useful 
data dependences contain only the flow dependence ( w 2 ,  7-2)  

contributing the flow dependence vector fl = (l,O), and 
the antidependence ( T I  ! W Z )  contributing the antidependence 
vector tz = (1,-1). 



932 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 9, SEFTEMBER 1994 

i 

B ,  
-1 0 . e . .  

Fig. 8. Partition of array .4 in loop L3 using the data partition Pqm,,r (.4). 

In the following, the communication-free partitioning strate- 
gies with minimal partitioning spaces are discussed. Since 
only useful data dependences can actually cause data transfer 
between iterations, the space 92'" = span( {E I E is contributed 
by a useful data dependence}) is the minimal reference space 
of array A without duplicate data. This is because if any vector 
f E X ,  where 9TZn = span(X) is removed to form 9' = 
span(X - (0) such that 9' # 9Tzn,  then the vector E, which 
can lead to a useful data dependence, must exist between two 
iterations that are allocated on different iteration blocks such 
that communication-free partitioning cannot be achieved by 
using the iteration partition P,p (P ) .  Only the data accessed 
by the nonredundant computations must be considered here to 
form the data partition Pqmtn(A) .  

Given an n-nested loop L with k array variables, let the 
minimal reference space 9TJan be span(XJ) of each array A, 
for 1 5 5 k .  It is proven in Theorem 3 of the Appendix 
that the partitioning space qmZn = span(X1 U X2 U . . . U X,) 
for communication-free partitioning of arrays A,,  1 5 j 5 k ,  
without duplicate data is minimal. 

Similarly, since only useful flow dependences can actually 
cause data transfer between iterations, the space 9Tznr = 
span({E I t is contributed by a useful flow dependence}) is 
the minimal reduced reference space of array A with duplicate 
data. Given an n-nested loop L with k array variables, let 
the minimal reduced reference space 9TJZnr be span(X:) of 
each array A, for 1 5 j 5 k .  It is proven in Theorem 
4 of the Appendix that the partitioning space 9mznT = 
span(X; U X $  U. . . UX;) for communication-free partitioning 
of arrays A,, 1 5 j 5 I C ,  with duplicate data is minimal. 

Example 3 is considered again for illustrating how to obtain 
the minimal partitioning spaces for communication-free parti- 
tioning without and with duplicate data. For communication- 
free partitioning without duplicate data of loop L3, by The- 
orem 3, the minimal partitioning space is qmZn = span({fl, 
Ez}) = span({(l.O), (1. -l)}). Thus, loop L3 must be exe- 
cuted sequentially. The minimal partitioning space of loop L3 
with duplicate data is Pzn* = span({fl}) = span({( 1.0))); 
therefore, the overall results of partitioned data and iteration 
blocks of loop L3 are shown in Fig. 8 and Fig. 9, respectively. 

In Fig. 9, both the computations Sl(i) and S2(i) executed 
at iteration are denoted by a solid point. Only computation 

i 

1 )  (0 0 0 o > B ,  

- 1  
0 1 2 3 4  

Fig. 9. Partition of iteration space of loop L3 using the iteration partition 
P*-.-. (I2 ). 

S2(E) executed at is denoted by a dotted point. Because the 
partitioning space 9' of loop L3 is span({(l!O), ( I !  I)}), it 
must also be executed sequentially under the duplicate data 
strategy. Therefore, removing the redundant computations not 
only can reduce the computation time but also can increase 
the degree of parallelism. 

For obtaining the minimal partitioning spaces, the approach 
of removing redundant computations, designed in parallel 
compilers, is complex and more time-consuming. The trade- 
off depends on whether users need to obtain large amounts of 
parallelism for some particular programs. Suppose there does 
not exist any redundant computation in a program. Then the 
partitioning spaces proven in Theorems 1 and 2 can achieve 
minimum for communication-free partitioning of loop L with 
nonduplicate and duplicate data, respectively. 

The sufficient conditions for communication-free array par- 
titioning have been discussed and derived here without du- 
plicate data corresponding to Theorems 1 and 3 and with 
duplicate data corresponding to Theorems 2 and 4. However, 
transforming the partitioned iterations on the basis of the 
above two schemes into a parallel execution form is important 
in designing parallel compilers. In practical applications, the 
number of processors is fixed on multicomputers. How to map 
the partitioned program onto a fixed-size multicomputers in 
the consideration of load balancing must be considered if the 
number of partitioned iteration blocks is larger than the number 
of processors. The problems of program transformation and 
processor assignment are discussed in the next section. 

