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In this paper, algorithmic fault-tolerant techniques are intro- 
duced for sorting algorithms on n-dimensional hypercube multi- 
computers. We propose a fault-tolerant sorting algorithm that can 
tolerate up to n - 1 faulty processors. Fit, we indicate that the 
bitouic sorting algorithm cau perform sorting operations correctly 
on hypercubes with one faulty processor. In order to tolerate up to 
rsn - 1 faulty processors, a partition algorithm is presented. 
The algorithm partitions the orlghml hypercube with the mini- 
mum number of cuts into a set of subcubes such that each subcube 
has at most one faulty processor. The bitonic sorting algorithm 
can then be applied in each subcube correctly. Finally, each sub- 
cube is viewed as a node and a bitonic-like sorting procedure is 
applied to the subcubes with little communication overhead. In 
addition, we implement our algorithm on NCUBE17 MIMD hy- 
percube machines with 64 processors. The simulation results show 
that the performance of our fault-tolerant sorting algorithm on 
hypercubes is better than the approach for linding the maximal 
fault-free subcubes. Q 1992 ~fademic b, h. 

1. INTRODUCTION 

Hypercube multicomputers [ 161 have become commer- 
cially available in the past few years due to their high 
degree of connectivity, symmetry, and low degree of di- 
ameter [14]. A great many scientific algorithms devel- 
oped specifically for hypercubes have been more efficient 
than mapping onto other parallel architectures or embed- 
ding in other topologies, such as sorting algorithms [15], 
matrix multiplication [4], network flow problems [17], 
and graph theories [ 181. As n-dimensional hypercube 
multicomputers interconnect exactly N = 2” processors, 
system performance will be seriously reduced and sys- 
tem resources will be severely consumed when faulty 
processors/links occur in the hypercube multicomputer. 
Fault tolerance has become very important in such a 
large distributed computing environment to allow opera- 
tions of the hypercube multicomputers to continue after 
failure of one or more processors/links. Efficient sorting 
algorithms have generally been the fundamental compo- 
nents and factors of many scientific algorithms. Design- 
ing a fault-tolerant sorting algorithm that can tolerate n - 
1 faulty processors on the n-dimensional hypercube 
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multicomputers is, consequently, the purpose of this 
study. 

Most of the recently proposed fault-tolerant schemes 
address the issue of reconfiguration once the faulty pro- 
cessors are identified [ 1, 3, 6,8, 12, 131. The reconfigura- 
tion approaches may comprise hardware and software 
strategies. The hardware reconfiguration strategy sug- 
gests a new fault-tolerant hypercube architecture in ex- 
pectation of high availability and error-free computa- 
tions. The key concept of the scheme is in employing 
redundant spare processors in serving a number of nor- 
mal processors; each of the spare processors, as a result, 
can replace any detected faulty processor. The use of 
hardware switches in tolerating faults on hypercubes was 
first suggested by Rennels [13]. Chau [6] recently pre- 
sented a fault-tolerant reconfiguration scheme for hyper- 
cubes. The scheme can achieve the same reliability as 
Rennels’ by using more decoupling switches and fewer 
spare processors. However, Chau’s scheme takes a 
longer time than Rennels’ in reconfiguring the environ- 
ment of the hypercubes. Alam [l] also proposed an effi- 
cient modular spare allocation method using the same 
number of spare processors and fewer switches to 
achieve the same reliability as Chau’s scheme. The mod- 
ule replacement strategy has restored the system to full 
operation but requires redundant modules which are not 
used for normal operations. Such a strategy then has a 
serious shortcoming of high hardware complexity and 
low processor utilization. 

Some researchers in software reconfiguration strategy 
have exerted themselves in researching fault-tolerant al- 
gorithms on hypercubes with one faulty processor [8]. 
This has been done with the consideration of optimally 
redistributing the load for each processor, minimizing the 
effect on the normal processors and maintaining the low 
communication overhead. Elster [8] designed fault- 
tolerant matrix operations on the hypercube multicompu- 
ters. The system, however, could only tolerate one faulty 
processor. The reconfiguration of the fault-tolerant algo- 
rithm for handling more than one faulty processor or link 
on hypercube multicomputers has, up to date, been re- 
duced to finding a subset of fault-free processors that is 
still connected by the hypercube connection of a lower 
dimension. ozgtiner proposed the maximum dimensional 
fault-free subcubes [12] method for tolerating two or 
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more r faulty processors, r 2 2. Once the faulty proces- 
sors had been identified, (n - t)-dimensional (1 I t I n) 
fault-free subcubes could be used while 2” - 2”-’ - r 
normal processors obviously run idle in this strategy. Idle 
processors are denoted to be dangling processors, which 
are normal but not used for the fault-tolerant policy. The 
maximum dimensional fault-free subcube strategy results 
in a tremendous underutilization of resources. For exam- 
ple, the resultant working system would be a five- 
dimensional hypercube if one faulty processor existed in 
a six-dimensional hypercube. This would reduce the per- 
formance by almost 50% even though less than 2% of the 
system was faulty. A parallel sorting algorithm is sought 
here that can tolerate multiple faults, improve processor 
utilization, and provide low communication overhead 
without any hardware modification. 

