
9 24 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 9, SEPTEMBER 1994

Communication-Free Data Allocation Techniques
for Parallelizing Compilers on Multicomputers

Tzung-Shi Chen and Jang-Ping Sheu, Member, IEEE

Abstract-In distributed memory multicomputers, local mem-
ory accesses are much faster than those involving interprocessor
communication. For the sake of reducing or even eliminating the
interprocessor communication, the array elements in programs
must be carefully distributed to local memory of processors for
parallel execution. In this paper, we devote our efforts to the
techniques of allocating array elements of nested loops onto
multicomputers in a communication-free fashion for parallelizing
compilers. We first analyze the pattern of references among
all arrays referenced by a nested loop, and then partition the
iteration space into blocks without interblock communication.
The arrays can be partitioned under the communication-free
criteria with nonduplicate or duplicate data. Finally, a heuristic
method for mapping the partitioned array elements and iterations
onto the fixed-size multicomputers under the consideration of
load balancing is proposed. Based on our methods, the nested
loops can execute without any communication overhead on the
distributed memory multicomputers. Moreover, the performance
of the strategies with nonduplicate and duplicate data for matrix
multiplication is studied.

Zndex Terms- Data allocation, data dependence, distributed
memory multicomputers, interprocessor communication, paral-
lelizing compilers

I. INTRODUCTION
EVELOPMENT of parallelizing compilers that extract D parallelism of sequential programs, generate parallel

code, and map them onto various parallel machines has
been the recent focus of researches. For distributed memory
multicomputers, the memory access time from a processor to
its own local memory is much faster than the time to local
memory of the other processors. An efficient parallel executing
program thus requires low communication overhead. Various
compiler techniques have therefore been developed for the
data allocation problem in order to reduce, or even eliminate,
communication traffic on multicomputers.

Previously, a number of researchers [I], [12], [13], [15],
[22], [23] paid their attention to exploiting a large amount
of parallelism in sequential programs. However, exploiting a
large amount of parallelism in sequential programs may not
promise that executing the parallelized programs can obtain
more efficiency on distributed memory multicomputers. The
main reason is that the extracted parallelism may possibly

Manuscript received November 23, 1992; revised September 22, 1993. This
work was supported by the National Science Council of the Republic of China
under Grant NSC 824408-E-008-010.

The authors are with the Department of Computer Science and Information
Engineering, National Central University, Chung-Li 32054 Taiwan, Republic
of China; e-mail: sheujp@mbox.ee.ncu.edu.tw.

IEEE Log Number 940307 1.

give rise to additional communication overhead during parallel
execution. Both factors, parallelism and communication over-
head, that affect the execution efficiency should be considered
together such that the parallelized programs can obtain better
performance. Several researchers thus developed parallelizing
compilers in which programmers must explicitly specify data
allocation and in which the codes can then be generated with
appropriate communication constructs [21, [lo], 11 13, [19].

Achieving automatic data management in designing paral-
lelizing compilers is nevertheless difficult, because the data
must be attentively distributed so that communication traf-
fic is minimized in parallel execution of programs. Sev-
eral researchers [4]-[7], [14], [21] focus the data allocation
problem on automatically allocating the data or restructur-
ing the programs in order to improve the efficiency of us-
age of memory hierarchy or to reduce the interprocessor
communication overhead in parallel machines. For shared
memory multiprocessor systems, researchers Gannon, Jalby,
and Gallivan [4], [5], Hudak and Abraham [7], Irigoin and
Triolet [8], Wolf and Lam [21], and Wolfe [24] proposed
several approaches to automatically transform programs and
partition data for improving data locality and enhancing cache-
hit ratio on the complex memory hierarchy. In addition,
large amounts of communication overhead for distributed
memory multicomputers may seriously degrade performance
during parallel execution of programs. Some researchers, such
as Gallivan, Jalby, and Gannon [4], King, Chou, and Ni
[9], Ramanaujam and Sadayappan [17], and Sheu and Tai
[20], studied the problems of transforming programs into the
parallel form and reducing the interprocessor communication
overhead. Furthermore, Ramanaujam and Sadayappan [181
focused on analyzing the For-all loops and partitioning these
loops and the corresponding data such that the partitioned
programs can be executed without communication overhead
in distributed memory multicomputers.

In this paper, we concentrate on automatically allocating
the array elements of nested loops with uniformly gener-
ated references [4] for communication-free execution on dis-
tributed memory multicomputers for parallelizing compilers.
First, we analyze the pattern of references among all arrays
referenced in a nested loop and derive the sufficient con-
ditions for communication-free partitioning of arrays. Two
communication-free partitioning strategies, nonduplicate data
and duplicate data strategies, are discussed. Based on the
consideration of no interblock communication existing, those
sufficient conditions can be used to exploit the parallelism of
the nested loop as much as possible. Our method can obtain

1045-9219/94$04.00 0 1994 IEEE

CHEN AND SHEW COMMUNICATION-FREE DATA ALLOCATION TECHNIQUES 925

more parallelism than the method proposed by Ramanau-
jam and Sadayappan [18] in For-all loops with uniformly
generated references. Then the communication-free code can
be transformed to a parallel execution form. Finally, the
parallelized nested loop and the corresponding array elements
can be allocated to the fixed-size multicomputers under the
consideration of load balancing. The performance of the data
allocation with nonduplicate and duplicate data strategies is
also discussed.

The rest of this paper is organized as follows. The nested-
loop model, basic concept, and assumptions used in presenting
the data allocation strategies are introduced in Section 11. In
Section 111, the sufficient conditions for communication-free
partitioning of array elements of nested loops are derived based
on nonduplicate data and duplicate data strategies. Eliminating
redundant computations is also considered in this section.
Section IV states how to transform the partitioned nested
loops into the parallel form and map the parallelized programs
and the corresponding data onto the fixed-size multicomputers
such that the processor workload is as balanced as possible.
The performance of the strategies with nonduplicate and
duplicate data for matrix multiplication is also studied. Finally,
conclusions are summarized in Section V.

11. BASIC CONCEPT AND ASSUMPTIONS
Nested loops including a large number of referenced arrays

are commonly used in scientific programs. In programs, nested
loops usually provide a large amount of parallelism and are
the most time-consuming parts. A normalized n-nested loop
[23] with the following form is considered in this paper:

for I1 = 1 to u1
for I2 = 1 to U:!

for I , = 1 to un
[loop body]

end

end
end

where uj are integer-valued linear expressions possibly involv-
ing 11, 12, ..., Ij-1 for 1 < j 5 ri. Let Z and R denote the
set of integers and the set of real numbers, respectively. The
symbols Z" and R" represent the set of n-tuple of integers and
the set of n-tuple of real numbers, respectively. The iteration
space [23] of an n-nested loop is a subset of Z" and is defined
a s I n = ((I 1 , I 2 . ~ . . , I n) 1 1 1 1 j 5 u j , f o r 1 1 j . < n } . T h e
vector i = (21, i z , . . ., in) in I" is represented as an iteration
of the nested loop. The lexicographical order of the iteration
i = (21, iz, . .- , i n) is before that of the iteration E' = (i i ,

. . . , 26) if i l = ii, iz = ik, ..., i,-l = z:-,, and ij < i$
for 1 5 j 5 n.

In the nested loop, there may exist inpur, output, Jlow
dependences, and antidependence [161, denoted as the respec-
tive symbols S i , 6", br, and S a , which are referred to as
datu dependence S in the following discussions. The symbol
S (i) denotes a computation that statement S is performed at

iteration ? E I". That a computation S'(j) is data dependent on
a computation S(?) is denoted as S(E) S S'(j). Let the linear
function h : Z" + Zd be defined as a reference function

ad,,I,) and be represented by the following matrix:
h (I l . ' . . , I n) (al , lI1 + . . . + a l , , l n , " ' , ad.111 + . " +

yo.,;, .. ' a1.n 1
=

. : .

where a',, E Z, for 1 5 i 5 d and 1 5 j 5 n. In the loop
body, a &dimensional array element A[h(il , i z , i n) + C]
may be referenced by the reference function h at iteration
(i1. iz3.. . , I ") in I", where C is known as the constant offset
vector in Zd [21]. The data space of array A is a subset of Zd
and is defined over the user-defined array subscript index set.
For array A, all of s referenced array variables A[H,S + c ~] ,
for 1 5 p 5 s, are called uniformly generated references [5] ,
[21] if

where Hp is the linear transformation function from Z" to
Zd, 2 E I n , and C p is the constant offset vector in Zd. Since
little exploitable data dependence exists between nonuniformly
generated references, we focus the data allocation to each array
on the same reference function in a nested loop. The different
arrays may have different reference functions.

