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proposed algorithm can tolerate at most n - 1 faults. The time complexity of this algorithm is O(max( kn, n’)), 
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Election is the problem of choosing a unique 
processor as the leader of a network of processors. 
The election problem was first discussed by 
LeLann [2] in a ring connection network to elect a 
new leader as responsible for regenerating a new 
control token after the previous token is lost in the 
ring. Selecting the first k largest process numbers 
in a network is called the k selection problem. The 
objective of the k selection problem is that the 
largest process number is the leader and the other 
process numbers are used as standby. If the leader 
fails, the next largest can immediately take control 
without restarting the election algorithm. 

Sheu and Tang [4] propose a parallel k selec- 
tion algorithm in the n-cube networks with time 

(max( k, n’)) which is optimal when 
k & n2. Sheu, Wu, and Chen [S] present a fault- 
tolerant parallel k selection algorithm in the n- 
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cube networks. Their algorithm can tolerate 
most two faulty nodes and the time complexity 
the algorithm is 

O(k(n- logk)+k). 
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In this paper, we shall propose a fault-tolerant 
parallel algorithm to determine the first k largest 
process numbers in the n-cube networks. The pro- 
posed algorithm can tolerate at most n - 1 
node/Iii& faults. The time complexity of the al- 
gorithm is O(max(kn, n’)). 

In this section, we propose a fault-tolerant 
parallel algorithm for the k selection problem in 
an n-cube network. The n-cube network is a hy- 
percube of dimension n. It consists of 
identical nodes so 
purpose processor 

n-bit binary number (~,a,__ 1 . . . a,). 
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have node numbers different in aj only, then they so far in its data list. After repeating the above 

arc called opposite ones in the jth direction [3]. steps 2n - 1 times, every node will have the first k 

Every node has a direct link to the opposite node. largest process numbers. Finally, every node sorts 

So each node has n-neighbor nodes with direct the k process numbers of its data list in descend- 

links. ing order. 

In order to study the efficiency of different 
algorithms, we use not only the computation time 
but also the communication time as the measure 
in any execution of these algorithms. We measure 
the communication steps because they reflect the 
communication overhead on the communication 
system of the n-cube networks. The following 
assumptions are used to analyze the algorithm 
complexity: 

Under the case of k < n, the initial step is the 
same as the case of k > n. After the initial step, 
every node sends the largest unmarked process 
number to its n-neighbors instead of sending the 
first 1 k/n] largest unmarked process numbers in 
the case of k > n. After repeating the above steps 
n + k - 1 times, every node will keep the first k 
largest process numbers in its data list. Now, we 
formulate our algorithm as follows. 

(1) 

(2) 

(3) 

Moving a fixed-sized data packet from one 
node to a neighbor one figures as a message 
complexity and takes a unit time; 
moving the same data packet from one node 
to any one of its n neighbors takes the same 
time and message complexity; 
the data communication is bidirectional and 
each node has a data list of size O(k). 

In general, we might consider the nodes and 
links faults in the n-cube networks. Node and link 
failures complicate the selection problem. Once a 
node or link fails, it never sends any other mes- 
sage. The maximum number of faulty nodes/links 
that our algorithm can tolerate is n - 1. The idea 
of our algorithm is simply described as follows. 

First, we consider the case of k > n. Initially, 
every node sends its residing process number to 
n-outgoing channels and marks the sent process 
number in its data list. Every node receives n 
process numbers from its n-neighbors and keeps 
them in the data list. After the initial step, each 
node sends the first [k/n J largest unmarked pro- 
cess numbers of the data list to its n-outgoing 
channels and marks these sent process numbers. 
Note that, if the number of unmarked process 
numbers kept in the data list is less than 1 k/n], 
then all of them are sent. Therefore, each node 
receives at most n[k/nJ process numbers from its 
n-neighbors. If any of these process numbers is 
not received yet, the node puts it into the rear of 
the data list; otherwise discards it. In addition, 
every node finds the kth largest process number 
and keeps only the first k largest process numbers 

AIgorit S (Fault-tolerant parallel k selec- 
tion algorithm). 

Step 1: / * Initial step */ 
(1) Initially, each node sends its residing pro- 

cess number to n-outgoing channels and marks 
the sent process number in its data list. Every 
node of the n-cube will receive n process numbers 
from its n-neighbors. 

(2) If k < n, then let I= n + k - 1, else I = 
2n - 1. 