IV. PROGRAM TRANSFORMATION 
AND mOCESSOR ASSIGNMENT 

In this section, the program transformation of a partitioned 
nested loop without regard to the number of processors is 
first described, and the processor assignment with a fixed-size 
number of processors is then discussed. Mapping a parallel 
code onto processors may cause inefficiency if the parallelizing 
compiler cannot generate an appropriate parallelized program 
of the parallel code. Automatically transforming the partitioned 
nested loop into a parallel execution form therefore becomes 
the focus. 

By Theorems 1 - 4, we can obtain an n-nested loop with 
the partitioning space 9 = span(X), where X consists of 
g linearly independent vectors; i.e., dim(9) = g. In the 

" . - . -. - -. .I ..... . . - .I "",, . ,. 
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following, the partitioned nested loop is to be transformed into 
a parallel execution form with IC (= n-g) forall loops as using 
the iteration partition PQ ( I n ) .  By orthogonal projection [3],  
each iteration block can be projected to the subspace Ker(9). 
This implies that the basis Q of Ker(9) can therefore be used 
to represent each transformed point of k forall loops; namely, 
each point indicates one partitioned iteration block. Since 
dim(Ker(9)) = k and dim(9) = g, there are IC outermost forall 
loop index variables and g innermost loop index variables, 
respectively, in the transformed nested loop. 

First, we derive the basis Q = {az = (u%,J,  a2,2, .-., u ~ , ~ )  
E Z" I gcd(a,,l, aZ,2, ..., az+) = 1, 1 5 z 5 k }  of Ker(Q). 
The elementary row operations are next used on the matrix [U'] to derive the row echelon form ["I , where 

U: is derived from G,, j = a(z), and the function ~7 : i -+ j 
is a permutation for 1 5 z,j 5 k [3].  The first position of 
nonzero component of ti: is y3 for 1 5 j 5 I C ,  and y3 < y3+1 
for 1 I: j < IC.  The new index variables I ; ,  I;, . . . , I ;  can be 
obtained from the original loop index variables Ill 12, . . . , In 
with the following equation: 

'k k x n  'h k x n  

and (2) as follows: 

where i # zj  and ci.l E R, 1 5 E 5 IC + i - 1, for 1 5 i 5 n 
and 1 5 j 5 g. 

Based on the above transformation, the whole transformed 
loop L' is as follows: 

forall Ikl = 1; to U: 

forall IL2 = 1; to U ;  

forall Ihk = 1s to U ;  

for Izl = l;+l to u:+~ 

for I., = 1; to U;  

end 
[modified loop body] 

end 
end-forall 

The inverse relations of (1) are derived as follows: 

I, = b J , l I i  + bJt21; + . . . + bJ ,nIL,  
if i = y j  for 1 5  i 5 nand  15 j 5 k ,  
where bj,l E R for 1 5 1 5 n; 

if i # yJ for 15 i 5 nand  15  j 5 k .  
I, = I:, 

end-forall 
end-forall. 

How to transform a partitioned nested loop into a parallel 
execution form is to be illustrated with the following example. 

Example 4: Consider a three-nested loop L4. 

for i l  = 1 to 4 
(1) 

for 22 = 1 to 4 
for i3 = 1 to 4 
A[il,i2,i3] := A[il- l ,  i2+1, i3-1]+B[il,i2, is] 

; (L4) 
end 

end 
end 

(2) By applying any one of Theorems 1 - 4, the minimal 

The lower bounds 1; and the upper bounds U: of IC outermost 
forall loop index variables 1 5 j 5 k, can be calculated 
on the basis of the the ranges of original loop index variables 
and (1) and (2). In order to execute all iterations within one 
iteration block according to the lexicographical order, the first 
g index variables Iz, for 1 5 z, 5 n. and 1 5 i 5 g 
are chosen as the innermost loop indexes. The Izz cannot be 
expressed linearly by the variables Ibl, . . ., IhL, Izl , . . ., Izz-l 
for 1 5 i 5 g, and zJ < zJ+l for 1 5 j < g. 

