
Information Processing Letters 39 (1991) 93-97
North-Holland

31 July I991

Department of Electrical Engineering, National Central University, Chungh 32054. Taiwan, ROC

Communicated by K. Ikeda
Received 26 October 1990
Revised 5 February 1991

proposed algorithm can tolerate at most n - 1 faults. The time complexity of this algorithm is O(max(kn, n’)),

Keywork Parallel algorithms, k selection, fault-tolerant, n-cube networks

Election is the problem of choosing a unique
processor as the leader of a network of processors.
The election problem was first discussed by
LeLann [2] in a ring connection network to elect a
new leader as responsible for regenerating a new
control token after the previous token is lost in the
ring. Selecting the first k largest process numbers
in a network is called the k selection problem. The
objective of the k selection problem is that the
largest process number is the leader and the other
process numbers are used as standby. If the leader
fails, the next largest can immediately take control
without restarting the election algorithm.

Sheu and Tang [4] propose a parallel k selec-
tion algorithm in the n-cube networks with time

(max(k, n’)) which is optimal when
k & n2. Sheu, Wu, and Chen [S] present a fault-
tolerant parallel k selection algorithm in the n-

* This work was supported by the National Science Council
under Grant NSC 79-0408-E-008-01.

cube networks. Their algorithm can tolerate
most two faulty nodes and the time complexity
the algorithm is

O(k(n- logk)+k).

r

at
of

In this paper, we shall propose a fault-tolerant
parallel algorithm to determine the first k largest
process numbers in the n-cube networks. The pro-
posed algorithm can tolerate at most n - 1
node/Iii& faults. The time complexity of the al-
gorithm is O(max(kn, n’)).

In this section, we propose a fault-tolerant
parallel algorithm for the k selection problem in
an n-cube network. The n-cube network is a hy-
percube of dimension n. It consists of
identical nodes so
purpose processor

n-bit binary number (~,a,__ 1 . . . a,).

20-0190/91,603.50 0 1991 - Elsevier Science Publisbers l3.V. (North- 93

Volume 39, Number 2 INFORMATION PROCESSING LETTERS 31 July 1991

have node numbers different in aj only, then they so far in its data list. After repeating the above

arc called opposite ones in the jth direction [3]. steps 2n - 1 times, every node will have the first k

Every node has a direct link to the opposite node. largest process numbers. Finally, every node sorts

So each node has n-neighbor nodes with direct the k process numbers of its data list in descend-

links. ing order.

In order to study the efficiency of different
algorithms, we use not only the computation time
but also the communication time as the measure
in any execution of these algorithms. We measure
the communication steps because they reflect the
communication overhead on the communication
system of the n-cube networks. The following
assumptions are used to analyze the algorithm
complexity:

Under the case of k < n, the initial step is the
same as the case of k > n. After the initial step,
every node sends the largest unmarked process
number to its n-neighbors instead of sending the
first 1 k/n] largest unmarked process numbers in
the case of k > n. After repeating the above steps
n + k - 1 times, every node will keep the first k
largest process numbers in its data list. Now, we
formulate our algorithm as follows.

(1)

(2)

(3)

Moving a fixed-sized data packet from one
node to a neighbor one figures as a message
complexity and takes a unit time;
moving the same data packet from one node
to any one of its n neighbors takes the same
time and message complexity;
the data communication is bidirectional and
each node has a data list of size O(k).

In general, we might consider the nodes and
links faults in the n-cube networks. Node and link
failures complicate the selection problem. Once a
node or link fails, it never sends any other mes-
sage. The maximum number of faulty nodes/links
that our algorithm can tolerate is n - 1. The idea
of our algorithm is simply described as follows.

First, we consider the case of k > n. Initially,
every node sends its residing process number to
n-outgoing channels and marks the sent process
number in its data list. Every node receives n
process numbers from its n-neighbors and keeps
them in the data list. After the initial step, each
node sends the first [k/n J largest unmarked pro-
cess numbers of the data list to its n-outgoing
channels and marks these sent process numbers.
Note that, if the number of unmarked process
numbers kept in the data list is less than 1 k/n],
then all of them are sent. Therefore, each node
receives at most n[k/nJ process numbers from its
n-neighbors. If any of these process numbers is
not received yet, the node puts it into the rear of
the data list; otherwise discards it. In addition,
every node finds the kth largest process number
and keeps only the first k largest process numbers

AIgorit S (Fault-tolerant parallel k selec-
tion algorithm).

Step 1: / * Initial step */
(1) Initially, each node sends its residing pro-

cess number to n-outgoing channels and marks
the sent process number in its data list. Every
node of the n-cube will receive n process numbers
from its n-neighbors.

(2) If k < n, then let I= n + k - 1, else I =
2n - 1.