Step 2: For i = 1 to I do the following oper- 
ations: 

(1) Each node receives at most max( n, nl k/n J) 
process numbers from its n-neighbors. If any of 
these process numbers has not been received yet, 
then puts it into the rear of the data list; otherwise 
discards it. 

(2) Each node finds the min(k, s)-th largest 
process number and keeps the first min(k, s) 
largest process numbers in its data list and dis- 
cards the others, where s is the current size of the 
data list. 

(3) Every node sends the first max( 1, 1 k/n J) 
largest unmarked process numbers of the data list 
to its n-neighbors and marks these sent process 
numbers. If the number of unmarked process 
numbers less than max(1, 1 k/n]), then all of them 
are sent. 

Step 3: Finally, each node sorts the k marked 
process numbers of the data list in descending 
order. 

In the following, we give an example to show 
how our algorithm works. 
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D3=(6^} P7’ 1 0,={7^) D3 ={6*,5”,2) D7 ={7*,6,3) 

D7 ={l”) 

(a) Initial r the 1 st iteration 

D3 = {8Ar7,6*) D7 = (7”,6”,5) D3 = (8x,7A,6x) D7 = {8*,7=,6*) 

(c) er the 2nd iteration (d) After the 3rd iteration 

D6 = (6*,7”,6^ } D4 = (8*,7*,6 * } 
Dt, = (8”,7”,6*) D4 = (8”,7*,6*) 

D1 = {6”,7”,6*) 

Dq = {8=,7 

D3 = (8*,7*,6*) D7 = {8”,7*,6”) 
D3 = {6*,7”,6”) 07 = (6*,7*,6”) 

Fig. 1. Data exchanges and data lists for k = 3 selection in a 3-cube. 
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xample 2.1. We use a 3-cube to show how to get 
the first three largest process numbers. 
e: Represents the process number residing in 

node i. 
Dj: Represents a data list which will be used to 

store the first k largest process numbers at 
node i. 

Initially, P, and Dji of node i are shown in Fig. 
l(a). After Step 1, each node receives three process 
numbers from its 3-neighbors. For example, node 
0 receives process numbers 4, 5, and 2, and hence 
the data list D, = {8*, SA, 4). The mark “*” 
denotes that data have been sent from the data list 
and the mark 6cA’9 denotes that data will be sent in 
the next iteration. The other nodes also get their 
data lists. The result is shown in Fig. l(b). After 
the second iteration, node 0 receives process num- 
ber 8 from nodes 1, 2, and 4. Therefore, the 
process number in its data list remains unchanged. 
Figures l(c)-(f) show the actions from iteration 2 
to iteration 5. The final result is shown in Fig. l(f). 

Now, we analyze the time complexity of the 
FPKS algorithm. We first analyze the communica- 
tion complexity. In each step, each node sends 
max(l, [k/n]) data packets to its n-neighbors. The 
algorithm consists of at most 2n iterations. Thus 
the message complexity M(n) for an n-cube is 
derived as follows. 

M(n) = 
n(2n) = 2n2, if k<n, 

n[k/n](2n) < 2nk, if k > n. 

Hence, the total communication complexity is 
O(max( kn, n’)). 

The computation time is consumed in finding 
the first k largest process numbers and checking 
whether these process numbers have been received 
or not. In Step 2, each node receives at most 
max(n, nlk/n J) process numbers from its n- 
neighbors. Therefore, the size of the new data list 
is no more than k + n. I[n our algorithm, we must 
keep the first k largest process numbers in the 
data list. It is easy to solve it by the following 
steps. We first select the k th highest elements I, 
in the data list. Next, we scan each element of the 
data list and keep the one in the data list if it is 
greater than Ik. Finding the k th largest number 
from k + n elements takes O(max(k, n)) time 

units [l]. Since each iteration needs O(max(k, n)) 

computation time, the total computation time 
complexity is O(max( kn, n’)). Therefore, the time 
complexity of our algorithm is 

of t S dgorit 

In this section, we shall show our algorithm is 
correct and the algorithm can tolerate at most 
n - 1 faults in an n-cube network. For the sake of 
easy description, we define the following term. If 
two unmarked process numbers, u and u, have 
been sent to a node at the same time, then u will 
be sent before u when u 3r v and we say that v is 
delayed one step by u. 