The main reason for such a selection for the g index 
variables is to make a one-to-one mapping from the original 
iteration space to the new transformed space. Similarly, the 
respective lower bounds 1; and upper bounds U:, k + 1 5 
j 5 n, of the innermost loop index variables I z z ,  1 5 i 5 g, 
can be derived. All of the above lower and upper bounds can 

partitioning space of loop L4 is Q = span({ (1, -1, I)}). That 
is, loop L4 does not necessarily duplicate data to enhance the 
parallelism. First, we can obtain that the basis of Ker(Q) is 

and ( b l : b 2 , b 3 )  = ( - l ,O, l ) ,  so that gcd(al,a2,a3) = 1 and 

Let the new index variables i i ,  zk, and 2; be ii = alii + 
n2i2 + a323 = il + i 2 ,  i/2 = b l i l +  b2 i2  + b3i3 = -il + i 3 ,  and 
ib = i 3 .  The inverse relations are derived as il = 4; + i ; , 
a2 = i i  + ib - a;, and i3 = iQ. 

Since dim(Ker(\k)) = 2 and dim(9) = 1, there are two 
outermost forall loop index variables i i  and ik and one 
innermost loop index variable il, respectively. The following 
transformed loop L4' can be obtained through usage of the 
above transformation strategy. 

Q = {(al,a21a3)r ( h , b ~ , b 3 ) } 9  where (alra2,a3) = ( l , l , O )  

gcd(bl,b2, b3) = 1. 

be determined by the method of transforming ;he loop bound 
proposed in [22]. Besides, in order to determine the value 
of original loop index variables, except for g innermost loop 

forall i ;  = 2 to 8 
forall i; = max(-3, -ii + 2) to min(3, -ii + 8) 

for i l  = "(1, ii - 4, -2; + 1) to min(4, i i  
index variables, the extended statements can be derived by (1) -1. -2; + 4) 



934 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5. NO. 9, SEF’rEMBER 1994 

El : iz := ii - il ; 
E2 : i3 := i; + il ; (L4’) 

A[i l , i z , i3 ]  := A[il  - l , i z  + l , i 3  - 11 
+ B [ i i ,  i z ,  i3] ; 

end 
end-forall 

end-forall 

The statements El and Ez in loop L4’ are the extended 
statements. Each point of the set { (zi, ib) I 2 5 i i 5 8 and 
max(-3, -2; + 2) 5 ih 5 min(3, -ii + 8)) represents one 
iteration block, and all of the points can be independently 
executed in parallel without interblock communication. 0 

Although the number of processors is larger than the number 
of partitioned iteration blocks, each partitioned iteration block 
corresponding to one element of the set { (I;,, Ib2, . . ., Ihk) 
I 1; 5 I;, 5 us, for 1 5 j 5 I C } ,  and its partitioned data 
blocks of each array can be distributed into local memory 
of the corresponding processor. That is, the execution time is 
dominated by the partitioned iteration block with the maximum 
number of iterations. However, in the following, we discuss 
the assignment problem of iteration blocks on multicomput- 
ers with the fixed-size number of processors. The following 
example illustrates how to map the parallel execution form 
on multicomputers such that the workload of processors is as 
balanced as possible. Assume that there are four processors, 
PEo,o,  PEo,l, P E l , o ,  and P E 1 , l .  The transformed loop L4’ 
is considered. The following code can be obtained for parallel 
execution of processor PEal ,a2  for 0 5 a1 5 p l  - 1 and 
0 5 a:! 5 p:! - 1, where p l  = p:! = 2. 

forall ii = ( 2  + (a1 - ( 2  mod PI)) mod p 1 )  to 8 step p l  
forall ib = (max(-3, -4+2)  + (a:! - (max(-3, -ii+ 

2) mod PZ)) mod PZ) 
to min(3, -2; + 8) step pa 
for i l  = max(1, i i - 4, -i; + 1) to min(4, i i  

-1,-i; + 4) 
El : i 2  := i i - il ; 
E2 : i3 := ib + i l  ; 

