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SUMMARY

We introduce a new model for replication in distributed systems. The primary motivation for replication
lies in fault tolerance. Although there are different kinds of replication approaches, our model combines
the advantages of modular redundancy and primary-stand-by approaches to give more flexibility with
respect to system configuration.

To implement such a model, we select the IBM PC-net with MS-DOS environment as our base.
Transparency as well as fault-tolerance file access are the highlights of our system design. To fulfil these
requirements, we incorporate the idea of directory-oriented replication and extended prefix tab/es in the
system design. The implementation consists of a command shell, a DOS manager, and a recovery
manager. Through this design, we can simulate a UNIX-like distributed file system whose function is
compatible with MS-DOS.
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INTRODUCTION

With progress in the area of computer networks and operating systems, distributed
processing has become more and more attractive in recent years. Many distributed
systems have been proposed. 1-5 These systems differ in their goals, design philoso-
phies and implementations, but there are still many other approaches worth trying.
We shall concentrate on the design and implementation of a distributed file system.
Furthermore, we wish to exploit the fault-tolerant potential of distributed systems.
In a distributed file system the storage is distributed over the network. The failure
of a few sites does not cause a disaster because there are always some sites still
working well. Thus, if we replicate a file and distribute the copies over the network,
the availability of the file is significantly enhanced.

Although fault tolerance is the nature of distributed systems, whether it can be
used depends on the facilities provided by their file mechanisms. Such facilities must
replicate the file and maintain the consistency of each copy automatically. Many
researchers have been working on that, but their approaches are different. One of
these is to support no mechanism for replication at all, as in the first version of
Clouds, 6 V system 2 and Unix United. 7 Another scheme, introduced by Purdin,
Schlichting and Andrews, 8 provides low-cost semi-automatic file replication and
location transparency facilities for a network running Berkeley Unix. This can be
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done through two mechanisms: reproduction sets and metafiles. Consistency between
copies is achieved on a ‘best effort’ basis. Other systems, such as LOCUS, l Eden 9 and
an extended version of UNIX United, 10 have mechanisms to handle file replication
and consistency between copies despite failures. Sprite’s mechanism for locating files
(prefix tables) indicates some potential for replicating files, although the exact
mechanism for maintaining consistency is not clearly described.

Our goal is to design a distributed file system with emphases on fault-tolerant
features and network transparency. The base of our implementation is the IBM PC-
net with an MS-DOS environment; we intend to simulate a UNIX-like file system
on it. Our implementation will provide network users a more convenient tool to
access network resources without knowing their locations. Furthermore, a fault-
tolerant feature is included in our implementation. It will be like an MS-DOS
extension with network capabilities and fault-tolerant file accesses. In
distributed file system on the IBM PC-net environment.

AN ABSTRACT MODEL FOR FAULT TOLERANCE

Issues concerning fault-tolerance models

There are various kinds of errors that can occur in a distributed file

fact, it is a

system. To
name a few: programming errors, operator errors, transaction errors, system errors
and media errors. 11 Generally, they can be divided into two classes: software failures
and hardware failures. Software failures are caused by incorrect programming or
even ill-devised algorithms. Errors of this kind are very unpredictable and hard to
deal with as they contradict the assumption that all the execution results will preserve
the consistency of the file system. Therefore, we do not aim to correct such errors.
On the other hand, hardware failures such as server crashes are more predictable
within our model. Thus our fault-tolerant approach aims primarily at hardware
failures.

The fault tolerance is enforced through replication. According to Yap, Jalote and
Tripathi 12 and Bloch, Daniels and Spector 13 the distributed schemes (by contrast
with non-distributed ones 14 ) that use replication to support fault tolerance can
be classified into three categories: the primary-stand-by approach, the modular
redundancy approach, and the weighted voting approach. The primary–stand-by
approach 1,15,16 selects one copy from the back-ups and designates it as the primary,
whereas the others are stand-bys. Then all subsequent requests are sent to the
primary copy only. The stand-by copies are not responsible for the service, and they
only synchronize with the primary copy periodically. In case of a failure, one of the
stand-by copies will be selected as new primary one, and the service goes on from
the point synchronized most recently. Such a scheme does not waste resources on
duplicated copies, although recovery from a crash is not instantaneous. A variation
is primary–secondary copies 17 in which the modification requests are propagated to
the secondary copies, but consistency between secondary copies is not guaranteed
at any time and enquiries are not limited to the primary copy.