Example I : Consider a two-nested loop Ll .

for i = 1 to 4
for j = 1 to 4

Si : A[2i:j] := C[i,j] * 7 ;
S 2 : S[j , i + 11 := A[2i - 2 . j - I]

+C[i-l,j-l]; (L l)
end

end

In this example, the iteration space is I 2 = { (i , j) I 1 <
i , j 5 4). In loop L1, with three arrays A, B, and C, the
following are the respective reference functions:

There exists a flow dependence between the variables A[2i, j]
at statement S1 and A[2i - 2 . j - 11 at statement S2, with
the different offset vectors (0.0) and (-2, -l), respectively.
For array C, only read by loop L1, there exists an input
dependence between the variables C[i,j] at statement S1 and
C[i - 1. j - 11 at statement S2, with the different offset vectors
(0,O) and (-1, -l), respectively. The array variable B[j , i + l]
is generated only at statement S2, and its offset vector is (0 , l) .
Loop L1 thus has uniformly generated references on arrays A,
B, and C. 0

Dejinition 1 [Data-Referenced Vector]: In an n-nested loop
L with uniformly generated references, if there exist two
referenced array variables A [H i + C1] and A[Hi + CZ] for
array A, then the vector = el - E2 is called data-referenced
vector of array A . 0

~.. .. . _I . - _." , _.. . .

926 lEEE TRANSACTlONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 9, SEPTEMBER 1994

i
t

i

t

0 1 2 3 4

(C)

Fig. 1. Data spaces and their corresponding data-referenced vectors for
arrays -4, E , and C in loop L1. (a) Array .4[0 : 8 . 0 : 41. (b) Array
E[1 : 4 . 2 : 51. (c) Array C[0 : 4,0 : 41.

The data-referenced vector 7 represents the vector difference
between two array elements A[Hi+cl] and A[HG+Cz], which
are referenced by an iteration i. Note that any data dependence
in loop L exists between two distinct referenced array variables
A [H i + cl] and A [H i + C2]; i.e., two iterations E1 and i 2 can
reference the same array element if and only if HE1 + C1 =
Hi2 + C2; i.e., H (& - ?I) = 1;. Communication overhead is
therefore not to be incurred if the iteration space is partitioned
along the direction 112 - into iteration blocks and if the data
space of array il is partitioned along the direction 7; into data
blocks.

Example 1 is presented here to illustrate the ideas of
communication-free data allocation strategy. The arrays A,
B, and C of loop L1 have the referenced array variables
A[2i , j] , A [2 & 2 , j - l] , B[j;i+l], C[i , j] , and C [i - l , j - l] ,
respectively. The data-referenced vectors of arrays A and C
are = (2 , l) and T2 = (1, l), respectively. There exists no

data-referenced vector of array B, because there only exists
one referenced array variable on array B. All of the data spaces
of arrays A, B, and C, and their data-referenced vectors of
each array element are shown in Fig. l(a), l(b), and l(c),
respectively. In Fig. 1, solid points represent array elements
that are used in loop L1, and empty points represent that array
elements are not used in loop L1.

At iteration (1, l) , the array element A[2,1] is generated by
S1, and A[O, 01 is used in S2. Then, at iteration (2 . 2) , the array
element A[4,2] is generated by 5’1, and A[2,1] is used in Sz,
and so on. Restated, two iterations, = (1. 1) and cz = (2 , 2) ,
satisfying the condition HA(& - El) = can access the same
array element A[2,1]. The data space of array A is therefore
partitioned along the data-referenced vector 7;1 into the data
blocks B t for 1 5 j 5 7 , enclosing the points with lines, as
shown in Fig. 2(a). These used and generated array elements
grouped in the same data block are then to be allocated to
the same processor. Similarly, the array C is also partitioned
along data-referenced vector T2 into their corresponding data
blocks, BF for 1 5 j 5 7, as shown in Fig. 2(c). It is easy
to show that if the iteration space is partitioned along the
direction (1, l) , as shown in Fig. 3, there exists no interblock
communication for arrays A and C. Therefore, array B must
be partitioned along the direction (1 , l) into the corresponding
data blocks BJ”, 1 5 j 5 7, as shown in Fig. 2(b), such that
the partitioned iteration blocks B3, 1 5 1 5 7, can be executed
in parallel without interblock communication.

It is not hard to see from Fig. 2 that there exists no
data transfer between processors while the corresponding
data blocks B f , Bf, and Bf are assigned to the processor
PE, for 1 5 j I: 7 . For cases where the number of
iteration blocks is larger than the number of processors, see
Section IV for discussion of how to make the workload as
balanced as possible among processors. In the next section,
given a nested loop, we analyze the relations of references
among array elements and derive the sufficient conditions for
communication-free partitioning of arrays in the nested loop
on multicomputers.

111. COMMUNICATION-FREE ARRAY PARTITIONING
In this section, we describe the communication-free array

partitioning schemes that analyze the data usage of each
array and derive the sufficient conditions for determining the
partition pattems of array elements in nested loops.

A. Communication-Free Array Partitioning
Without Duplicate Datu

In this subsection, we discuss the communication-free array
partitioning without duplicate data; i.e., there exists exactly
one copy of each array element during execution of the
program. No data transfer existing during parallel executing
programs will obtain better efficiency in distributed memory
multicomputers. However, having no interprocessor commu-
nication is impossible if a certain data dependence exists
between partitioned programs. As long as those related data
can be found and then grouped together, assigned into one

CHEN AND SHEU: COMMUNICATION-FREE DATA ALLOCATION TECHNIQUES 921

On the other hand, a partitioned iteration block and the
corresponding partitioned data block of each array must be
allocated to the same processor so that no data transfer during
parallel execution is incurred. Our methods proposed in this
paper can make the size of partitioned iteration blocks as small
as possible to achieve a higher degree of parallelism.

From the definition of a vector space, an n-dimensional
vector space V over R can be generated using exactly n
linearly independent vectors. Let X be a set of p linearly
independent vectors, where p 5 n. These p vectors form a
basis of a p-dimensional subspace, denoted by span(X), of V
over R. The dimension of a vector space V is denoted by
dim(Y). In the following, a formal definition of partition of
iteration space is given.

Dejnition 2 [Iteration Partition]: The iteration partition of

. . ., iu}), where El E R", 1 < 1 5 U , denoted as Pq,(P), is
to partition the iteration space I" into disjoint iteration blocks
B1 , B2,. . . , B,, where q is the total number of partitioned
blocks. For each iteration block B,, there exists a base point
b, E R" and the following:

B, =

4

3

2

1

i
0 1 2 3 4 5

(a)

j
A an n-nested loop L partitioned by the space 9 = span((f1, &,

B; Bf B: 84"

3

2 {aEInI ,=b,+al f1+a2t2+. . .+a, f~ ,a l E R , 1 < E < u } ,

' I

0 1 2 3 4
(C)

Fig. 2. Partitioning arrays .-I, B. and C of loop L1 into their corresponding
data blocks. (a) A m y .4[0 : 8.0 : 11. (b) Array B[1 : 1.2 : 51. (c) Array
C[O : 4.0 : 41.

processor, the partitioned data and programs may be executed
in a communication-free fashion.

Given an pi-nested loop L, the problem is how to parti-
tion the data referenced in loop L such that not only the
communication overhead is not necessary but also the degree
of parallelism can be extracted as large as possible. We first
analyze the relations among all array variables of loop L . The
iteration space is then partitioned into iteration blocks such
that no interblock communication exists. For each partitioned
iteration block, all data, referenced by those iterations, must
be grouped into their corresponding data block for each array.

for 1 5 j 5 q, where:

I" = U B,. 0
1 9 I 9

Note that if dim($') = n, there exists only one iteration
block, the whole iteration space I", while we apply the
iteration partition P*(I") to loop L. If dim(@) = 0, one
iteration is an iteration block while we apply the iteration
partition Pq,(I") to loop L.

Definition 3 [Data Partition]: Given an iteration partition
PU(I"), the data partition of array A with all s referenced
array variables A[HAE + C l] , . . ., A[HAE f C,], denoted as
Pq, (A) , is the partition of data space of array A into q data
blocks B t , Bf, . . . , B t . For each data block B f correspond-
ing to one iteration block B, of Pq,(I") for 1 < j 5 q. there
exists the following condition:

B , A = { A [U] (U = H A ~ + C ~ , ~ E B,,1<1 IS}. U

Consider Example 1. If $' = span({ (1 , l))) is chosen as the
space of the iteration partition P,p(12) in loop L1, the iteration
space can be partitioned into seven iteration blocks as shown
in Fig. 3. Points enclosed by a line form an iteration block, and
the dotted points represent the base points of the corresponding
iteration blocks. For example, the base point b j of iteration
block B5 = { E E 121i = $5 + a(1, l) , 0 <_ U < 2) is (2 , l) .
Based on the iteration partition P*(12), the arrays A, B, and
C are partitioned into the corresponding data blocks by using
the respective data partition P,p(A) , Py(B), and P*(C), as
shown in Fig. 2.

Example 2: Consider a two-nested loop L2.

for i= 1 to 4
for j = 1 to 4

S l : A [i + j , i + j] := B [2 i , j] * A [i + j - l . i + j] ;

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 . NO. 9, SEPTEMBER 1994

4

3

2

1

928

j

. 4 the base point of B,
w i

0 1 2 3 4
Fig. 3.
iteration blocks.