A [ i l , i z , i 3 ]  := A[il - 1 , i z  + l , i 3  - 11 
+ B [ i l , i z , i 3 ]  ; 

end 
end-forall 

end-forall 

The above processor assignment is shown in Fig. 10, where 
the value within each point represents the number of iterations 
within the corresponding partitioned iteration block. Around 
the dashed line with four points, the left-down, left-up, right- 
down, and right-up points are assigned to processors PEo,o, 
P E o , J ,  PE1.0, and PE1,1, respectively, according to the 
transformed loop L4’. By examining the above allocation, the 
workloads of the four processors are the same and equal to 
16 iterations. The main reason for such allocation is that the 
neighboring iteration blocks of each partitioned iteration block 
through the iteration partition have almost the same number of 
iterations, except for the boundary-partitioned iteration blocks 
when the iteration space is very large. For example, four points 
around the dashed line in Fig. 10 have almost the same number 

i; 

? 

Fig. 10. Processor assignment of loop L4’. 

of iterations. Hence, the balanced workload on each processor 
can possibly be obtained if the neighboring iteration blocks 
are distributed to their corresponding processors based on the 
mod operation. 

Such a simple processor assignment strategy can be easily 
extended to the k dimensions of nested forall loops. Assume 
that the number of processors is p = p l  x p z  x . . . x pk for 
numbering the p processors. Let pi = ~J for 1 5 i 5 k - 1, 
and let pk = [+J. Then processor PE,,,,, ,..., ak, 
0 5 a1 5 p l  - 1, 0 5 a:! 5 pz  - 1, ..., 0 I: a k  5 pk - 1, is 
assigned to execute the following code, and the corresponding 
data need to be allocated onto its local memory. 

forall Ihl = (1; + (a1 - (1; mod p l ) )  mod p 1 )  to U ;  step pl 
forall 1b2 = (1; + (a2 - (1; mod p z ) )  mod p 2 )  to U ;  

step P z  

forall Ibk = (1; + ( a k  - ( Z i  mod pk)) mod pk) to 
step Pk 

for Iz, = li+l to u;+~ 

for Iz, = 1; to U ;  

end 
[modified loop body] 

end 
end-forall 

end-forall 
end-forall 

Now we compare the performance of nonduplicate and 
duplicate data strategies. In distributed memory multicomput- 
ers, assume that the time required to perform one iteration 
is tcomp; the time required to communicate including two 
parts is tstart ,  the startup time for communication; and t,,,, 
is the time required to transmit a single datum from one 
processor to the neighboring one. Therefore, the time required 
to transmit II: data between two neighboring processors is 
t s ta r t  + x t c o m m -  
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Consider the following matrix multiplication algorithm. 

for i = I to M 
for j = 1 to M 

for 5 = 1 to M 

end 
C [ i l j ]  := C[ i , j ]  + A[i,k] * B [ k , j ]  ; ( L 5 )  

end 
end 

The iteration space of loop ~5 is I 3  = ( ( i , j ,  k )  I 1 5 
i , j ,  k I M } .  The reference spaces Q A  = span(((0, l,O)}), 
Q B  = span({(l,0,0)}), and PC = span({(O,O,l))) of 
respective arrays A, B,  and C. By Theorem 1, the partitioning 
space Q is span({(o,l,O)} U {(110,0)} U {(0,0,1)}). That 
is, the matrix multiplication algorithm needs to be executed 
sequentially, as when using the nonduplicate data strategy. 

Consider a p l  x pz-mesh multicomputer as the target 
machine. Therefore, the time complexity including the compu- 
tation time and the communication time of allocating the whole 
arrays A and B from host processor to one node processor is 
computed as follows: 

Next considered is the fact that if only some of fully or 
partially duplicable arrays are duplicated, they may sacrifice 
less parallelism than all of them. Note that both arrays A 
and B are fully duplicable arrays, and that array C is a 
partially duplicable array. Thus, the reduced reference spaces 
QL = span(q5), qk = span(q5), and !@& = span({(O,O, 1))) 
for respective arrays A, B ,  and C. Demonstrated in the 
following is the fact that only the array B is duplicated in 
loop L5. Because of array A not replicating data, let ‘4’’ = 
span({ (0, 1 ,0)} U { (0,0, 1))) such that the communication- 
free iteration partition P,p (13)  can be obtained. Assume that 
the number of processors on mesh is p = p l  x p2 ,  that 
fi = p l  = pp,  and that M is a multiple of p .  The processor 
P E ,  for 0 5 a 5 p - 1 will execute the following loop L5’ 
by the processor assignment strategy: 

forall i’ = (1 + ( a  - (1  mod p ) )  mod p )  to M step p 
for j = 1 to M 

for k = 1 to M 
El : i := i’ ; 