The faults in the proposed model here are considered 
to be permanent faults [ 111. The number of faulty proces- 
sors is also assumed to be r 6: n - 1. A processor sur- 
rounded by n faulty neighboring processors may exist if 
the number of faulty processors is r 2 n; it cannot then 
send and receive messages to and from the others. The 
locations of the faulty processors and links are also as- 
sumed to be known before the proposed fault-tolerant 
sorting algorithm is run. Some distributedfault diagnosis 
algorithms [2, 51 exist which can be used in identifying 
the set of faulty processors and links by the fault-free 
processors. The assumption is reasonable since the off- 
line diagnosis concept proposed by Banerjee [3] can be 
applied before the proposed algorithm is run. The pro- 
posed development in an algorithm-based fault-tolerant 
sorting algorithm has been contributed for handling more 
than one faulty processor. The bitonic sorting algorithm 
[lo, 151 is first indicated for being able to correctly per- 
form sorting operations on hypercubes with one faulty 
processor. A partition algorithm with time complexity 
O(rN) is then presented in order to tolerate r I n - 1 
faulty processors, where N = 2”. The purpose of this 
algorithm is to partition the original hypercube with the 
minimum number of cutting dimensions into a set of sub- 
cubes such that each subcube has at most one faulty pro- 
cessor. The bitonic sorting algorithm can then be cor- 
rectly applied in each subcube. In general, many different 
subcube partitions exist which will split the hypercube 
into different sets of subcubes. Communication overhead 
exists among the subcubes for message-passing during 
execution of the proposed sorting algorithm. Different 
partitions will lead to different communication over- 
heads. One of the partitions will be selected here, such 
that the communication overhead is as low as possible. 
Each subcube is then viewed as a node and the bitonic- 
like sorting procedure is applied to these subcubes. The 
sorting result on hypercubes can, consequently, be ob- 
tained in the presence of multiple faults. 

The proposed algorithm can reduce more dangling pro- 
cessors than the maximum dimensional fault-free sub- 
cube approach. In particular, if an n-dimensional hyper- 
cube has two faulty processors, the n-dimensional 
hypercube is partitioned into two (n - l)-dimensional 
subcubes, each having one faulty processor. Therefore, 
we do not have any dangling processors. In the worst 
case, there exist at most N/4 dangling processors when 
an n-dimensional hypercube has n - 1 faulty processors. 
It will still have better resource utilization than the maxi- 
mum dimensional fault-free subcubes approach by which 
the number of dangling processors is N/2 (in the best 
case) and is $N (in the worst case). We also implement 
the proposed algorithm on an NCUBE/7 MIMD hyper- 
cube machine with 64 processors. The performance of 
the proposed fault-tolerant sorting algorithm is shown by 
simulation results to be better than that of finding the 
maximum dimensional fault-free subcube method [ 121. 

The rest of this paper is organized as follows. The bi- 
tonic sorting algorithm able to run correctly on hyper- 
cubes with one faulty processor will be indicated in Sec- 
tion 2. A partition algorithm for tolerating multiple faults 
with the minimum number of cutting dimensions such 
that each subcube will have exactly one faulty processor 
is proposed. A fault-tolerant sorting algorithm based on 
the partition algorithm is presented in Section 3. The im- 
plementation and performance analysis of the proposed 
algorithm are discussed in Section 4. The conclusions 
will finally be presented in Section 5. 

2. PARTITION ALGORITHM ON FAULTY HYPERCUBES 

In this section, we first point out that the bitonic sort- 
ing algorithm can correctly work on hypercubes with one 
faulty processor. To tolerate multiple faults, a partition 
algorithm with a minimum number of cutting dimensions 
is presented in Section 2.2 for finding a set of subcubes 
such that each subcube has at most one faulty processor. 

2.1. Sorting Operations on Single-Fault Hypercubes 

Assume that M + N unsorted elements uniformly dis- 
tributed to N processors in hypercubes exist. Some 
dummy keys (~0) will be filled in processors if the distribu- 
tion of each processor is not uniform. By applying the 
bitonic sorting algorithm, all the M unsorted elements 
will be sorted on each processor of the hypercube Qn in 
the address order. The key concept of the bitonic sorting 
algorithm [IO, 151 is recursively executing the compari- 
son-exchange operations on each pair of sorted subcubes 
such that the first half of the elements are located in one 
subcube and the last half of the elements are located in 
the other subcube. For example, an n-dimensional hyper- 
cube Qn can be divided into two subcubes Q-, and QLPl 
so that one consists of processors Pi for 0 5 i I N/2 - 1 
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and the other consists of the remaining processors Pj for 
N/2 ‘j 5 N - 1. Assume that all the [M/2] elements in 
subcube Q-i (Q&J are sorted in ascending (descending) 
order. Each pair of processors Pi and Pj (j = i + N/2) will 
then execute the comparison-exchange operations as fol- 
lows. Processor Pi (Pj) in Qn-l (QA-1) will send the first 
(last) half lMl(2N)l elements to its neighboring processor 
Pj (Pi) and receive lMl(2N)l elements from Pj (Pi). Pro- 
cessor Pi (Pj) then compares the unsending lMl(2N)l ele- 
ments with the receiving elements, reserves the smaller 
(larger) element in each comparison and sends the larger 
(smaller) element to Pj (Pi). The smallest [M/2] elements 
will then be located in Qn-, and the others will be located 
in QL-1. 