Partitioning the iteration space of loop L1 into the corresponding

5'2: A [i + j - l , i + j - l] := B[2i- l , j -1] /3; (L 2)
end

end

In loop L2, the following are the respective reference
functions of arrays A and B:

The data-referenced vectors ?I, between A[i + j , i + j] and
A[i + j - l , i + ,j - 11, F a , between A[i + j - 1,i + j - 11
and A[i + j - 1. i + j], and T3 , between A[i + j - 1, i + j]
a n d A [i + j , i + j] , o f a r r a y A a r e (l , l) , (0 , - l) ,and(- l ,O),
respectively. The data-referenced vector Tq of array B is (1,l).
Consider the equation H.4t2 = F 2 . Two iterations E1 and E2

can access the same element of array A if the equation L.2 -
= f a is satisfied. Because there exists no solution in the

equation H A f 2 = fa , there exists no data dependence between
A[i+j-1, i+j-1] and A[i+ j - l , i+ j] . However, solving the
equation HBF4 = F~ can exactly obtain a solution f q = (f, 1).
It is impossible for the data dependence vector f~ between
two iterations, because f 4 does not belong to 2'. Also there
exists no data dependence on array B. Let the symbol O d E
Zd be denoted as a zero-vector where each component is equal
to 0. Consider the equation H f = 7;. In the special case that
F = O d , the set of solutions f of equation Hf = O d is Ker(H),
the null space of H . The vector f indicates the difference of
two iterations accessing the same element of a certain array
variable. For example, Ker(H.4) is span({ (1 , - 1))) in loop L2.
On variable A[i+. j , i+j], the array element A[4,4], referenced
by the iteration (1,3), can be referenced again by iterations
(1.3) + span({(l, -l))), i.e., (2 , 2) and (3 , l) , of loop L2.

U
In the following, we discuss how to choose the better

space to partition the iteration space and data spaces without
duplicate data such that there exists no interblock communi-
cation and parallelism is extracted as large as possible. The
following definition is given for discussing the dependency
among elements of an array.

Dejinition 4 [Reference Space]: In an n-nested loop L, if
a reference function H.4 and s variables A[H~ak + Cl], ...,
A[HA: + Cs] for array A exist, the data-referenced vectors are

- - rp = cj - ck for all 1 5 j < k 5 s and 1 5 p 5 w, then
the reference space of array A is as follows:

where
s(s-1)
2, must satisfy the following conditions:

is the basis of Ker(H;1), and f, E R", 1 5 j 5

1) f j is a particular solution of equation H,qt = ~ j .

2) A solution f' E fJ+ Ker(H.4) exists such that f' E Z'l

U.
The reference space used here is similar to the group-

temporal reuse vector space previously defined by Wolf and
Lam [21]. The reference space represents the relations of all
data references between iterations. For array A, there exists no
data dependence between iteration blocks when the iteration
space I" is partitioned with the reference space Q-4. This
is because all data dependences are considered in 9.4 such
that data accesses are not needed between iteration blocks. In
each iteration block, iterations according to the lexicographical
order are executed to preserve the dependency in the loop.

Consider Example 2. In loop L2, the reference space Q,4

of array A is span(((1.-1), (i , i)}), because Ker(H.4) =
span({ (1, -1))) and there exists a particular solution fl =
(4 , i) of equation H.4f = 7;l that satisfies conditions (1) and
(2) of Definition 4. The reference space Q B of array B is
span(d), because Ker(HB) = { 0 2 } , and the only solution f4
= (i, 1) $! Z2 that does not satisfy condition (2) of Definition
4.

In the above discussions, only the communication-free itera-
tion partition P*.4 (I ") and data partition Pa,4 (A) of an array
A are considered in the nested loop. Among these iteration
blocks, several data references may, however, exist in the other
arrays. Whenever partitioning the iteration space, not only the
data references that occur in an array must be considered
but also the other data references that occur among arrays
in a nested loop. Given an ri-nested loop L with k array
variables, let the reference space QA, be span(Xj) of array
Aj for 1 5 j 5 IC. Then 9 = span(X1 U X2 U . . . U X,)
is the partitioning space for communication-free partition of
arrays in loop L without duplicate data. All iteration blocks
partitioned by Pq(I") can be correctly executed in parallel.
This is proven in Theorem 1 of the Appendix.

By Theorem 1, when dim(9) < n, this means that there
exists parallelism in loop L for the iteration partition PQ(I") .
By Definition 2 , the smaller the value of dim(Q) is, the higher
the degree of parallelism has. In general, when dim(Q) < 71-1,

our method can exploit more parallelism than Ramanaujam
and Sadayappan's method [IS] in For-all loops with uniformly
generated references. This is because Ramanaujam and Sa-
dayappan's method uses only (n - l)-dimensional hyperplanes
to partition the arrays in For-all loops. To illustrate the
communication-free array partitioning without duplicate data,
consider the following example. In Example 1, the reference
spaces are QA = QC = span({(l,l)}), and 9~ = { 0 2 }
for respective arrays A, G, and B. Therefore, by Theorem 1 ,
the partitioning space is 9 = span({(l. 1)) U { (1,l)) U 4)
for communication-free iteration partition P ~ (I ~) of loop ~ 1 .

and f' = E2 - T1 where T l , i2 E I" .

CHEN AND SHEU: COMMUNICATION-FREE DATA ALLOCATION TECHNIQUES 929

Because dim(!P) = 1 (< 2), there exists a large amount of
parallelism in loop L1. The overall results of partitioned data
and iteration blocks in loop L1 have been shown in Fig. 2
and Fig. 3, respectively. Because loop L1 is not a For-all
loop, Ramanaujam and Sadayappan's method cannot solve it
in parallel execution.

The strategy allowing nonduplicate data for communication-
free array partitioning in nested loops has been described in
this subsection. Allowing duplicate data for some array ele-
ments can actually make it possible that several loops may ex-
ist with a great amount of parallelism for communication-free
array partitioning. The communication-free array partitioning
by duplicate data strategy for extracting more parallelism than
the nonduplicate one is discussed in the next subsection.

B. Communication-Free Array Partitioning
with Duplicate Data

In this subsection, we consider the communication-free
array partitioning with duplicate data; i.e., there may exist
more than one copy of an array element allocated onto local
memory of processors. Because of communication overhead
being most time-consuming in parallel executing programs,
it is worthwhile to duplicate referenced data onto processors
such that a high degree of parallelism can be exploited;
meanwhile, the computations should be correctly performed in
a communication-free fashion. Duplicate data strategy, in com-
parison with nonduplicate one, may extract more parallelism
of programs based on communication-free array partitioning.
Before describing our duplicate data strategy, we shall give
the following definition for data arrays.

Dejinition 5 [Fully and Partially Duplicable Arrays]: If
there exists no flow dependence on an array A , then the array
A is called a fully duplicable array; otherwise, the array A is

U
Note that the fully duplicable arrays may incur antidepen-

dence, output, or input dependence; however, the partially
duplicable arrays can incur flow dependence. For the two kinds
of arrays, we next discuss how to choose the better space to
partition the iteration space and arrays with duplicate data such
that there exists no interblock communication.

First, we examine the fully duplicable arrays in loop L.
Because there exists no flow dependence on array A, any
iteration will not use the elements of array A generated by
other iterations; therefore, the data can be arbitrarily distributed
onto each processor, and the original loop can be correctly
executed in parallel. Therefore, the reference space 9~ can be
reduced into span(4) denoted as the reduced reference space
QL. That is, 92 is the subspace of ! P A .

Next the partially duplicable arrays are to be examined.
Assume that there exist p flow dependences on a partially
duplicable array A in loop L. The reference space ! P A of array
A can be reduced into the reduced reference space 92 =
(p U {El, tz, .--, ta}) , where p is the basis of Ker(HA)
and E,, 1 5 j 5 p , which lead to flow dependences, are
particular solutions satisfying the conditions (1) and (2) in
Definition 4. The reducible reason for the reference space is
that only the flow dependences can actually cause the data

called a partially duplicable array.

transfer between execution of iterations. That is, only flow
dependence is necessary to be considered during execution of
programs; however, input, output dependences, and antidepen-
dence merely determine the precedence of executing iterations
so that they cannot make any data transfer.

As for partitioning the iteration space, data references that
occur among all arrays in a nested loop must be considered.
Given an n-nested loop L with IC array variables, let the
reduced reference space 92, be span(X,') of each either fully
or partially duplicable array A, for 1 5 j 5 I C . It is proven in
Theorem 2 of the Appendix that 9' = span(X[UX,'U. . uXL)
is the partitioning space for communication-free partitioning
with duplicate data by using the iteration partition P*.(I").

To illustrate the communication-free array partitioning with
duplicate data, consider the following two examples. First,
Example 1 is considered again. The reduced reference spaces
are 92 = span(((1, 1))) and !Pb = !P> = span(4) for
respective arrays A, B, and C. Therefore, by Theorem 2, the
partitioning space of loop L1 is V = span(((1, I)} U 4 U 4)
for communication-free iteration partition PQr (1'). For loop
L1, the duplicate data strategy obtains the same results as the
nonduplicate one. That is, loop L1 does not need to duplicate
data for enhancing the parallelism.

Next consider Example 2. By Theorem 1, while we ap-
ply the iteration partition Pu(1') to loop L2, where =
span({ (1, - l) , (f, i)}), loop L2 needs to be executed se-
quentially based on the nonduplicate data strategy. Because
both arrays A and B in loop L2 are fully duplicable arrays,
the partitioning space 9' is span(4) by Theorem 2. While
we apply the iteration partition Pqr(12) to loop L2, it can be
executed fully in parallel.