C[i , j ]  := C [ i , j ]  + A[i, k ]  * B [ k , j ]  ; (L5’) 
end 

end 
end-fora11 

Because the index variable i’ is equivalent to i, the extended 
statement El can be eliminated by using the index variable i 
instead of i ’. Because we do not replicate the data of array 
A to each processor, the whole array B must be duplicated 
to each processor for parallel execution without interprocessor 
communication. 

We initially allocate the referenced elements of arrays A 
and B from host processor to each node processor on mesh. 
Because the processor PE,, 0 5 a 5 p -  1, requires accessing 

the following array elements: 

A [ a ,  1 : MI, for Q = 

(1 + ( a  - 1) modp) + lp , l  E Z, 1 I Q 5 M, 

the host processor must send these data to the corresponding 
processor in a pipelined fashion. In addition, because all 
processors require accessing the same array elements, 

B[1 : M ,  1 : MI, 

the host processor must broadcast the whole array B to 
each node processor. Thus, the communication time complex- 
ities of distributing the initial referenced elements of arrays 
A and B are O(P(ts tart  + p M  tComm)) and O(tstart + 
2&i M 2  t,,,,), respectively. Since there exists no commu- 
nication among processors during execution, the computation 
time complexity is o(% tcomp). Therefore, the total time 
complexity including the computation and communication 
time under the duplication of array B is as follows: 

M 

M3 
572 = O(- ~ c o m p  + ( P  t s tar t  + M 2  ~ c o m , )  

P 
+(tstart  + 2 f i  M 2  Lo”)). 

Nevertheless, if only the array A, not array B, is duplicated, 
the similar discussions and the same total time complexity 
can be obtained. 

In the following, both arrays A and B in loop L5 are to be 
duplicated. By Theorem 2, the communication-free iteration 
partition P,p ( I 3 )  can be obtained, where the partitioning 
space q” = span({(O,O, 1))). By the processor assignment 
strategy, the following results can thus be obtained. The 
processor PEal,,* for 0 I a1 5 p l  - 1 and 0 5 a2 I p2 - 1 
is to execute the following loop L5’’: 

forall i’ = (1  + (a1 - (1 mod p l ) )  mod p1)  to M step pl  
forall j ’  = (1 + (a2 - (1 mod p 2 ) )  mod p 2 )  to M 

step p z  
for k = 1 to M 
El : i := i‘ ; 
E2 : j := j ‘  ; 

C[ i , j ]  := C[ilj] + A[i, k ]  * B[k. j]  ; (L5”)  
end 

end-forall 
end-fora11 

Assume that M is a multiple of fi. We initially allocate the 
referenced elements of arrays A and B from the host processor 
to each node processor on mesh. Because the processor 
PE,,,,,, 0 5 a1 5 &i - 1, requires accessing the same 
array elements as follows: 

A [ a ,  1 : MI, for Q = 

(1 + (a2 - 1) mod &) + l&, 1 E Z, 1 5 Q 5 M ,  and 

0 5 a2 5 fi - 1, the host processor must send the same 
data to the corresponding row processors by multicasting in a 
pipelined fashion. Similarly, because the processor PE,, ,,*, 

~. . - . . , . I  ..,... -- . I . .... * ._- 
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0 5 a2 5 Jir - 1, requires accessing the same array elements 

and 

0 5 a1 5 v%- 1, 

the host processor must send the same data to the correspond- 
ing column processors by multicasting in a pipelined fashion. 
Thus, distributing the initial referenced elements of arrays A 
and B in a pipelined fashion has the same communication 
time complexity O(Jir tstart + 2Jir &? t,,,,). Because 
we replicate only the partial data of both arrays A and 
B to processors for loop L5”, the communication cost of 
distributing the initial data to each processor is less than that 
of loop L5‘. Since there exists no communication between 
processors during execution, the computation time complexity 

duplicate data strategy is as follows: 