The bitonic sorting algorithm can also actually work 
correctly on hypercube Q,, when the faulty processor is 
PO. The M elements can be uniformly distributed to N - 1 
normal processors and treat the faulty processor PO in 
en-, as a dead node. Each normal processor has exactly 
[MI(N - I)1 elements. When each pair of processors 
executes the comparison-exchange operations, the cor- 
responding processor of PO just keeps its [MI(N - 1)l 
elements without performing any operation. Assume that 
Qnpl and QA-r are now respectively sorted in ascending 
and descending orders after some steps of executing the 
bitonic sorting algorithm. Comparison-exchange opera- 
tions need to be done here such that the (N/2 - l)(lMl 
(N - 1)l) smallest elements are located in en-, and the 
(NI2)([MI(N - 1)l) largest elements are located in QA-, . 
The elements in PN,~ are known to be larger than the 
elements in the other N/2 - 1 processors PNjz+, , PN,2+2, 
. . . ) and PNSI. If each processor Pi, 1 I i 5 N - 1, 
executes the comparison-exchange operations, except- 
ing the processor PN,*, all the first (N/2 - l)(lMI(N - l)]) 
elements will still be located in en-, and the others will be 
located in QA-i. The bitonic sorting algorithm can obvi- 
ously work correctly on hypercubes with one faulty pro- 
cessor PO. If the location of the faulty processor is not PO, 
its address may be logically set to 0 and then we reindex 
the other processors by using a bit-wise exclusive-or op- 
eration on their actual binary addresses. Consequently, 
we can obtain the correct result on hypercubes with one 
faulty processor located at an arbitrary address. 

2.2. The Partition Algorithm 

The bitonic sorting algorithm for tolerating one fault as 
described in Section 2.1 may be applied when a hyper- 
cube Qn has only one faulty processor. If the number of 
faulty processors in Qn is 2 5 r 5 n - 1, the proposed 
algorithm will partition the hypercube Qn into subcubes 
such that each one has at most one faulty processor, For 
balancing the workload of each subcube, we also deter- 
mine a dangling processor in each fault-free subcube. The 

0 : faulty processor 

FIG. 1. A single-fault subcube structure F:. 

smaller number of cutting dimensions will result in fewer 
dangling processors. An optimal partition algorithm is 
then proposed in this section for finding the minimum 
number of cutting dimensions. Some terms will be de- 
fined before the description of the proposed algorithm. 

DEFINITION 1: Single-Fault Subcube Structure. An 
n-dimensional hypercube Q,, consisting of 2” processors 
can be partitioned into 2k subcubes, each consisting of 
2fl-k processors. If each subcube of the partitioned hyper- 
cube Qn has at most one faulty processor, we denote the 
partitioned hypercube Qn by the single-fault subcube 
structure Fk, where 0 5 k I n - 2. 

A hypercube Q5 with four faulty processors can be 
partitioned into the single-fault subcube structure Fi as 
shown in Fig. 1. Consider a hypercube Q,, with r faults for 
2 5 r 5 n - 1. All the possible selections of cutting 
dimensions can be represented by a cutting dimension 
tree T,,. A cutting dimension tree T5 for Q5 is shown in 
Fig. 2. Nodes in level i in tree T5 denote the ith selected 
cutting dimension, 1 I i 5 5. The first cutting dimension 
can be selected from dimension 0 to dimension 4. Selec- 
tion of the second cutting dimension will proceed if the 

FIG. 2. The construction of a cutting dimension tree TX. 
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(a) (b) 

FIG. 3. A four-dimensional hypercube with three faulty processors and a single-fault subcube structure F:. (a) Q4 with three fault processors. 
(b) Single-fault subcube structure F:. 

original selected dimension cannot partition Qs into F:. 
All the cutting dimension sequences that can partition Q5 
into the single-fault subcube structure F! (1 5 k I 3) can 
be obtained by using the depth-first search. The total 
number of nodes in tree T5 is x;=, C’ = 31. 

Let the address space of hypercube Qn be denoted by 
{u,-,&-2 . . . UO}, for Ui E (0, l}, 0 5 i 5 n - 1. The Qn can 
be partitioned into two subcubes Qn-i along dimension d, 
where 0 I d 5 12 - 1. The two partitioned subcubes then 
have address space {u,- i u,-~ . . . ud . . . UO} and {u,-] u,-~ . . . 
iid . . . uO}, where & = 1 and kd = 0, respectively. To 
check whether the single-fault subcube structure Fi has 
been obtained or not, we construct a checking tree Tg as 
follows. Each node in TE represents a subcube and con- 
tains some faulty processors of Qn. A root of checking 
tree Ti initially reserves all the faulty processors. When a 
cutting dimension dl is traversed in T,, , the faulty proces- 
sors of a node in Ti can be divided along dimension d, 
into two subcubes as its children. If the bit dl of a faulty 
processor is 0 then put the faulty processor in the left 
child of the current node in Ti; else put it in the right 
child. When the current node of the checking tree TE 
contains more than one faulty processor, the traversal of 
T,, continues along dimensions dZ, d3, . . . . dk, 0 I k I n - 
2, until each of the terminal nodes in Ti has at most one 
fault. A feasible solution (d, , d2, . . . , dk) that can partition 
Qn into F: can be obtained. In fact, many feasible solu- 
tions exist. Let m be the minimum number of cutting 
dimensions in all the feasible solutions. These m cutting 
dimensions dl, d2, . . . . d, are collected into D. The D is 
named the cutting dimension sequence, with the value of 
m being defined as mincut. 

DEFINITION 2: Cutting Dimension Sequence and Min- 
cut. The cutting dimension sequence D = (dl, d2, . . . . 
d,) consists of the m cutting dimensions that can con- 
struct a single-fault subcube structure Fr with the mini- 

mum number of cutting dimensions when a hypercube Q,, 
has r I IZ - 1 faulty processors. The value m is defined as 
mincut. 