Clearly, using duplicate data strategy can obtain more
parallelism than using the nonduplicate one in loop L2. By
duplicate data strategy, the overall results of partitioned data
and iteration blocks in loop L2 are shown in Fig. 4 and Fig. 5 ,
respectively. Note that the data blocks BtJ and BF, and
iteration block Bz,,, where 1 5 i . j 5 4, will be assigned
to the same processor.

However, several redundant computations possibly exist in
the nested loops such that the partitioning spaces proven in
Theorem 1 and Theorem 2 cannot achieve minimum; namely,
the dimensions of partitioning spaces are not minimal. Given
some sufficient conditions, the minimal partitioning spaces can
be obtained. The details are discussed in the next subsection.

C. Eliminating Redundant Computations

Suppose each computation of nested loops is meaningful
for programmers. However, there still possibly exist several
redundant computations in programs. If two 'computations
can generate values to an identical array element and the
array element referenced by the first computation cannot be
referenced until the second computation is executed, then the
first computation is redundant. Thus, eliminating the redundant
computations cannot affect the final results after executing
a nested loop. For simplicity, we assume that the reference
function HA of each array A in an n-nested loop L is
nonsingular, i.e., Ker(HA) = {On}.

930 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 9, SEPTEMBER 1994

0 0 0 0 0 0 ~

o o o o o f c t

0 0 0 o o o %

i

Fig. 4. Partition of arrays .I and B in loop L2 using the data partition
P,p(.I) and Pq?(L?), respectively. (a) Partition of data space of array
-411 : 8.1 : SI. (b) Partition of data space of array B[1 : 6.0 : 41.

In this subsection, the main goals are stated as follows. First,
all redundant computations in a nested loop can be eliminated
by our proposed approach. Next the minimal partitioning
spaces can be derived for communication-free partitioning
without and with duplicate data after eliminating those re-
dundant computations from the nested loop. The following
definition is first given for describing the reference relationship
among elements of an array.

Dejinition 6 [Data Reference Graph]: For an array A in
loop L , a directed data reference graph is defined as G" =
(V", E"). The set of vertices, V" = W A U R4, consists of
the sets W" and R 4 of referenced array variables appearing
in the respective left-hand side (performed by write operations
to these variables) and right-hand side (performed by read
operations from these variables) of the assignment statements.
The set of edges, E", is the set of data dependences between

Let the sets W 4 and R-' in V " consist of vertices w,,
1 5 i 5 vi, and r J , 1 5 j 5 T I , respectively. Because of

two referenced array variables. 0

Fig. 5. Partition of iteration space of loop L2 using the iteration partition
Pq P (I*) .

data dependences with transitive relation, if data dependences
exist between any two referenced array variables, then the
connection of G" can be connected as:

1) the edges (w;:wj) with output dependences for all

2) the edges (r i , r j) with input dependences for all 1 5

3) the edges (w l , r j) , (w ~ , r j) , ..., (wT, , r j) with flow

4) the edges (rj lwTJ+l), (r j , % J + 2) 3 .-., (r j , ~ ,) with

1 5 a < j 5 m,

i < : , I v ,

dependences, and

antidependences, 0 5 rj 5 m, for each vertex rj E RA,

In general, if all of the above four types of connections appear
in array A , the data reference graph G" of array A will be
as shown in Fig. 6.

1 5 :; 5 U.

Example 3: Consider a two-nested loop L3.

for i = 1 to 4
for j = 1 to 4
Si: A[i , j] := A[i - 1 , j - 11 * 3 ;
5'2: A [i , j - 11 := A[i + 1 , j - 2]/7 ; (L3)

end
end

The set of vertices for array A is V" = W" U RA =
{w1,w2} U { T - ~ , T Z } , where the vertices w1, w2, T I , and T-2

are the variables A[i,j] , A [i , j - 11, A[i + l , j - 21, and
A[i - 1,j - 11, respectively. There are edges (w1,wa) with
output dependence So, and (rl , T - 2) with input dependence
S i . For vertex rl, r1 = 0, so that there are edges (q , w 1)
and (~ 1 ~ ~ 2) with antidependences 6". For vertex T P , 7 2 =
2, so that there are edges (wl , r2) and (w 2 , ~ 2) with flow
dependences Sf. As a consequence, the data reference graph

0
In what follows, we describe what redundant computations

are. An array element that is in the left-hand side of a compu-
tation is called a write. Two cases of redundant computations
can be identified. First, for any two contiguous writes writing
to the same identical array element of a nested loop, if the first
write is not read by any computation until the second write is
performed, then the first write is a redundant write. Next, if the

G" of array A for loop L3 is shown in Fig. 7.

CHEN AND SHEU: COMMUNICATION-FREE DATA ALLOCATION TECHNIQUES

-

Fig. 6.

Fig. 7. Data reference graph GA of array A for loop L3

first write is read only by the redundant computations until the
second write is performed, the first write is also a redundant
write. Thus, any computation S(a) for E I" is a redundant
computation if it will generate a redundant write. For clearly
illustrating the redundant computation, consider the following
example that we substitute the two statements SI and S2 of
loop L3 into the following four statements:

Si: A [i , j] := C[ilj] * 3 ;
s;: B[i , j] := A[i , j - l] /D ;
Si: A[i - 1 , j - 11 := E [i , j - 1]/F + 11 ;
Si: B[i , j - 11 := G * 5 - K ;

For the first case, S;(&) for E1 = (2 , 2) is a redundant
computation. This is because the array element B[2,2] written
by the computation Si(?1) is immediately overwritten by the
computation Si(;,) for 22 = (2 , 3) in the next iteration,
without being read during these two computations. For the
next case, the array element A[2, I] written by the computation
Si(&) for ;3 = (2 , l) is read only by the computation Si(il)
until it is overwritten by Si(&) for = (3 ,2) . Because Sa(al)
is a redundant computation from the above analysis, Si(&) is
also a redundant computation.

93 1

We formalize the method of eliminating redundant compu-
tations of the nested loop L based on the above described
concept. Assume that there are a assignment statements Sj
for 1 5 j 5 a in the nested loop L. By Definition 6, we
assume that vertex wk in W A corresponds to statement sk,
1 _< Ic _< m, and that rj in RA corresponds to statement S,,,
1 5 xj 5 a and 1 5 j 5 w, for G A of array A in the nested
loop L. Assume that two contiguous writes are generated by
the respective computations Sk(;) and Sp(; + i j for i E 1".
That is, S,(i+f) is output-dependent on Sk(a), with the output
dependence vector contributed by (W k , w p) E E" and p is
the smallest index between k + 1 and m. Then the computation
Sk($ is a redundant computation if one of the following two
cases is held.

Case 1: The data generated by &(i) are not read by any
computation until the computation S p (i + 9 is executed.
Case 2: The data generated by Sk(;) are read only by
the redundant computations S,, (5 + fj), which are flow-
dependent on sk (;), with the respective flow dependence
vectors f j contributed by (W k , r j) E E A , 1 5 j 5 w, until
the computation Sp(i +' f) is executed.
Obviously, all redundant computations in the nested loop L

can be recursively examined by the above two cases. Let the
set N(Sk) = { T E I" I sk(E) is not redundant computation}
be the set of all iterations without redundant computations on
statement sk, 1 5 5 a. For example, considering Example
3, the sets N(S1) = {(2,4) 1 1 5 i I 4) and N (S z) = { (i , j) 1
1 5 i , j 5 4) of all iterations without redundant computations
on the respective statements S1 and S2 can be derived from
the method of eliminating redundant computations.

After eliminating redundant computations, several data de-
pendences possibly can be deleted in the nested loops. Let the
symbol V U ~ (A [H A ; + e], s k) denote the set { A [H A ~ + I?] 1
? E N (S k)) , where the array variable A [H A ~ + E] appears
in statement sk. That is, these nonredundant computations
on statement sk with the array variable A[HA; + E] actually
need to access the set of array elements V a l (A [H A i f E] , sk).
Therefore, the data dependence, corresponding to an edge
(q b) in E A , is a false data dependence if V a l (a , S) n
VaZ(b,S') = 4. That is, those redundant computations can
result in the false data dependence between two vertices a
and b. In contrast, a useful dura dependence, not a false data
dependence, can actually make dependence relations between
variables in the nested loop L. After eliminating the redundant
computations and the false data dependences from the nested
loop L, the degree of parallelism can be increased. Based on
the above analysis, considering Example 3, since V a l (w l , Sl)
n Val(7-2, SI) = 4, the flow dependence (tu1, r 2) in E A is a
false flow dependence. This is because the computations of the
array elements that are generated by w1 (A [i , j]) and then used
in 7-2 (A[i - 1, j - 11) are redundant on statement SI. Similarly,
the output dependence (w1, W Z) , the antidependence (r l , tu1),
and the input dependence (T I ! T Z) are all false. Thus, the useful
data dependences contain only the flow dependence (w 2 , 7-2)

contributing the flow dependence vector fl = (l,O), and
the antidependence (T I ! W Z) contributing the antidependence
vector tz = (1,-1).