Jij 

is O ( p  hl tcomp).  Therefore, the total time complexity under 

The overall execution results for loops L5, L5’, and L5” are 
executed on the Transputer multicomputer with 16 processors, 
as shown in Tables I and 11. The execution time of loops L5, 
L5/ ,  and L5” are illustrated in Table I with problem sizes M = 
16,32,64,128. and 256. The speedup derived from Table I is 
illustrated in Table 11. When the number of processors is equal 
to 1 ,  we consider only the computation time, not including the 
time of allocating arrays A and B. Although duplicating data 
seems to waste the time of allocating initial data, it can increase 
great amounts of parallelism and incur no communication 
overhead during parallel execution of programs. Therefore, 
the time of parallel execution is less than that of sequential 
execution, as shown in Table I. However, because data locality 
in loop L5 is not exploited during sequential execution, the 
speedup becomes better and better whenever the problem 
size becomes larger and larger, as shown in Table 11. This 
implies that exploiting data locality is also important during 
program execution in each processor [21]. Because of large 
existing amounts of communication overhead in loop L5’ 
while distributing whole array B,  the speedup of loop L5” 
is more efficient than that of loop L5’. By the above analysis, 
the communication time of distributing the initial referenced 
elements of arrays must be as small as possible in order to 
obtain better efficiency during parallel execution. In addition, 
determining which kind of duplication of array is suitable for 
replicating their referenced data can be appropriately estimated 
such that parallelized programs can gain better performance 
during parallel execution. 

V. CONCLUSION 
Data distribution in the distributed memory multicomputers 

is of crucial importance for the efficiency of parallelized 

TABLE I 
EXECUTION TIME OF LOOPS L 5 ,  L5’, A N D  L5“ 

(in s) 

Problem size ( i!f) 
Number of 
processors Loop 16 32 64 128 256 

p = 1  L5 0.0399 0.3162 2.5241 20.1691 1G1.254G 

L3’ 0.0144 0.0956 0.69G1 5.2895 11.3058 
L5” 0.0127 0.0855 0.6467 5.1405 40.7988 

L.5’ 0.0135 0.0543 0.28G9 1.7908 12.3584 
= L5” 0.0080 0.0326 0.2043 1.43% 10.G513 

TABLE I1 
SPEEDUP OF LOOPS L5’ A N D  LY’ 

~ 

Problem size (-11) 
Number of 
processors Loop 16 32 64 128 256 

p = i  L.5’ 2.77 3.31 3.63 3.81 3.89 
L5” 3.14 3.70 3.90 3.92 3.95 

L3’ 2.9G 3.62 8.80 11.26 13.05 
L5” -1.99 9.70 12.35 14.08 15.14 

p = l G  

programs, because local memory accesses are much faster than 
those involving interprocessor communication. If no attention 
is paid to the data allocation problem, a large amount of 
time spent in data communication and synchronization may 
seriously undermine the benefits of parallelism. In order to 
reduce or even eliminate the interprocessor communication, 
it is important for parallelizing compilers to analyze the 
pattern of references among arrays of a nested loop and to 
determine how to allocate these data to local memory of 
processors. 

Two automatic array partitioning strategies with nondupli- 
cate and duplicate data have been proposed in this paper, 
such that no data transfer during parallel execution is incurred 
and the parallelism of nested loops can be exploited as 
large as possible. Under the duplicate data strategy, more 
parallelism can be extracted than for the nonduplicate one. 
Moreover, the minimal partitioning spaces with a high de- 
gree of parallelism can be obtained when we eliminate the 
redundant computations. A method for transforming the nested 
loop into a parallel execution form is also proposed on the 
basis of the two partitioning strategies. Finally, a method is 
proposed to distribute the parallelized program and the cor- 
responding array elements into the fixed-size multicomputers 
under the consideration of load balancing. For the matrix 
multiplication algorithm, the performance of the strategies with 
nonduplicate and duplicate data is discussed, and the overall 
results are executed on the Transputer multicomputer with 16 
processors. In addition, the communication-free partitioning 
strategies proposed in this paper can also prevent cache- 
thrashing problem in shared memory multiprocessor systems 
[141. 