Step 2: For i = 1 to I do the following oper-
ations:

(1) Each node receives at most max(n, nl k/n J)
process numbers from its n-neighbors. If any of
these process numbers has not been received yet,
then puts it into the rear of the data list; otherwise
discards it.

(2) Each node finds the min(k, s)-th largest
process number and keeps the first min(k, s)
largest process numbers in its data list and dis-
cards the others, where s is the current size of the
data list.

(3) Every node sends the first max(1, 1 k/n J)
largest unmarked process numbers of the data list
to its n-neighbors and marks these sent process
numbers. If the number of unmarked process
numbers less than max(1, 1 k/n]), then all of them
are sent.

Step 3: Finally, each node sorts the k marked
process numbers of the data list in descending
order.

In the following, we give an example to show
how our algorithm works.

94

Volume 39, Number 2 INFORMATION PROCESSING LETTERS 31 July 1991

D3=(6^} P7’ 1 0,={7^) D3 ={6*,5”,2) D7 ={7*,6,3)

D7 ={l”)

(a) Initial r the 1 st iteration

D3 = {8Ar7,6*) D7 = (7”,6”,5) D3 = (8x,7A,6x) D7 = {8*,7=,6*)

(c) er the 2nd iteration (d) After the 3rd iteration

D6 = (6*,7”,6^ } D4 = (8*,7*,6 * }
Dt, = (8”,7”,6*) D4 = (8”,7*,6*)

D1 = {6”,7”,6*)

Dq = {8=,7

D3 = (8*,7*,6*) D7 = {8”,7*,6”)
D3 = {6*,7”,6”) 07 = (6*,7*,6”)

Fig. 1. Data exchanges and data lists for k = 3 selection in a 3-cube.

95

Volume 39. Number 2 INFORMATION PROCESSING LE-M-ERS 31 July 1991

xample 2.1. We use a 3-cube to show how to get
the first three largest process numbers.
e: Represents the process number residing in

node i.
Dj: Represents a data list which will be used to

store the first k largest process numbers at
node i.

Initially, P, and Dji of node i are shown in Fig.
l(a). After Step 1, each node receives three process
numbers from its 3-neighbors. For example, node
0 receives process numbers 4, 5, and 2, and hence
the data list D, = {8*, SA, 4). The mark “*”
denotes that data have been sent from the data list
and the mark 6cA’9 denotes that data will be sent in
the next iteration. The other nodes also get their
data lists. The result is shown in Fig. l(b). After
the second iteration, node 0 receives process num-
ber 8 from nodes 1, 2, and 4. Therefore, the
process number in its data list remains unchanged.
Figures l(c)-(f) show the actions from iteration 2
to iteration 5. The final result is shown in Fig. l(f).

Now, we analyze the time complexity of the
FPKS algorithm. We first analyze the communica-
tion complexity. In each step, each node sends
max(l, [k/n]) data packets to its n-neighbors. The
algorithm consists of at most 2n iterations. Thus
the message complexity M(n) for an n-cube is
derived as follows.

M(n) =
n(2n) = 2n2, if k<n,

n[k/n](2n) < 2nk, if k > n.

Hence, the total communication complexity is
O(max(kn, n’)).

The computation time is consumed in finding
the first k largest process numbers and checking
whether these process numbers have been received
or not. In Step 2, each node receives at most
max(n, nlk/n J) process numbers from its n-
neighbors. Therefore, the size of the new data list
is no more than k + n. I[n our algorithm, we must
keep the first k largest process numbers in the
data list. It is easy to solve it by the following
steps. We first select the k th highest elements I,
in the data list. Next, we scan each element of the
data list and keep the one in the data list if it is
greater than Ik. Finding the k th largest number
from k + n elements takes O(max(k, n)) time

units [l]. Since each iteration needs O(max(k, n))

computation time, the total computation time
complexity is O(max(kn, n’)). Therefore, the time
complexity of our algorithm is

of t S dgorit

In this section, we shall show our algorithm is
correct and the algorithm can tolerate at most
n - 1 faults in an n-cube network. For the sake of
easy description, we define the following term. If
two unmarked process numbers, u and u, have
been sent to a node at the same time, then u will
be sent before u when u 3r v and we say that v is
delayed one step by u.

. Let n,n,+, . . . nr+d denote a shortest
path from node nj to node n j+d with distance d. In

the FPKS algorithm, if the kth largest process
number reaches node n,, then it will be sent to node

ni+d at most delayed k - 1 steps by some of the first
k - 1 largest process numbers when k < n.

oof. We shall prove it by induction as follows.
Basic k = 1: Clearly, it is correct.
Induction hypothesis k = q: The qth largest pro-

cess number that reaches node n, can be sent to
node nj+d at most delayed q - 1 steps.