932 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 9, SEFTEMBER 1994

i

B ,
-1 0 . e . .

Fig. 8. Partition of array .4 in loop L3 using the data partition Pqm,,r (.4).

In the following, the communication-free partitioning strate-
gies with minimal partitioning spaces are discussed. Since
only useful data dependences can actually cause data transfer
between iterations, the space 92'" = span({E I E is contributed
by a useful data dependence}) is the minimal reference space
of array A without duplicate data. This is because if any vector
f E X , where 9TZn = span(X) is removed to form 9' =
span(X - (0) such that 9' # 9Tzn, then the vector E, which
can lead to a useful data dependence, must exist between two
iterations that are allocated on different iteration blocks such
that communication-free partitioning cannot be achieved by
using the iteration partition P,p (P) . Only the data accessed
by the nonredundant computations must be considered here to
form the data partition Pqmtn(A) .

Given an n-nested loop L with k array variables, let the
minimal reference space 9TJan be span(XJ) of each array A,
for 1 5 5 k . It is proven in Theorem 3 of the Appendix
that the partitioning space qmZn = span(X1 U X2 U . . . U X,)
for communication-free partitioning of arrays A,, 1 5 j 5 k ,
without duplicate data is minimal.

Similarly, since only useful flow dependences can actually
cause data transfer between iterations, the space 9Tznr =
span({E I t is contributed by a useful flow dependence}) is
the minimal reduced reference space of array A with duplicate
data. Given an n-nested loop L with k array variables, let
the minimal reduced reference space 9TJZnr be span(X:) of
each array A, for 1 5 j 5 k . It is proven in Theorem
4 of the Appendix that the partitioning space 9mznT =
span(X; U X $ U. . . UX;) for communication-free partitioning
of arrays A,, 1 5 j 5 I C , with duplicate data is minimal.

Example 3 is considered again for illustrating how to obtain
the minimal partitioning spaces for communication-free parti-
tioning without and with duplicate data. For communication-
free partitioning without duplicate data of loop L3, by The-
orem 3, the minimal partitioning space is qmZn = span({fl,
Ez}) = span({(l.O), (1. -l)}). Thus, loop L3 must be exe-
cuted sequentially. The minimal partitioning space of loop L3
with duplicate data is Pzn* = span({fl}) = span({(1.0)));
therefore, the overall results of partitioned data and iteration
blocks of loop L3 are shown in Fig. 8 and Fig. 9, respectively.

In Fig. 9, both the computations Sl(i) and S2(i) executed
at iteration are denoted by a solid point. Only computation

i

1) (0 0 0 o > B ,

- 1
0 1 2 3 4

Fig. 9. Partition of iteration space of loop L3 using the iteration partition
P*-.-. (I2).

S2(E) executed at is denoted by a dotted point. Because the
partitioning space 9' of loop L3 is span({(l!O), (I ! I)}), it
must also be executed sequentially under the duplicate data
strategy. Therefore, removing the redundant computations not
only can reduce the computation time but also can increase
the degree of parallelism.

For obtaining the minimal partitioning spaces, the approach
of removing redundant computations, designed in parallel
compilers, is complex and more time-consuming. The trade-
off depends on whether users need to obtain large amounts of
parallelism for some particular programs. Suppose there does
not exist any redundant computation in a program. Then the
partitioning spaces proven in Theorems 1 and 2 can achieve
minimum for communication-free partitioning of loop L with
nonduplicate and duplicate data, respectively.

The sufficient conditions for communication-free array par-
titioning have been discussed and derived here without du-
plicate data corresponding to Theorems 1 and 3 and with
duplicate data corresponding to Theorems 2 and 4. However,
transforming the partitioned iterations on the basis of the
above two schemes into a parallel execution form is important
in designing parallel compilers. In practical applications, the
number of processors is fixed on multicomputers. How to map
the partitioned program onto a fixed-size multicomputers in
the consideration of load balancing must be considered if the
number of partitioned iteration blocks is larger than the number
of processors. The problems of program transformation and
processor assignment are discussed in the next section.

IV. PROGRAM TRANSFORMATION
AND mOCESSOR ASSIGNMENT

In this section, the program transformation of a partitioned
nested loop without regard to the number of processors is
first described, and the processor assignment with a fixed-size
number of processors is then discussed. Mapping a parallel
code onto processors may cause inefficiency if the parallelizing
compiler cannot generate an appropriate parallelized program
of the parallel code. Automatically transforming the partitioned
nested loop into a parallel execution form therefore becomes
the focus.

By Theorems 1 - 4, we can obtain an n-nested loop with
the partitioning space 9 = span(X), where X consists of
g linearly independent vectors; i.e., dim(9) = g. In the

" . - . -. - -. .I - .I "",, . ,.

CHEN AND SHEU: COMMUNICATION-FREE DATA ALLOCATION TECHNIQUES 933

following, the partitioned nested loop is to be transformed into
a parallel execution form with IC (= n-g) forall loops as using
the iteration partition PQ (I n) . By orthogonal projection [3],
each iteration block can be projected to the subspace Ker(9).
This implies that the basis Q of Ker(9) can therefore be used
to represent each transformed point of k forall loops; namely,
each point indicates one partitioned iteration block. Since
dim(Ker(9)) = k and dim(9) = g, there are IC outermost forall
loop index variables and g innermost loop index variables,
respectively, in the transformed nested loop.

First, we derive the basis Q = {az = (u%,J, a2,2, .-., u ~ , ~)
E Z" I gcd(a,,l, aZ,2, ..., az+) = 1, 1 5 z 5 k } of Ker(Q).
The elementary row operations are next used on the matrix [U'] to derive the row echelon form ["I , where

U: is derived from G,, j = a(z), and the function ~7 : i -+ j
is a permutation for 1 5 z,j 5 k [3]. The first position of
nonzero component of ti: is y3 for 1 5 j 5 I C , and y3 < y3+1
for 1 I: j < IC. The new index variables I ; , I;, . . . , I ; can be
obtained from the original loop index variables Ill 12, . . . , In
with the following equation:

'k k x n 'h k x n

and (2) as follows:

where i # zj and ci.l E R, 1 5 E 5 IC + i - 1, for 1 5 i 5 n
and 1 5 j 5 g.

Based on the above transformation, the whole transformed
loop L' is as follows:

forall Ikl = 1; to U:

forall IL2 = 1; to U ;

forall Ihk = 1s to U ;

for Izl = l;+l to u:+~

for I., = 1; to U;

end
[modified loop body]

end
end-forall

The inverse relations of (1) are derived as follows:

I, = b J , l I i + bJt21; + . . . + bJ ,nIL,
if i = y j for 1 5 i 5 nand 15 j 5 k ,
where bj,l E R for 1 5 1 5 n;

if i # yJ for 15 i 5 nand 15 j 5 k .
I, = I:,

end-forall
end-forall.

How to transform a partitioned nested loop into a parallel
execution form is to be illustrated with the following example.

Example 4: Consider a three-nested loop L4.

for i l = 1 to 4
(1)

for 22 = 1 to 4
for i3 = 1 to 4
A[il,i2,i3] := A[il- l , i2+1, i3-1]+B[il,i2, is]

; (L4)
end

end
end

(2) By applying any one of Theorems 1 - 4, the minimal

The lower bounds 1; and the upper bounds U: of IC outermost
forall loop index variables 1 5 j 5 k, can be calculated
on the basis of the the ranges of original loop index variables
and (1) and (2). In order to execute all iterations within one
iteration block according to the lexicographical order, the first
g index variables Iz, for 1 5 z, 5 n. and 1 5 i 5 g
are chosen as the innermost loop indexes. The Izz cannot be
expressed linearly by the variables Ibl, . . ., IhL, Izl , . . ., Izz-l
for 1 5 i 5 g, and zJ < zJ+l for 1 5 j < g.

The main reason for such a selection for the g index
variables is to make a one-to-one mapping from the original
iteration space to the new transformed space. Similarly, the
respective lower bounds 1; and upper bounds U:, k + 1 5
j 5 n, of the innermost loop index variables I z z , 1 5 i 5 g,
can be derived. All of the above lower and upper bounds can

partitioning space of loop L4 is Q = span({ (1, -1, I)}). That
is, loop L4 does not necessarily duplicate data to enhance the
parallelism. First, we can obtain that the basis of Ker(Q) is

and (b l : b 2 , b 3) = (- l ,O, l) , so that gcd(al,a2,a3) = 1 and

Let the new index variables i i , zk, and 2; be ii = alii +
n2i2 + a323 = il + i 2 , i/2 = b l i l + b2 i2 + b3i3 = -il + i 3 , and
ib = i 3 . The inverse relations are derived as il = 4; + i ; ,
a2 = i i + ib - a;, and i3 = iQ.

Since dim(Ker(\k)) = 2 and dim(9) = 1, there are two
outermost forall loop index variables i i and ik and one
innermost loop index variable il, respectively. The following
transformed loop L4' can be obtained through usage of the
above transformation strategy.