Although our compilation techniques consider each nested 
loop independently in a program, there still exist several 
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benefits for the communication-free data allocation strategies. 
First, the data arrays can be. efficiently distributed to each 
processor in a pipelined fashion. Second, a large amount 
of startup time is reduced, because we transmit a large 
number of data arrays at a time. Finally, there exists no 
data synchronization during parallel execution. Currently, we 
are implementing the proposed data allocation strategies in 
our UPPER project: A User-interactive Parallel Programming 
EnviRonment (UPPER). In this project, the performance of 
several scientific programs, such as matrix multiplication, 
discrete Fourier transform, convolution, some basic linear 
algebra programs, and so forth, are evaluated under the cases 
with and without using the communication-free data allocation 
strategies. 

APPENDIX 

In this Appendix, we prove Theorems 1 through 4. 
Theorem 1: Given an n-nested loop L with IC array vari- 

ables, let the reference space 9.4, be span(Xj) of each array 
Aj for 1 5 .j 5 IC. If 9 = span(X1 U X Z  U . . . U X,), then 9 
is the partitioning space for communication-free partitioning 
of arrays Aj for 1 5 j < k without duplicate data by using 
the iteration partition Pq(1"). 

Proof: Theorem 1 of this Appendix shall be proved by 
induction as follows. 

Basic IC = 1: Clearly, 9 = 9 . ~ ~ ,  which is correct be- 
cause ! Q A ~  is the partitioning space for communication-free 
partitioning of array A1 without duplicate data. 

Induction hypothesis IC = x :  The space 9 1 , ~  = span(X1 U 
X 2 U .  . 'UX,) is the partitioning space for communication-free 
partitioning of arrays Aj for 1 5 j 5 x without duplicate data. 

Inducrion IC = :I: + 1: The space 91,~+1 = span(X1 U XZ U 
. . .UX,+1) can be rewritten by the form 91,,+~ = span(Xl,,U 
Xr+l) ,  where XI,, = X1 U X2 U . . .  U X,. By induction 
hypothesis, Q1 ,, = span(Xl,,) is the communication-free 
partitioning space of arrays A, for 1 < j 5 x. Moreover, 
9 . ~ ~ + ,  = span(X,+l) is the communication-free partitioning 
space of array In the following, we prove that 91,~+1 
is the partitioning space of arrays Aj for 1 5 j 5 z + 1 by 
contradiction. 

Let XI,, = ( 3 1 , s ~  , . . . ,  s p }  and Xs+l = {fl,fz:.. . ,fq}, 
where S i  E R" for 1 5 1: < p and tJ E R" for 1 5 
j < y. Suppose the iteration partition P Q , ~ , ~ + , ( P )  can cause 
interblock communication. Without loss of generality, assume 
that there exists a data dependence vector F between two 
iterations E B1 and & E Bz; i.e., t" = i 2  -il. Let $1 and $2 

be the base points of blocks B1 and Bz,  respectively. Then the 
iterations il = bl + ulsl  + . . . + - (L p s p- + aP+,tl + . . . + a,+& 
for ul E R, 1 5 1 5 p +  y, and i 2  = b2 + e l s ~  + . . .+ epsp + 
e,+lCl+ . . . + ep+pfq, for el E R, 1 5 1 5 p + y. Because the 
data dependence vector is caused by one of z + 1 arrays, 
it must be of the form t" = flsl + . . .  + fpsp for f i  E R, 
1 < 1 < p ,  or P = gill + . . . + g& for .yl E R, 1 5 1 < y. 
The iteration E.2 therefore becomes one of the following forms: 

- -  

- -  
i 2  = i1 + f! - - (61 + alsl + . . .  + a,S, + ap+ltl + . . .  + 
a,+&)+ (f131 + ' ' .  + f p s p )  = 6, + (a1 + fl)Sl + .. . + 
( a ,  + f p ) s p  + a,+,t1 + . . . + a,+& 

and 

E.2 = E., + a = (61 + a131 + . . . + ig, + U,+Jl + ' . . + 
a,+&)+ (glfl + ... + g&) = $1 + a131 + .. . + U P S P  + 
(%+l + S l F l  + . . . + (.p+q + gq)fq. 