Consider a Q4 with three faulty processors 0, 6, and 9 
as shown in Fig. 3a. The cutting dimension sequence D = 
(d, , d2) = (1, 3) can construct a single-fault subcube struc- 
ture Fi as shown in Fig. 3b. A checking tree Ti is built as 
shown in Fig. 4. All the faulty processors are first put in 
the root of checking tree T2. The address space of Q4 is 
{u~u2uIu0}. When the first cutting dimension dl = 1 is 
traversed in T4, Q4 is partitioned into two Q3 along dimen- 
sion 1. The faulty processors (0, 6, 9} will be divided into 
two sets {0,9} and (6) as children of this root, as shown in 
Fig. 4. The two Q3 then have address spaces {u3uzOu0} 
and {uJuzluO}, respectively. Since the left child of Tz in 
Fig. 4 contains more than one fault, the cutting dimension 
d2 = 3 continues to traversed T4 and each Q3 is then 
partitioned into two Q2 along dimension 3. Each of the 
terminal nodes of the checking tree T:, as a result, only 
has at most one faulty processor. A single-fault subcube 
structure F$ is obtained by using the cutting dimension 
sequence D = (dl, d2) = (1, 3). 

In general, many different cutting dimension se- 
quences which can partition the Qn into a single-fault 
subcube structure F: (under the same value of mincut m) 
exist. Let the cutting set q denote all the possible cutting 
dimension sequences. The issue of finding the cutting set 
!P is now addressed here. A cutting dimension tree T,, is 
first used. All possible cutting dimension sequences are 
contained in paths from root to terminal nodes in T,. A 
depth-first search is first performed on T,. When each 
node labeled by dk is visited at depth k, each subcube 
QnPk+ 1 is partitioned into two subcubes Qn-k along dimen- 
sion dk. The initial values of the mincut and the cutting 
set v’ are respectively n and $. The current traversal will 
be cut off if the depth k of the cutting dimension tree is 
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FIG. 4. A checking tree T;. 
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larger than the current value of mincut. The checking tree 
Ti may be used to check whether a cutting dimension 
sequence D = (di, do, . . . . &) can construct a single-fault 
subcube structure Fi or not. If the answer is yes, the 
cutting set W and the mincut value will be modified by the 
following rule: If the number of cutting dimensions k is 
less than the current mincut value, then set 9 = {D} and 
mincut = k, else set q = q U {D} and the mincut value is 
the same as before. When all nodes of T,, are visited, the 
minimum value of mincut m and the cutting set q = {D, , 
D2, . . . D,} can be obtained, where CY is the number of 
cutting dimension sequences. All the cutting dimension 
sequences Di in Y can partition the Qn into Fz. The num- 
ber of nodes visited in the worst case in tree T, is xy=i 
C: = 2” - 1 = N - 1. When travelling each node of T,, 
each faulty processor’s address should be checked to de- 
termine whether the faulty processor belongs to the left 
or right child of the current node in TE. The time com- 
plexity in determining the cutting set 9 is then Q(rN), 
where Y is number of faulty processors and N = 2”. 

EXAMPLE 1. Consider a Q5 with four faulty proces- 
sors FP, , FP;!, FP3, and FP4 whose addresses are, re- 
spectively, 00011, 00101, 10000, and 11000. The cutting 
dimension tree TX is constructed in Fig. 2. The cutting set 
q = PI,D~,D~,D~,Ds) = -X0, 1,3), CO,27 3), (1,2,3), (1, 
3, 4), (2, 3, 4)) and the mincut value m = 3 will be ob- 
tained if all nodes of T5 are traversed in the depth-first 
search. Each of the cutting dimension sequences in 9 can 
construct a single-fault subcube structure F!. 

In the next section, we will describe how to select one 
cutting dimension sequence D, from the cutting set q = 
WI, D2, . . . . D,} such that the communication overhead 
for performing the proposed algorithm is as low as possi- 
ble. A formal algorithm for finding the cutting set V and 
the mincut value m is given in the following. 

THE PARTITION ALGORITHM. 
Input: An n-dimensional hypercube Qn with r faulty 

processors, for 2 5 r 5 n - 1. 

Output: The mincut value and cutting set q = {D, , D2, 
. ..) Da>. 

Step 1: Respectively set the initial value of mincut m 
and cutting set Y to n and 4. 

Step 2: Traverse the cutting dimension tree T,, by using 
the depth-first searching method until all nodes 
of T,, are visited. Perform Step 3 when each 
node in T,, is visited. 

Step 3: The traversal is cut off if the depth k of the 
current node is larger than the current value of 
mincut. As soon as the node in depth k of T,, 
labeled by dk is visited, each subcube Qnmk+, is 
partitioned into two subcubes Qnmk along dimen- 
sion dk. Use the checking tree TI; to check 
whether the current cutting dimension sequence 
D = (dl, d2, . . . . dk) can partition the Q,, into a 
single-fault subcube structure Fi or not. If the 
answer is yes, the cutting set W and the mincut 
value will be modified by the following rule: Set 
1I’ = {D} and mincut = k if the number of cutting 
dimensions k is less than the current mincut 
value; else set q = q U {D}. 

The processor utilization in the proposed algorithm is 
better than the maximum dimensional fault-free subcube 
approach. Assume that the number of faulty processors 
r 5 n - 1. The number of dangling processors in the 
proposed partition algorithm is shown to be less than N/4 
as follows. In an n-dimensional hypercube Qn, each pro- 
cessor connects to n neighboring processors exactly. Our 
purpose is to find a FF. A faulty processor in the worst 
case may connect n - 2 neighboring faulty processors. 
We will partition the Qn at most n - 2 times along n - 2 
different dimensions. The Q,, will then be partitioned into 
Fte2 in which each subcube has three normal processors 
and one faulty or dangling processor. Therefore, the pro- 
cessor utilization is at least $N in the worst case. When 
an n-dimensional hypercube has n - 1 faulty processors, 
the processor utilization of the maximum fault-free sub- 
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cubes approach is N/2 (in the best case) and N/4 (in the 
worst case). The proposed algorithm will have better pro- 
cessor utilization than the maximum fault-free subcubes 
approach. Note that the proposed partition algorithm is 
also suitable for the faulty hypercube Qn with r Z- n faulty 
processors if no normal processor surrounded by II neigh- 
boring faulty processors exists. 