Q = {(al,a21a3)r (h , b ~ , b 3) } 9 where (alra2,a3) = (l , l , O)

gcd(bl,b2, b3) = 1.

be determined by the method of transforming ;he loop bound
proposed in [22]. Besides, in order to determine the value
of original loop index variables, except for g innermost loop

forall i ; = 2 to 8
forall i; = max(-3, -ii + 2) to min(3, -ii + 8)

for i l = "(1, ii - 4, -2; + 1) to min(4, i i
index variables, the extended statements can be derived by (1) -1. -2; + 4)

934 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5. NO. 9, SEF’rEMBER 1994

El : iz := ii - il ;
E2 : i3 := i; + il ; (L4’)

A[i l , i z , i3] := A[il - l , i z + l , i 3 - 11
+ B [i i , i z , i3] ;

end
end-forall

end-forall

The statements El and Ez in loop L4’ are the extended
statements. Each point of the set { (zi, ib) I 2 5 i i 5 8 and
max(-3, -2; + 2) 5 ih 5 min(3, -ii + 8)) represents one
iteration block, and all of the points can be independently
executed in parallel without interblock communication. 0

Although the number of processors is larger than the number
of partitioned iteration blocks, each partitioned iteration block
corresponding to one element of the set { (I;,, Ib2, . . ., Ihk)
I 1; 5 I;, 5 us, for 1 5 j 5 I C } , and its partitioned data
blocks of each array can be distributed into local memory
of the corresponding processor. That is, the execution time is
dominated by the partitioned iteration block with the maximum
number of iterations. However, in the following, we discuss
the assignment problem of iteration blocks on multicomput-
ers with the fixed-size number of processors. The following
example illustrates how to map the parallel execution form
on multicomputers such that the workload of processors is as
balanced as possible. Assume that there are four processors,
PEo,o, PEo,l, P E l , o , and P E 1 , l . The transformed loop L4’
is considered. The following code can be obtained for parallel
execution of processor PEal ,a2 for 0 5 a1 5 p l - 1 and
0 5 a:! 5 p:! - 1, where p l = p:! = 2.

forall ii = (2 + (a1 - (2 mod PI)) mod p 1) to 8 step p l
forall ib = (max(-3, -4+2) + (a:! - (max(-3, -ii+

2) mod PZ)) mod PZ)
to min(3, -2; + 8) step pa
for i l = max(1, i i - 4, -i; + 1) to min(4, i i

-1,-i; + 4)
El : i 2 := i i - il ;
E2 : i3 := ib + i l ;

A [i l , i z , i 3] := A[il - 1 , i z + l , i 3 - 11
+ B [i l , i z , i 3] ;

end
end-forall

end-forall

The above processor assignment is shown in Fig. 10, where
the value within each point represents the number of iterations
within the corresponding partitioned iteration block. Around
the dashed line with four points, the left-down, left-up, right-
down, and right-up points are assigned to processors PEo,o,
P E o , J , PE1.0, and PE1,1, respectively, according to the
transformed loop L4’. By examining the above allocation, the
workloads of the four processors are the same and equal to
16 iterations. The main reason for such allocation is that the
neighboring iteration blocks of each partitioned iteration block
through the iteration partition have almost the same number of
iterations, except for the boundary-partitioned iteration blocks
when the iteration space is very large. For example, four points
around the dashed line in Fig. 10 have almost the same number

i;

?

Fig. 10. Processor assignment of loop L4’.

of iterations. Hence, the balanced workload on each processor
can possibly be obtained if the neighboring iteration blocks
are distributed to their corresponding processors based on the
mod operation.

Such a simple processor assignment strategy can be easily
extended to the k dimensions of nested forall loops. Assume
that the number of processors is p = p l x p z x . . . x pk for
numbering the p processors. Let pi = ~J for 1 5 i 5 k - 1,
and let pk = [+J. Then processor PE,,,,, ,..., ak,
0 5 a1 5 p l - 1, 0 5 a:! 5 pz - 1, ..., 0 I: a k 5 pk - 1, is
assigned to execute the following code, and the corresponding
data need to be allocated onto its local memory.

forall Ihl = (1; + (a1 - (1; mod p l)) mod p 1) to U ; step pl
forall 1b2 = (1; + (a2 - (1; mod p z)) mod p 2) to U ;

step P z

forall Ibk = (1; + (a k - (Z i mod pk)) mod pk) to
step Pk

for Iz, = li+l to u;+~

for Iz, = 1; to U ;

end
[modified loop body]

end
end-forall

end-forall
end-forall

Now we compare the performance of nonduplicate and
duplicate data strategies. In distributed memory multicomput-
ers, assume that the time required to perform one iteration
is tcomp; the time required to communicate including two
parts is tstart , the startup time for communication; and t,,,,
is the time required to transmit a single datum from one
processor to the neighboring one. Therefore, the time required
to transmit II: data between two neighboring processors is
t s ta r t + x t c o m m -

CHEN AND SHEU: COMMUNICATION-FREE DATA ALLOCATION TECHNIQUES 935

Consider the following matrix multiplication algorithm.

for i = I to M
for j = 1 to M

for 5 = 1 to M

end
C [i l j] := C[i , j] + A[i,k] * B [k , j] ; (L 5)

end
end

The iteration space of loop ~5 is I 3 = ((i , j , k) I 1 5
i , j , k I M } . The reference spaces Q A = span(((0, l,O)}),
Q B = span({(l,0,0)}), and PC = span({(O,O,l))) of
respective arrays A, B, and C. By Theorem 1, the partitioning
space Q is span({(o,l,O)} U {(110,0)} U {(0,0,1)}). That
is, the matrix multiplication algorithm needs to be executed
sequentially, as when using the nonduplicate data strategy.

Consider a p l x pz-mesh multicomputer as the target
machine. Therefore, the time complexity including the compu-
tation time and the communication time of allocating the whole
arrays A and B from host processor to one node processor is
computed as follows:

Next considered is the fact that if only some of fully or
partially duplicable arrays are duplicated, they may sacrifice
less parallelism than all of them. Note that both arrays A
and B are fully duplicable arrays, and that array C is a
partially duplicable array. Thus, the reduced reference spaces
QL = span(q5), qk = span(q5), and !@& = span({(O,O, 1)))
for respective arrays A, B , and C. Demonstrated in the
following is the fact that only the array B is duplicated in
loop L5. Because of array A not replicating data, let ‘4’’ =
span({ (0, 1 ,0)} U { (0,0, 1))) such that the communication-
free iteration partition P,p (13) can be obtained. Assume that
the number of processors on mesh is p = p l x p2 , that
fi = p l = pp, and that M is a multiple of p . The processor
P E , for 0 5 a 5 p - 1 will execute the following loop L5’
by the processor assignment strategy:

forall i’ = (1 + (a - (1 mod p)) mod p) to M step p
for j = 1 to M

for k = 1 to M
El : i := i’ ;

C[i , j] := C [i , j] + A[i, k] * B [k , j] ; (L5’)
end

end
end-fora11

Because the index variable i’ is equivalent to i, the extended
statement El can be eliminated by using the index variable i
instead of i ’. Because we do not replicate the data of array
A to each processor, the whole array B must be duplicated
to each processor for parallel execution without interprocessor
communication.

We initially allocate the referenced elements of arrays A
and B from host processor to each node processor on mesh.
Because the processor PE,, 0 5 a 5 p - 1, requires accessing

the following array elements:

A [a , 1 : MI, for Q =

(1 + (a - 1) modp) + lp , l E Z, 1 I Q 5 M,

the host processor must send these data to the corresponding
processor in a pipelined fashion. In addition, because all
processors require accessing the same array elements,

B[1 : M , 1 : MI,

the host processor must broadcast the whole array B to
each node processor. Thus, the communication time complex-
ities of distributing the initial referenced elements of arrays
A and B are O(P(ts tart + p M tComm)) and O(tstart +
2&i M 2 t,,,,), respectively. Since there exists no commu-
nication among processors during execution, the computation
time complexity is o(% tcomp). Therefore, the total time
complexity including the computation and communication
time under the duplication of array B is as follows:

M

M3
572 = O(- ~ c o m p + (P t s tar t + M 2 ~ c o m ,)

P
+(tstart + 2 f i M 2 Lo”)).

Nevertheless, if only the array A, not array B, is duplicated,
the similar discussions and the same total time complexity
can be obtained.