By Definition 2, the iteration E.2 belongs to &. But E.2 must 
belong to block Bz; this is in contradiction with the iteration E.2 

belonging to B1. Because of the above incorrect assumption, in 
which there exists a data dependence vector between iteration 
blocks, the iteration partition P*,,z+, (In) incurs no interblock 
communication for arrays Ai, 1 5 i 5 x+1, without duplicate 
data. 0 

Theorem 2: Given an n-nested loop L with k array vari- 
ables, let the reduced reference space 92, be span(Xjr) of each 
array Aj for 1 5 j 5 k.  If 9r = span(Xl U X ;  U . . . U X l ) ,  
then 9' is the partitioning space for communication-free 
partitioning of arrays A, for 1 5 j 5 IC without duplicate 
data by using the iteration partition P , p ( P ) .  

Proof: This proof is similar to the proof of Theorem 1. 
It can be completely proved through usage of the reduced 
reference space 92, with duplicate data instead of the refer- 
ence space !Q.A~ ,  without duplicate data for each array A; for 
1525lC. 0 

Theorem3: Given an n-nested loop L with k array vari- 
ables, let the minimal reference space 9y3'"2" be span(Xj) of 
each array Aj for 1 5 j 5 I C .  If qmZn = span(X1 U X Z  U 
. . . U Xk), then qmin is the minimal partitioning space for 
communication-free partitioning of arrays Aj for 1 5 j < 
I C ,  without duplicate data, by using the iteration partition 
P p .  ( I" ) .  

Proof: It shall be proved by induction as follows. 
Basic IC = 1: Clearly, !Qmin = QT:", which is cor- 

rect because 9T;n is the minimal partitioning space for 
communication-free partitioning of array A1 without duplicate 
data. 

Induction hypothesis k = x: The space = 
span(X1 U XZ U .  . . U X,) is the minimal partitioning space for 
communication-free partitioning of arrays Aj for 1 5 j 5 x 
without duplicate data. 

Induction IC = z + 1: The space 9rkT1 = span(X1 U XZ U 
. . .UX,+,) can be rewritten by the form Qy;Yl = span(X1,,U 
Xz+l) ,  where XI,, = X1UXzU. . -UX,. By induction hypoth- 
esis, @?:" = span(Xl,,) is the minimal partitioning space, 
such that there exists no interblock communication for arrays 
AI, Az,  . . . , A,  without duplicate data, by using the iteration 
partition Pqm2- ( I") .  Moreover, 9T:Tl = span(X,+l) is the 
minimal partitioning space such that there exists no interblock 
communication for array without duplicate data by using 
the iteration partition PQm.., (P). Therefore, by Theorem 1, 

the space 9r;Tl = span(X1,,UXz+l) is the communication- 
free partitioning space of arrays Aj  for 1 < j < x + 1 without 
duplicate data. However, we prove that the partitioning space 

Let  XI,^+^ be X1,2UXz+l. Assume that a vector f E Z" in 
 XI,^+^ is removed to form the space 9' = span(X1,,+1- {q), 
such that Q' # 9yz1. Without loss of generality, the vector E, 
which can lead to a useful data dependence, is assumed to be a 

1.Z  

*=+1 

qmin  is minimal, as follows. 
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particular solution of array A,, 1 5 j 5 x+ 1. Therefore, there 
exists interblock communication while applying the iteration 
partition P,p(I“) to array A,. It can be proved that is 
the minimaE partitioning space for communication-free parti- 
tioning of arrays A,, 1 5 i 5 IG + 1, without duplicate data.0 

Theorem 4: Given an n-nested loop L with lc array vari- 
ables, let the minimal reduced reference space QT,’”? be 
span(Xi) of each array A, for 1 5 j 5 IC. If !PmznF = 
span(XT U Xz U . . . U X;), then QmZnr is the minimal par- 
titioning space for communication-free partitioning of arrays 
A, for 1 5 j 5 lc with duplicate data by using the iteration 
partition P,,,,r (P). 

Proofi This proof is similar to the proof of Theorem 
3. It can be completely proved through use of the minimal 
reduced reference space @T,znr with duplicate data instead of 
the minimal reference space @T,an without duplicate data for 
each arrav A. for 1 < 1 < k .  
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