3. FAULT-TOLERANT SORTING ALGORITHM 

In the previous section, we describe how to find all the 
cutting dimension sequences that can partition Q,, into F,” 
with the minimum value m. In this section, we choose 
one cutting dimension sequence D, from * and deter- 
mine the dangling processor in each fault-free subcube. 
The fault-tolerant sorting algorithm with the presence of 
multiple faults is presented before the heuristic method of 
selecting the D, and determining the dangling processors 
are described. 

The notation of address for each subcube and proces- 
sor used in our fault-tolerant algorithms is first intro- 
duced. Assume that the selected cutting dimension se- 
quence is D, = (d, , d2, . . . , d,). An n-dimensional 
hypercube Q,, with address space {u,-,u~-~ . . . uo} can be 
partitioned in order along dimensions dl , dl, . . . , and d,. 
By viewing each partitioned subcube as a node, the m- 
dimensional cube consists of 2” nodes with m-bit address 
space {u,-i u,,-~ . . . uO} = {u~,,,zL~,~, . . . udi}. The remaining 
s = n - m bits form the address space {w,-i w,-> . . . wO} of 
the processors on each subcube. A Q5 with address space 
{u4u3u2u,u0} is shown in Fig. 5. The cutting dimension 
sequence D, = (0, 1, 3) will partition the QS into Fi with 
the subcube’s address space (~2~1~0) = {u~uIuo} and the 

two-dimensional address space {wiwg} = {uqu2} of proces- 
sors in each subcube. 

The proposed fault-tolerant sorting algorithm will now 
be described. Assume that M unsorted elements exist. 
The partitioned hypercube Fy consists of 2” subcubes, 
each having one faulty processor or dangling processor. 
Since the number of normal processors is N’ = 2” - 2” = 
N - 2”, the M unsorted elements can be distributed to N’ 
processors and each processor has [M/N’] elements. For 
a partitioned single-fault subcube structure Fr, we per- 
form the reindex operation on each subcube such that the 
address of the faulty processor in each subcube is 0. 
Then, we perform the following three sorting steps. Each 
processor first sorts its elements in ascending or descend- 
ing order according to whether its reindexed address is 
even or odd. Second, the bitonic sorting algorithm is ap- 
plied in each subcube with one faulty processor such that 
the [M/27 elements are sorted in ascending or descend- 
ing order depending on whether the address u,-~u,,~~ . . . 
u. of the subcube is even or odd, respectively. Each sub- 
cube can finally be viewed as a node and perform a 
bitonic-like sorting algorithm among subcubes such that 
the M elements are sorted on Qn in the subcubes’ address 
order. 

Our fault-tolerant sorting algorithm is outlined as fol- 
lows. 

FAULT-TOLERANT SORTING ALGORITHM. 
Input: A hypercube Q,, contains M unsorted elements 

and a partitioned single-fault subcube structure 
Fr. The address of each subcube in FT is 
u,-IU,-2 . . . u. and the address of each processor 
in each subcube is w,~-~ w,~-z . . . wo. 

address of faulty processors 

::::::::::::::::: 
:i:iiiiiiiiiii:i . cutting dimension 
::::::::::::::::: . 
:: j::::::::::::: 

FIG. 5. Cutting dimension sequence D, = (0, 1, 3) for Qs with four faulty processors. 
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Output: Sorted elements located on F,” in the subcubes’ 
address order. 

Step 1: Perform the reindex operation on each subcube 
such that the address of the faulty processor in 
each subcube is 0. 

Step 2: The host processor distributes the normal pro- 
cessor [M/N’1 elements, where N’ = 2” - 2”. 
This is because 2” subcubes exist which have 
exactly one faulty processor each. 

Step 3: Each processor sorts its elements by applying 
heapsort operations in ascending or descending 
order according to whether the reindexed ad- 
dress of the processor is even or odd, respec- 
tively. Then the bitonic sorting algorithm is ap- 
plied on each subcube with one faulty processor 
such that the lM/2m] elements are sorted in as- 
cending (descending) order if the address of the 
subcube is even (odd). 

Step 4: For i = 0, 1, . . . . m - 1 do Steps 5 through 8. 
Step 5: For each subcube, let the variable musk be 

equal to the value of bit ui+i of the subcube’s 
address. Assume u, = 0. 

Step 6: Forj = i, i - 1, . . . , 0 do Steps 7 and 8. 
Step 7: For each pair of neighboring subcubes in dimen- 

sion j: 
(a) If Uj = 0 (uj = 1) then each reindexed normal 

processor sends the first (last) [Ml(2N’)] ele- 
ments of its subsequence to its corresponding 
reindexed normal processor. 

(b) If mask = Uj (mask # Vj), each processor of sub- 
cubes compares the unsending elements with 
the receiving elements, reserves the smaller 
(larger) element in each comparison, and sends 
the larger (smaller) to its corresponding proces- 
sor. 

(c) Each processor merges the two ordered subse- 
quences in ascending or descending order ac- 
cording to whether the reindexed address of the 
processor is even or odd, respectively. 

Step 8: Applying the bitonic sorting algorithm on each 
subcube with one faulty processor, the [M/2”‘] 
elements are sorted in ascending (descending) 
order if Uj-1 = mask (Uj-1 f mask). Assume 
u-1 = 0. 