In the following, both arrays A and B in loop L5 are to be
duplicated. By Theorem 2, the communication-free iteration
partition P,p (I 3) can be obtained, where the partitioning
space q” = span({(O,O, 1))). By the processor assignment
strategy, the following results can thus be obtained. The
processor PEal,,* for 0 I a1 5 p l - 1 and 0 5 a2 I p2 - 1
is to execute the following loop L5’’:

forall i’ = (1 + (a1 - (1 mod p l)) mod p1) to M step pl
forall j ’ = (1 + (a2 - (1 mod p 2)) mod p 2) to M

step p z
for k = 1 to M
El : i := i‘ ;
E2 : j := j ‘ ;

C[i , j] := C[ilj] + A[i, k] * B[k. j] ; (L5”)
end

end-forall
end-fora11

Assume that M is a multiple of fi. We initially allocate the
referenced elements of arrays A and B from the host processor
to each node processor on mesh. Because the processor
PE,,,,,, 0 5 a1 5 &i - 1, requires accessing the same
array elements as follows:

A [a , 1 : MI, for Q =

(1 + (a2 - 1) mod &) + l&, 1 E Z, 1 5 Q 5 M , and

0 5 a2 5 fi - 1, the host processor must send the same
data to the corresponding row processors by multicasting in a
pipelined fashion. Similarly, because the processor PE,, ,,*,

~. . - . . , . I ..,... -- . I * ._-

936 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 5, NO. 9. SElTEMBER 1994

0 5 a2 5 Jir - 1, requires accessing the same array elements

and

0 5 a1 5 v%- 1,

the host processor must send the same data to the correspond-
ing column processors by multicasting in a pipelined fashion.
Thus, distributing the initial referenced elements of arrays A
and B in a pipelined fashion has the same communication
time complexity O(Jir tstart + 2Jir &? t,,,,). Because
we replicate only the partial data of both arrays A and
B to processors for loop L5”, the communication cost of
distributing the initial data to each processor is less than that
of loop L5‘. Since there exists no communication between
processors during execution, the computation time complexity

duplicate data strategy is as follows:

Jij

is O (p hl tcomp). Therefore, the total time complexity under

The overall execution results for loops L5, L5’, and L5” are
executed on the Transputer multicomputer with 16 processors,
as shown in Tables I and 11. The execution time of loops L5,
L5/ , and L5” are illustrated in Table I with problem sizes M =
16,32,64,128. and 256. The speedup derived from Table I is
illustrated in Table 11. When the number of processors is equal
to 1 , we consider only the computation time, not including the
time of allocating arrays A and B. Although duplicating data
seems to waste the time of allocating initial data, it can increase
great amounts of parallelism and incur no communication
overhead during parallel execution of programs. Therefore,
the time of parallel execution is less than that of sequential
execution, as shown in Table I. However, because data locality
in loop L5 is not exploited during sequential execution, the
speedup becomes better and better whenever the problem
size becomes larger and larger, as shown in Table 11. This
implies that exploiting data locality is also important during
program execution in each processor [21]. Because of large
existing amounts of communication overhead in loop L5’
while distributing whole array B, the speedup of loop L5”
is more efficient than that of loop L5’. By the above analysis,
the communication time of distributing the initial referenced
elements of arrays must be as small as possible in order to
obtain better efficiency during parallel execution. In addition,
determining which kind of duplication of array is suitable for
replicating their referenced data can be appropriately estimated
such that parallelized programs can gain better performance
during parallel execution.

V. CONCLUSION
Data distribution in the distributed memory multicomputers

is of crucial importance for the efficiency of parallelized

TABLE I
EXECUTION TIME OF LOOPS L 5 , L5’, A N D L5“

(in s)

Problem size (i!f)
Number of
processors Loop 16 32 64 128 256

p = 1 L5 0.0399 0.3162 2.5241 20.1691 1G1.254G

L3’ 0.0144 0.0956 0.69G1 5.2895 11.3058
L5” 0.0127 0.0855 0.6467 5.1405 40.7988

L.5’ 0.0135 0.0543 0.28G9 1.7908 12.3584
= L5” 0.0080 0.0326 0.2043 1.43% 10.G513

TABLE I1
SPEEDUP OF LOOPS L5’ A N D LY’

~

Problem size (-11)
Number of
processors Loop 16 32 64 128 256

p = i L.5’ 2.77 3.31 3.63 3.81 3.89
L5” 3.14 3.70 3.90 3.92 3.95

L3’ 2.9G 3.62 8.80 11.26 13.05
L5” -1.99 9.70 12.35 14.08 15.14

p = l G

programs, because local memory accesses are much faster than
those involving interprocessor communication. If no attention
is paid to the data allocation problem, a large amount of
time spent in data communication and synchronization may
seriously undermine the benefits of parallelism. In order to
reduce or even eliminate the interprocessor communication,
it is important for parallelizing compilers to analyze the
pattern of references among arrays of a nested loop and to
determine how to allocate these data to local memory of
processors.

Two automatic array partitioning strategies with nondupli-
cate and duplicate data have been proposed in this paper,
such that no data transfer during parallel execution is incurred
and the parallelism of nested loops can be exploited as
large as possible. Under the duplicate data strategy, more
parallelism can be extracted than for the nonduplicate one.
Moreover, the minimal partitioning spaces with a high de-
gree of parallelism can be obtained when we eliminate the
redundant computations. A method for transforming the nested
loop into a parallel execution form is also proposed on the
basis of the two partitioning strategies. Finally, a method is
proposed to distribute the parallelized program and the cor-
responding array elements into the fixed-size multicomputers
under the consideration of load balancing. For the matrix
multiplication algorithm, the performance of the strategies with
nonduplicate and duplicate data is discussed, and the overall
results are executed on the Transputer multicomputer with 16
processors. In addition, the communication-free partitioning
strategies proposed in this paper can also prevent cache-
thrashing problem in shared memory multiprocessor systems
[141.

Although our compilation techniques consider each nested
loop independently in a program, there still exist several

CHEN AND SHEU: COMMUNICATION-FREE DATA ALLOCATION TECHNIQUES 931

benefits for the communication-free data allocation strategies.
First, the data arrays can be. efficiently distributed to each
processor in a pipelined fashion. Second, a large amount
of startup time is reduced, because we transmit a large
number of data arrays at a time. Finally, there exists no
data synchronization during parallel execution. Currently, we
are implementing the proposed data allocation strategies in
our UPPER project: A User-interactive Parallel Programming
EnviRonment (UPPER). In this project, the performance of
several scientific programs, such as matrix multiplication,
discrete Fourier transform, convolution, some basic linear
algebra programs, and so forth, are evaluated under the cases
with and without using the communication-free data allocation
strategies.

APPENDIX

In this Appendix, we prove Theorems 1 through 4.
Theorem 1: Given an n-nested loop L with IC array vari-

ables, let the reference space 9.4, be span(Xj) of each array
Aj for 1 5 .j 5 IC. If 9 = span(X1 U X Z U . . . U X,), then 9
is the partitioning space for communication-free partitioning
of arrays Aj for 1 5 j < k without duplicate data by using
the iteration partition Pq(1").

Proof: Theorem 1 of this Appendix shall be proved by
induction as follows.

Basic IC = 1: Clearly, 9 = 9 . ~ ~ , which is correct be-
cause ! Q A ~ is the partitioning space for communication-free
partitioning of array A1 without duplicate data.

Induction hypothesis IC = x : The space 9 1 , ~ = span(X1 U
X 2 U . . 'UX,) is the partitioning space for communication-free
partitioning of arrays Aj for 1 5 j 5 x without duplicate data.

Inducrion IC = :I: + 1: The space 91,~+1 = span(X1 U XZ U
. . .UX,+1) can be rewritten by the form 91,,+~ = span(Xl,,U
Xr+l) , where XI,, = X1 U X2 U . . . U X,. By induction
hypothesis, Q1 ,, = span(Xl,,) is the communication-free
partitioning space of arrays A, for 1 < j 5 x. Moreover,
9 . ~ ~ + , = span(X,+l) is the communication-free partitioning
space of array In the following, we prove that 91,~+1
is the partitioning space of arrays Aj for 1 5 j 5 z + 1 by
contradiction.

Let XI,, = (3 1 , s ~ , . . . , s p } and Xs+l = {fl,fz:.. . ,fq},
where S i E R" for 1 5 1: < p and tJ E R" for 1 5
j < y. Suppose the iteration partition P Q , ~ , ~ + , (P) can cause
interblock communication. Without loss of generality, assume
that there exists a data dependence vector F between two
iterations E B1 and & E Bz; i.e., t" = i 2 -il. Let $1 and $2

be the base points of blocks B1 and Bz, respectively. Then the
iterations il = bl + ulsl + . . . + - (L p s p- + aP+,tl + . . . + a,+&
for ul E R, 1 5 1 5 p + y, and i 2 = b2 + e l s ~ + . . .+ epsp +
e,+lCl+ . . . + ep+pfq, for el E R, 1 5 1 5 p + y. Because the
data dependence vector is caused by one of z + 1 arrays,
it must be of the form t" = flsl + . . . + fpsp for f i E R,
1 < 1 < p , or P = gill + . . . + g& for .yl E R, 1 5 1 < y.
The iteration E.2 therefore becomes one of the following forms:

- -

- -
i 2 = i1 + f! - - (61 + alsl + . . . + a,S, + ap+ltl + . . . +
a,+&)+ (f131 + ' ' . + f p s p) = 6, + (a1 + fl)Sl + .. . +
(a , + f p) s p + a,+,t1 + . . . + a,+&

and

E.2 = E., + a = (61 + a131 + . . . + ig, + U,+Jl + ' . . +
a,+&)+ (glfl + ... + g&) = $1 + a131 + .. . + U P S P +
(%+l + S l F l + . . . + (.p+q + gq)fq.

By Definition 2, the iteration E.2 belongs to &. But E.2 must
belong to block Bz; this is in contradiction with the iteration E.2

belonging to B1. Because of the above incorrect assumption, in
which there exists a data dependence vector between iteration
blocks, the iteration partition P*,,z+, (In) incurs no interblock
communication for arrays Ai, 1 5 i 5 x+1, without duplicate
data. 0

Theorem 2: Given an n-nested loop L with k array vari-
ables, let the reduced reference space 92, be span(Xjr) of each
array Aj for 1 5 j 5 k. If 9r = span(Xl U X ; U . . . U X l) ,
then 9' is the partitioning space for communication-free
partitioning of arrays A, for 1 5 j 5 IC without duplicate
data by using the iteration partition P , p (P) .