. Let n,n,+, . . . nr+d denote a shortest 
path from node nj to node n j+d with distance d. In 

the FPKS algorithm, if the kth largest process 
number reaches node n,, then it will be sent to node 

ni+d at most delayed k - 1 steps by some of the first 
k - 1 largest process numbers when k < n. 

oof. We shall prove it by induction as follows. 
Basic k = 1: Clearly, it is correct. 
Induction hypothesis k = q: The qth largest pro- 

cess number that reaches node n, can be sent to 
node nj+d at most delayed q - 1 steps. 

Induction k = q + 1: 

Case 1: The (q + 1)th largest process number is 
not delayed by the qth largest process number in 
the path from node nj to node nj+d. Then the 
(q + 1)th largest process number can be treated as 
the qth largest process number. By the induction 
hypothesis, it holds. 

Case 2: The (q + 1)th largest process number is 
delayed at least once by the qth largest process 
number and the last one delay is in node nj+j 
( j < d). Assume the q th largest process number 
reaches the node n j+dm + 1 steps earlier than the 
(q + 1)th largest pro.;ess number. Thus, the (q + 

1)th largest process number is delayed m steps by 
some of the first q - 1 largest process numbers 
after the qth largest process number left the node 
n r+j. In addition, the q th largest process number 
cannot be delayed by any process number from 
node ni+j+i to node n,+d. Once the qth largest 
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process number is delayed at node n, +p, j < p < d, 

it will be caught up by the (q + 1)th largest pro- 
cess number in the node n,+p. This is in contradic- 

tion to the assumption of Case 1. 
Moreover, in the path from n, to ni+i, the qth 

largest process number is not delayed by any one 
of the process numbers which delay the (q + 1)th 
largest process number in the path from ni+i to 

ni+d- 1’ If the qth process number is delayed by 
these process numbers in the path from ni to ni+j, 

they cannot delay the (q + 1)th largest process 
number in the path from n,+j to ni+d_i. Hence, 
the qth largest process number can be treated as 
the (q - m)th largest process number. By the in- 
duction hypothesis, it can only be delayed in 
q - m - 1 steps to send the q th largest process 
number from node n, to node ni+d. Therefore, the 
(q + 1)th largest process number will be delayed 
at most q Step from node n, to node n,+d. Cl 

eorem 3.2. The FPKS algorithm is correct if 

f. The length of the shortest path between 
two nodes in an n-cube is at most n. By 

Lemma 3.1, each node will get the first k largest 
process numbers after n + k - 1 steps. q 

In the following, we shall prove that the FPKS 
algorithm is correct if k :> n. Without loss of gen- 
erality, let k = Sn, where S is an integer. Then we 
can divide the first k largest process numbers into 
n groups, G,, G,,..., G,, and each group G, con- 
tains 8 process numbers. Let the process numbers 
in group Gi be larger than those in group Gi+,, 
wherelgi<n-1. 

mma 3.3. Let n,n,,, -. . ni+d denote a shortest 

path from node n, to node n,+d with distance d. In 

the FPKS algorithm, if the process numbers in 

group G, reach node n, , then they will be sent to 

node n,+d at most delayed i - 1 steps by some of zhe 

process numbers in groups G,, G,, . . . , and G,._ 1, 
where 2<i<n. 

oaf. When k = 6n, each node sends the first 6 
unmarked process numbers instead of the maxi- 
mal one. The proof of this Lemma is similar to 
that of Lemma 3.1. We omit the details. •I 

k > n. 
The FPKS 

f. The length of the shortest path between 
any two nodes in an n-cube is at most n. By 
Lemma 3.3, each node will get the first k largest 
process numbers after 2n - 1 steps. q 

algorithm is correct if 

For an n-cube network, there is at least one 
shortest path of length no more than n + 1 from 
any node to any other node if the number of faults 
is no more than n - 1 [3]. Therefore, any one of 
the first k largest process numbers located in node 
n, can reach to any node nj of an n-cube at most 
in (n -I- I) steps if there exists a shortest path 
between nodes ni and nj. By Lemma 3.1 and 
Lemma 3.3, the k th largest process number is at 
most delayed by n - 1 steps. Hence, the k selec- 
tion problem can be solved in 2n steps when there 
are n - 1 faults in the n-cube networks. 

. Conclusions 

The advantage of selecting the first k largest 
process numbers is that every node knows where 
the first k largest process numbers are, and fur- 
ther, the ranks of them can be determined. The 
time complexity of the FPKS algorithm is 
Q(max( kn, n 2)). The maximal number of faults 
that the algorithm can tolerate is n - 1. 
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