For example, consider a Qs with four faulty processors 
as described in Example 1. The selected cutting dimen- 
sion sequence D, = (0, 1, 3) will partition the QS into F:. 
We determine four dangling processors, perform the rein- 
dex operation on each subcube, and distribute 47 un- 
sorted elements to reindexed normal processors as 
shown in Fig. 6a. By applying Step 3 of the proposed 
algorithm, each subcube sorts the assigned six unsorted 
elements in ascending (descending) order if the subcube’s 
address is even (odd) as shown in Fig. 6b. In Step 4, the 
index values of i running on Steps 5 through 8 are 0, 1, 

and 2. When i = 0 and j = 0, the result of executing Steps 
7a and 7b is shown in Fig. 6c. Each processor then per- 
forms the merge operation of Step 7c. After executing 
Step 8 of the proposed algorithm with i = 0 and j = 0, the 
temporal result is shown in Fig. 6d. Similarly, when i = 1 
and j = 1, the execution results of Steps 7 and 8 are 
shown in Figs. 6e and 6f, respectively. The results of 
executing steps 7 and 8 with i = 1, j = 0 are shown in 
Figs. 6g and 6h, respectively. By continually performing 
Steps 7 and 8, all the elements can be sorted as shown in 
Fig. 6i. 

In the cost estimation given below, symbol tsir denotes 
the cost of sending or receiving an element between two 
neighboring processors; symbol t, denotes the time cost 
of comparing a pair of elements. The derivation of total 
time cost T of the proposed fault-tolerant sorting algo- 
rithm is described as follows. The worst case of time cost 
for heapsort operations in Step 3 is [((M/N’] - 1) log(Ml 
N’] + l] t,. The bitonic sorting operations [IS] perform 
s(s + 3)/2 loops, each with time cost [[MIN’lt,,, + (13Ml 
2N’] - 1)&l. The total time cost for Step 3 is then 

-M - 
N’ 1 > - 1 log 

The hops between two corresponding reindexed normal 
processors in Step 7a are at most s + 1 since they are 
located in the s-dimensional neighboring subcubes. The 
time cost in the worst case for Steps 7a and 7b are, re- 
spectively, (s + l)[M/2N’]t,,, and (s + l)lM/2N’]t,,, + 
(lM/2N ‘1 - l)t,. The time cost for the merge operation in 
Step 7c is ([M/N’] - I)&.. In Step 8, the bitonic sorting 
algorithm performs s(s + 3)/2 loops, each with time cost 
[[MIN’]tsI, + ((3M/2N’] - l)t,]. Steps 4 and 6 of the 
proposed algorithm perform m(m + 3)/2 loops of Steps 7 
and 8. The total time cost T of the proposed fault-tolerant 
sorting algorithm in the worst case is then 
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In the previous section, we have the time cost O(rN) 
for the partitioning algorithm. The total cost for sorting M 
elements on n-dimensional hypercube is T + O(rN). 
When the number of unsorted elements is large enough 
(M @ N), the time cost of our algorithm is close to 
O([MIN'l loglMIN’1). 

The above algorithm is based upon the assumption that 
the cutting dimension sequence D, has been selected 
from Y, with the dangling processor having been deter- 
mined in each fault-free subcube. A heuristic method for 
selecting the D, and determining the dangling processors 
is proposed in the following. Consider each pair of neigh- 
boring subcubes Qm and Qh. Let faulty processors FP 
and FP’ exist and have the same local reindexed ad- 
dresses, being located, respectively, in Q,,, and Qk. Each 
pair of normal processors P and P’, which have the same 
address, located in the respective subcubes Qm and Qk 
will execute the comparison-exchange operations in the 
bitonic-like sorting algorithm. The original address of 
each normal processor will be changed since all the ad- 
dresses of the processors have been reindexed. Proces- 
sors P and P’ may then not be neighbors after the reindex 
operation is performed and may need extra communica- 
tion overhead for message-passing. The extra communi- 
cation overhead between processors P and P’ is the same 
as the Hamming distance of their respective faulty pro- 
cessors FP and FP’. When Qm and Qh perform the com- 
parison-exchange operations along a fixed dimension i 
(for 0 5 i 5 m - I), the extra communication overhead h, 
can be measured by the Hamming distance of the s-bit 
addresses of faulty processors FP and FP’, 

hi = HD(FP, FP’). 

The extra communication overhead hi of one pair Qm and 
Qk may be different from the other pairs. Thus, the max 
function is taken here to estimate the turnaround time. 
The total extra communication overhead can be esti- 
mated by 2:;’ max(hJ since the bitonic-like sorting algo- 
rithm performs the comparison-exchange operations 
from dimensions 0 to m - 1. The selected D, should 
satisfy the following minmax function. 

m-l 

min 2 max(hj). 
05(35x i=o (1) 

Next, a dangling processor needs to be determined in 
each fault-free subcube so that the workload for each 
subcube is balanced. The dangling processor in each 
fault-free subcube may be determined by the following 
heuristic rule: each fault-free subcube determines a dan- 
gling processor whose address w,~- I wsp2 . . . w. is the same 
as the faulty processors’ addresses which appear most 

frequently in the faulty subcubes. The communication 
among these faulty processors and the dangling proces- 
sors can then be discarded, with the purpose of the low 
extra communication overhead being able to be achieved. 