Proof: This proof is similar to the proof of Theorem 1.
It can be completely proved through usage of the reduced
reference space 92, with duplicate data instead of the refer-
ence space !Q.A~ , without duplicate data for each array A; for
1525lC. 0

Theorem3: Given an n-nested loop L with k array vari-
ables, let the minimal reference space 9y3'"2" be span(Xj) of
each array Aj for 1 5 j 5 I C . If qmZn = span(X1 U X Z U
. . . U Xk), then qmin is the minimal partitioning space for
communication-free partitioning of arrays Aj for 1 5 j <
I C , without duplicate data, by using the iteration partition
P p . (I") .

Proof: It shall be proved by induction as follows.
Basic IC = 1: Clearly, !Qmin = QT:", which is cor-

rect because 9T;n is the minimal partitioning space for
communication-free partitioning of array A1 without duplicate
data.

Induction hypothesis k = x: The space =
span(X1 U XZ U . . . U X,) is the minimal partitioning space for
communication-free partitioning of arrays Aj for 1 5 j 5 x
without duplicate data.

Induction IC = z + 1: The space 9rkT1 = span(X1 U XZ U
. . .UX,+,) can be rewritten by the form Qy;Yl = span(X1,,U
Xz+l) , where XI,, = X1UXzU. . -UX,. By induction hypoth-
esis, @?:" = span(Xl,,) is the minimal partitioning space,
such that there exists no interblock communication for arrays
AI, Az, . . . , A, without duplicate data, by using the iteration
partition Pqm2- (I") . Moreover, 9T:Tl = span(X,+l) is the
minimal partitioning space such that there exists no interblock
communication for array without duplicate data by using
the iteration partition PQm.., (P). Therefore, by Theorem 1,

the space 9r;Tl = span(X1,,UXz+l) is the communication-
free partitioning space of arrays Aj for 1 < j < x + 1 without
duplicate data. However, we prove that the partitioning space

Let XI,^+^ be X1,2UXz+l. Assume that a vector f E Z" in
 XI,^+^ is removed to form the space 9' = span(X1,,+1- {q),
such that Q' # 9yz1. Without loss of generality, the vector E,
which can lead to a useful data dependence, is assumed to be a

1.Z

*=+1

qmin is minimal, as follows.

938 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 9, SEFTEMBER 1994

particular solution of array A,, 1 5 j 5 x+ 1. Therefore, there
exists interblock communication while applying the iteration
partition P,p(I“) to array A,. It can be proved that is
the minimaE partitioning space for communication-free parti-
tioning of arrays A,, 1 5 i 5 IG + 1, without duplicate data.0

Theorem 4: Given an n-nested loop L with lc array vari-
ables, let the minimal reduced reference space QT,’”? be
span(Xi) of each array A, for 1 5 j 5 IC. If !PmznF =
span(XT U Xz U . . . U X;), then QmZnr is the minimal par-
titioning space for communication-free partitioning of arrays
A, for 1 5 j 5 lc with duplicate data by using the iteration
partition P,,,,r (P).

Proofi This proof is similar to the proof of Theorem
3. It can be completely proved through use of the minimal
reduced reference space @T,znr with duplicate data instead of
the minimal reference space @T,an without duplicate data for
each arrav A. for 1 < 1 < k .

REFERENCES

U. Banejee, “Unimodular transformations of double loops,” in 3rd
Workshop on Languages and Compilers for Parallel Computing, 1990,
pp. 192-219.
D. Callahan and K. Kennedy, “Compiling programs for distributed-
memory multiprocessors,” J. Supercompufing, vol. 2, pp. 151-169, Oct.
1988.
S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra. Engle-
wood Cliffs, NJ: Prentice-Hall, 1979.
J. Gallivan, W. Jalby, and D. Gannon, “On the problem of optimizing
data transfers for complex memory systems,” Proc. ACM Int. Conf
Supercompufing, 1988. pp. 238-253.
D. Gannon, W. Jalby, and J. Gallivan, “Strategies for cache and local
memory management by global program transformations,” J. Parallel
Distrib. Compufing, vol. 5, pp. 587-616, Oct. 1988.
M. Gupta and P. Banejee, “Demonstration of automatic data partition-
ing techniques for parallelizing compilers on multicomputers,” IEEE
Trans. Parallel Distrib. Sysr., vol. 3, pp. 179-193, Mar. 1992.
D. Hudak and S. Abraham, “Compiler techniques for data partitioning
of sequentially iterated parallel loops,” Proc. ACM Inf. Conf Supercom-
pufing , 1990, pp. 187-200.
F. Irigoin and R. Triolet, “Supemode partitioning,” Proc. 15th Ann. ACM
SIGACT-SIGPLAN Symp. Principles of Programming Languages, 1988,
pp. 319-329.
C.T. King, W.H. Chou, and L.M. Ni, “Pipelined data-parallel algo-
rithms-Part II: Design,” IEEE Trans. Parallel Disfrib. Sysr. , vol. 1,
pp. 486-499, Oct. 1990.
C. Koelbel, P. Mehrotra, and J. V. Rosendale, “Semi-automatic process
partitioning for parallel computation,” Int. J. Parallel Programming, vol.
16, no. 5 , pp. 365-382, 1987.
C. Koelbel and P. Mehrotra, “Compiling global name-space parallel
loops for distributed execution,” IEEE Trans. Parallel Disfrib. Sysf.,
vol. 2, pp. 440-451, Oct. 1991.
L. Lamport, “The parallel execution of DO loops,” Commun. ACM, vol.
17, no. 2, pp. 83-93, Feb. 1974.
L.S. Liu, C. W. Ho, and J.P. Sheu, “On the parallelism of nested
for-loops using index shift method,” Proc. I990 Inr. Conf Parallel
Processing, vol. 11, 1990, pp. 119-123.

[I41 M. Lu and J.Z. Fang, “A solution of the cache ping-pong problem
in multiprocessor systems,” J. Parallel Disfrib. Compufing, 1992, pp.
158-171.

[151 D. A. Padua, D. J. Kuck, and D. H. Lawrie, “High-speed multiprocessors
and compilation techniques,” IEEE Trans. Compuf., vol. C-29, no. 9,
pp. 763-776, Sept. 1980.

[I61 D.A. Padua and M.J. Wolfe, “Advanced compiler optimizations for
supercomputers,” Commun. ACM, 1986, pp. 1184-1201.

[I71 J. Ramanujam and P. Sadayappan, “A methodology for parallelizing
programs for multicomputers and complex memory multiprocessors,”
Proc. ACM Inf. Conf Supercompufing, 1989, pp. 637-646.

[IS] -, “Compile-time techniques for data distribution in distributed
memory machines,” IEEE Trans. Parallel Disfrib. Syst , vol. 2, pp.
472482, Oct. 1991.

[I91 A. Rogers and K. Pingali, “Process decomposition through locality
of reference,” Proc. ACM SIGPLAN’89 Con& Programming Language
Design and Implemenfation, 1989, pp. 69-80, 1989.

[20] J. P. Sheu and T. H. Tai, “Partitioning and mapping nested loops on
multiprocessor systems,” IEEE Trans. Parallel Disfrib. Syst., vol. 2, pp.
430-439, Oct. 1991.

[21] M.E. Wolf and M.S. Lam, “A data locality optimizing algorithm,”
Proc. ACM SIGPLAN’91 Con$ Programming Language Design and
Implementation, 1991, pp. 30-44.

[22] -, “A loop transformation theory and an algorithm to maximize
parallelism,” IEEE Trans. Parallel Distrib. Sysf., vol. 2, pp. 452471,
Oct. 1991.

[23] M. J. Wolfe, Optimizing Supercompilers for Supercomputers. Cam-
bridge, MA: MIT Press, 1989.

[24] __, “More iteration space tiling,” Proc. ACM Inf. Con& Supercom-
pufing, 1989, pp. 655-664.

TA. Chen received the B.S. degree in computer
science from Tamkang University, Taiwan, Republic
of China, in 1989.

He is currently working toward the Ph.D. degree
in the Department of Computer Science and In-
formation Engineering, National Central University,
Taiwan, Republic of China. His research interests
include parallelizing compilers and parallel algo-
rithms.

J.-P. Sheu (S’85-M’86) received the B.S. degree
in computer science from Tamkang University, Tai-
wan, Republic of China, in 1981, and the M.S. and
Ph.D. degrees in computer science from the National
Tsing Hua University, Taiwan, Republic of China,
in 1983 and 1987, respectively.

He joined the faculty of the Department of Elec-
trical Engineering, National Central University, Tai-
wan, Republic of China, as an Associate Professor
in 1987. Since 1992, he has been a Full Professor at
the Department of Computer Science and Informa-

tion Engineering, National Central University. His current research interests
include parallel processing and distributed computing systems.

Dr. Sheu is a member of the IEEE Computer Society and Phi Tau Phi
Society.