Induction k = q + 1:

Case 1: The (q + 1)th largest process number is
not delayed by the qth largest process number in
the path from node nj to node nj+d. Then the
(q + 1)th largest process number can be treated as
the qth largest process number. By the induction
hypothesis, it holds.

Case 2: The (q + 1)th largest process number is
delayed at least once by the qth largest process
number and the last one delay is in node nj+j
(j < d). Assume the q th largest process number
reaches the node n j+dm + 1 steps earlier than the
(q + 1)th largest pro.;ess number. Thus, the (q +

1)th largest process number is delayed m steps by
some of the first q - 1 largest process numbers
after the qth largest process number left the node
n r+j. In addition, the q th largest process number
cannot be delayed by any process number from
node ni+j+i to node n,+d. Once the qth largest

96

Volume 39, Number 2 INFORMATION PROCESSING LE’I-TERS 31 July 1991

process number is delayed at node n, +p, j < p < d,

it will be caught up by the (q + 1)th largest pro-
cess number in the node n,+p. This is in contradic-

tion to the assumption of Case 1.
Moreover, in the path from n, to ni+i, the qth

largest process number is not delayed by any one
of the process numbers which delay the (q + 1)th
largest process number in the path from ni+i to

ni+d- 1’ If the qth process number is delayed by
these process numbers in the path from ni to ni+j,

they cannot delay the (q + 1)th largest process
number in the path from n,+j to ni+d_i. Hence,
the qth largest process number can be treated as
the (q - m)th largest process number. By the in-
duction hypothesis, it can only be delayed in
q - m - 1 steps to send the q th largest process
number from node n, to node ni+d. Therefore, the
(q + 1)th largest process number will be delayed
at most q Step from node n, to node n,+d. Cl

eorem 3.2. The FPKS algorithm is correct if

f. The length of the shortest path between
two nodes in an n-cube is at most n. By

Lemma 3.1, each node will get the first k largest
process numbers after n + k - 1 steps. q

In the following, we shall prove that the FPKS
algorithm is correct if k :> n. Without loss of gen-
erality, let k = Sn, where S is an integer. Then we
can divide the first k largest process numbers into
n groups, G,, G,,..., G,, and each group G, con-
tains 8 process numbers. Let the process numbers
in group Gi be larger than those in group Gi+,,
wherelgi<n-1.

mma 3.3. Let n,n,,, -. . ni+d denote a shortest

path from node n, to node n,+d with distance d. In

the FPKS algorithm, if the process numbers in

group G, reach node n, , then they will be sent to

node n,+d at most delayed i - 1 steps by some of zhe

process numbers in groups G,, G,, . . . , and G,._ 1,
where 2<i<n.

oaf. When k = 6n, each node sends the first 6
unmarked process numbers instead of the maxi-
mal one. The proof of this Lemma is similar to
that of Lemma 3.1. We omit the details. •I

k > n.
The FPKS

f. The length of the shortest path between
any two nodes in an n-cube is at most n. By
Lemma 3.3, each node will get the first k largest
process numbers after 2n - 1 steps. q

algorithm is correct if

For an n-cube network, there is at least one
shortest path of length no more than n + 1 from
any node to any other node if the number of faults
is no more than n - 1 [3]. Therefore, any one of
the first k largest process numbers located in node
n, can reach to any node nj of an n-cube at most
in (n -I- I) steps if there exists a shortest path
between nodes ni and nj. By Lemma 3.1 and
Lemma 3.3, the k th largest process number is at
most delayed by n - 1 steps. Hence, the k selec-
tion problem can be solved in 2n steps when there
are n - 1 faults in the n-cube networks.

. Conclusions

The advantage of selecting the first k largest
process numbers is that every node knows where
the first k largest process numbers are, and fur-
ther, the ranks of them can be determined. The
time complexity of the FPKS algorithm is
Q(max(kn, n 2)). The maximal number of faults
that the algorithm can tolerate is n - 1.

eferences

[l] E. Horowitz and S. Sahni, Fundamentals of Computer Al-

gorithms (Computer Science Press, Rockville, MD, 1978)

Chapter 3.

[2] G. Lelann, Distributed systems-towards a formal ap-
proach, IFIP Information Processing 77 (1979) 155-160.

[3] Y. Saad and M.H. Schultz, Data communication in hyper-

cubes, Research Rept. YALEU/DCS/RR-428, Yale Uni-

versity, 1985.

[4] J.P. Sheu and J.S. Tang, Efficient parallel k selection

algorithm, Inform. Process. Lett. 35 (6) (1990) 313-316.

[5] J.P. Sheu, CL. Wu and G.H. Chen, Selection of the first k

largest processes in hypercubes, Parallel Comput. 11 (3)

(1989) 381-384.

97