EXAMPLE 2. Cutting dimension sequence DI = (0, 1, 
3) is selected here in Example 1. The faulty processors 
FP,, FP2, FP3, and FP4 in F: are located in subcubes 
with the respective addresses 011, 001, 000, and 100 as 
shown in Fig. 5. Three pairs of faulty processors exist, 
(FP] , FP2), (FP2, FP3), and (FP3, FP4) being located on 
neighboring subcubes, and their respective Hamming dis- 
tances are HD(O1l, 001) = 1, HD(OO1, 000) = 1, and 
HD(OO0, 100) = 1. According to Formula (l), the total 
extra communication cost under the selection of DI = (0, 
1, 3) is Zy=o max(hJ = HD(O1, 10) + HD(O0, 01) + HD(I0, 
10) = 3. The selection of a cutting dimension sequence 
D, = (0, 1,3) with communication overhead 3 is depicted 
in Fig. 5. By selecting the other cutting dimension se- 
quences D2 = (0, 2, 3), D3 = (1, 2, 3), D4 = (1, 3, 4), and 
D5 = (2, 3,4), their respective extra communication costs 
can similarly be obtained as 3,4, 3, and 3. We may select 
D, = D, = (0, 1, 3) here. A dangling processor in each 
fault-free subcube is then determined. The processor 
with address 10 is treated as the dangling processor in 
each fault-free subcube since the addresses of the faulty 
processors wI w. = 10 appear most frequently. The dan- 
gling processors’ addresses 18,25,26, and 27 have finally 
been obtained by combining the 3-bit address u2uluo and 
the 2-bit address wIwo. 

4. IMPLEMENTATION AND PERFORMANCE ANALYSIS 

The implementation of the proposed fault-tolerant sort- 
ing algorithm on an NCUBE/7 MIMD hypercube ma- 
chine which consists of 64 processors each containing 
512 kbytes of local memory will be described in this sec- 
tion. Implementation here logically treats some proces- 
sors as faulty nodes and does not assign any unsorted 
element to them; the faulty nodes, as a result, can run 
idle. The fault model can be classified into two types. The 
most serious fault would be one that completely destroys 
a processor and all links incident to it. Hastad [9] called 
such faults total. A less serious fault, named partialfault 
[9], would be one that destroys just the computational 
portion of a processor, leaving the communication por- 
tion of the processor intact as well as the incident links. 
The data routing in NCUBE/7 is completely determined 
by the operating system VERTEX. Since the VERTEX 
may pass messages through the links of faulty proces- 
sors, simulation is constrained to the faults partial prop- 
erty. The faults total property can be achieved by rewrit- 
ing a router to handle the fault-tolerant routing of 
message-passing 171. The execution time will be more 
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TABLE I 
The Distributed Percentages of the Mincut Value m under 

10,000 Randomly Generated r Faulty Processors on Hypercube 
Qn, for 1 S r S R 

r=4 r=5 
r= 1 r=2 r=3 

m=O m=l m=2 m=2 m=3 m=3 m=4 

n=6 100 100 100 58.21 41.73 93.85 6.15 
n=5 100 100 100 58.11 41.89 
n=4 100 100 100 
n=3 100 100 

than the partial fault if the cube Qn has the fault total 
property. 

Assume that an n-dimensional hypercube has r faulty 
processors, where 1 5 r I n - 1. An optimal partition 
algorithm has been proposed in Section 2 which can par- 
tition the hypercube Qn into a single-fault subcube struc- 
ture FF with the minimum number of cuts. The proposed 
algorithm determines some dangling processors for bal- 
ancing the workload of each subcube. The number of 
dangling processors is less than N/4 in the worst case. 
The relative locations of the faulty processors will affect 
the value of mincut. For a fixed dimension n and a num- 
ber of faulty processors r, the addresses of r faulty pro- 
cessors are randomly generated on hypercube Qn 10,000 
times. The percentages of all possible mincut values un- 
derfixednandr,where3~na6andOsr~n- 1,are 
shown in Table I. For instance, when n = 6 and r = 5, 
93.85% of the cases of Qn exist which can be partitioned 
into Fi (mincut value m = 3) and 6.15% of the cases exist 
which can be partitioned into Fi (mincut value m = 4). 
The smaller the value of mincut is, the fewer the dangling 

processors that will generally be determined. This indi- 
cates that our partition algorithm is biased toward a small 
number of dangling processors in 93.85% of the cases. 

The percentages of processor utilization in the pro- 
posed algorithm and in the maximum dimensional fault- 
free subcubes method can be compared in Table II. The 
value of the percentage is evaluated by the ratio of total 
number of normal processors in original cube to total 
number of actually running processors. For instance, 
when n = 6 and r = 4, our algorithm will partition the Qs 
into Fi in the best case (mincut value m = 2) and no 
dangling processor exists. Thus, the percentage of pro- 
cessor utilization is then (26 - 4)/(26 - 4) = 100%. Q6 in 
the worst case should be partitioned into Fi (m = 3), 
depending on the locations of the faulty processors. The 
number of dangling processors is four and the percentage 
of processor utilization is (2’j - 4 - 4)/(26 - 4) = 93.3%. 
The percentage of processor utilization is 53.3% in the 
best case and 26.6% in the worst case by applying the 
maximum dimensional fault-free subcubes method. The 
proposed algorithm, in comparison, is better than the 
maximum dimensional fault-free subcubes method in re- 
source utilization. 

The enhancement of processor utilization will reduce 
the execution time for sorting operations on hypercubes. 
The proposed algorithm has been simulated on the n- 
dimensional hypercubes for n = 3, 4, 5, and 6. In our 
simulation, the number of faulty processors is 0 I r 5 
n - 1 and the addresses of faulty processors are ran- 
domly generated on each of 10,000 simulations for a fixed 
n and r. The simulation result of our algorithm is depicted 
in Fig. 7 by thin lines and the maximum dimensional 
fault-free subcubes method; i.e., r = 0 by thick lines. In 
Fig. 7a, the number of data elements ranges from 3.2 x 

TABLE II 
The Percentages of Processor Utilization in Our Algorithm and the Maximum Fault-Free Subcube Method 

n=6 
Our algorithm 
Maximum fault-free subcube method 

n=5 
Our algorithm 
Maximum fault-free subcube method 

n=4 
Our algorithm 
Maximum fault-free subcube method 

n=3 
Our algorithm 
Maximum fault-free subcube method 

r= 1 r=2 r=3 r=4 r=5 

Best Worst Best Worst Best Worst Best Worst Best Worst 
case case case case case case case case case case 

100 100 100 100 98.3 98.3 100 93.3 94.9 81.3 
50.7 50.7 51.6 25.8 52.4 26.2 53.3 26.6 54.2 27.1 

100 100 100 100 96.5 96.5 100 85.7 
51.6 51.6 53.3 26.6 55.1 27.5 57.1 28.5 

100 100 100 100 92.3 92.3 
53.3 53.3 57.1 28.5 61.5 30.7 

100 100 100 100 
57.1 57.1 66.6 33.3 
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(a) (b) 

(d) 

: faulty processor 

c> : dangling processor 

FIG. 6. The fault-tolerant sorting algorithm running on F:. (a) The distribution of 47 unsorted elements and one dummy key (m) to normal 
processors. (b) The bitonic sorting algorithm running on each subcube. (c) The execution of steps 7a and 7b of the fault-tolerant sorting algorithm 
with i = 0,j = 0. (d) The execution of step 8 of the fault-tolerant sorting algorithm with i = 0,j = 0. (e) The execution of steps 7a and 7b of the fault- 
tolerant sorting algorithm with i = 1 ,j = 1. (f) The execution of step 8 of the fault-tolerant sorting algorithm with i = 1 ,j = 1. (g) The execution of 
steps 7a and 7b of the fault-tolerant sorting algorithm with i = 1, j = 0. (h) The execution of step 8 of the fault-tolerant sorting algorithm with i = 1, 
j = 0. (i) The final results. 

lo3 to 3.2 x 104. The execution time of our algorithm in fault-free subcube Q4 (n = 4) when n = 6 and r = 3,4, or 
Qe with r = 1 or r = 2 is shown to be less than the bitonic 5. If a hypercube Qs has two faulty processors, the per- 
sorting algorithm running on the fault-free subcube formance of the proposed algorithm is then better than 
QS (n = 5). The execution time of our algorithm is also the maximum dimensional fault-free subcubes method in 
less than the bitonic sorting algorithm running on the both its best case IZ = 5 and worst case 12 = 4. The maxi- 
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FIG. 7. The simulation time of fault-tolerant sorting on hypercubes by our algorithm and the maximum dimensional fault-free subcubes method. 
(a) n = 6, 1 5 r 5 5. (b) n = 5, 1 I r 5 4. (c) n = 4, 1 5 r 5 3. (d) n = 3, 1 5 r 5 2. 

mum dimensional fault-free subcubes method in the best 
case can utilize Q5. Although the execution time of our 
algorithm running on Qs with r = 3, 4, or 5 is more than 
the execution time of the bitonic sorting algorithm run- 
ning on the fault-free subcube Q5, the probability that Qy 
can be utilized is small. The execution time of the pro- 
posed algorithm running on QS with r = 1 or 2 being less 
than the fault-free subcube Q4 is illustrated in Fig. 7b. 
The execution time of 12 = 5 and r = 3 or 4 is also less 
than the fault-free hypercube Q3. In Example 1, there are 
four faulty processors with addresses 3, 5, 16, and 24 in 
Q5. The maximum fault-free subcube able to be utilized is 
Q3. The total time cost of the proposed sorting algorithm 
for 12 = 5 and r = 4 is less than the bitonic sorting algo- 
rithm running on Q3. Similarly, Figs. 7c and 7d display 
the execution time of the proposed algorithm with n = 3 
and n = 4. respectively. The performance of the pro- 
posed fault-tolerant sorting algorithm running on hyper- 

cubes shown by simulation results is better than the par- 
allel sorting algorithms running on the maximum 
fault-free subcubes. 

5. CONCLUSIONS 

An algorithm-based fault-tolerant sorting algorithm on 
hypercube multicomputers, without any hardware modifi- 
cation, has been proposed. First, the bitonic sorting algo- 
rithm has indicated the ability to perform sorting opera- 
tions correctly on hypercubes with one faulty processor. 
When the number of faulty processors is 1 5 Y 5 n - 1, a 
partition algorithm for partitioning a hypercube Qn into 
subcubes has been proposed, such that each subcube 
contains at most one faulty processor. The proposed par- 
tition algorithm has found the mincut value m and cutting 
set q. Heuristic methods for selecting one of the parti- 
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tions in T have been suggested with the consideration of 
little communication overhead and to determine the dan- 
gling processor in each fault-free subcube such that the 
workload of each subcube has been balanced. A fault- 
tolerant sorting algorithm based on the partition algo- 
rithm has also been proposed that applies the bitonic sort- 
ing algorithm to each subcube and sorts the elements in 
faulty hypercubes. Finally, our algorithm has been imple- 
mented on an NCUBE/7 MIMD hypercube machine with 
64 processors. The execution results have shown that the 
performance of our fault-tolerant sorting algorithm on hy- 
percubes is better than parallel sorting algorithms running 
on the maximum fault-free subcubes. 
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