The modular redundancy approach, 5 also called unanimous update, 18 makes no
distinction between the primary copy and stand-by ones. Requests are sent to all
the back-ups simultaneously, and service is performed by all the copies. Therefore,
it is fault tolerant provided that there exists at least one correct copy. In contrast to



A DISTRIBUTED FILE SYSTEM 659

the primary–stand-by approach, the service continues instantaneously after the fault
occurs, but it is costly to maintain the synchronization between the duplicated items,
especially when there are many of them. Furthermore, when the number of replicas
increases, the availability for file accesses decreases, because any update operation
will lock all the replicas.

In the weighted voting approach,
19 all replicas of a file, called representatives, are

assigned a certain number of votes. Read (write) operations are performed on a
collection of representatives, called a read (write) quorum. Any read (write) quorum
which has a majority of the total votes of all the representatives is allowed to perform
the read (write) operation. Such a scheme enjoys the maximum flexibility in that
the size of the read (write) quorum can change for various conditions. On the
other hand, it may be too complicated and hence not be feasible in most practical
implementations.

Our model

Our model is similar to the modular redundancy approach, but some modification
is made to accommodate the advantages of the primary–stand-by approach. In our
model, all copies of a file are divided into several partitions. Each partition functions
as a modular redundancy unit. One of the partitions is selected as primary and the
others are backups, just as in the primary–stand-by case. In this manner, we find a
balance in the trade-off between the above two approaches. Intuitively, the choice
is an eclectic one. Thus flexibility is enhanced while instantaneous forward progress
is still retained to a certain degree.

In fact, this scheme can be seen as one that generalizes both the modular redun-
dancy and primary–stand-by approaches. Let P denote the number of partitions,
and W i, 1 ≤ i ≤ P, denote the number of replicas in each partition i. When P is
equal to 1, this scheme reduces to the modular redundancy case. If all Wi s are equal
to 1, our scheme becomes the primary–stand-by case. Thus by adjusting P and each
Wi we can reconfigure the system for different conditions at any time. The flexibility
will thus be enhanced while the scheme still retains the instantaneous forward
progress.

There are some problems involved in the model. First, how to choose a primary
partition from all the equally capable partitions. We can choose one arbitrarily, or
we can run an algorithm as complicated as consensus protocols. But the amount of
information exchange in such an algorithm could be extremely large, which is not
desirable. A simpler solution is to let the one that responds first be the primary
partition. This also involves some consensus problems and communication overhead.
Evaluations and comparisons between the above schemes are beyond the scope of
our discussion. We just choose the simplest way: to predefine all the partitions as a
linear order.

Secondly, there is the problem of how to enforce the single-copy semantics in
each partition. Since the modular redundancy scheme is used in each partition, the
single-copy semantics will be guaranteed by duplicating each update operation on
the partition. However, in order to reduce the communication overhead of the client
machines, all replicas in a partition will form a linear list together. The requests can
then relay through the list, and the communication overhead is distributed over all
the replicas. Thus a client is no longer responsible for handling all the call and
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returning messages, and the single-copy semantics is still enforced.
Thirdly, forward progress must be guaranteed. If there is any replica available

when a fault occurs, the execution ought to continue as smoothly as possible. It is
a simple job when the primary partition still has replicas available. But data consist-
ency may be a problem if the available replicas are only in the back-up partitions.
The most popular approach is to establish checkpoints 20 periodically. That is also
the scheme we are using. When the failed server is resumed after a failure, the data
in store would not be the most up-to-date. The data should then be corrected
according to information obtained from the checkpoints.

Scenarios

In the following, we show how the model works. The group of replicas is divided
into several partitions, as shown in Figure 1. The replicas (servers) in each partition
in turn form a linear-order list. The ordering criteria can be the response time, the
load of that server, or anything related to the system performance.

A service request is sent to the head of the replica list of the primary partition.
If this request is an update operation, then the head replica must propagate the
request to the next replica, which in turn sends the request to its next replica. All
the update requests are queued. When a checkpoint is reached, the queued requests
are relayed to the other partitions in order to maintain the consistency. Let us
examine our model in the following conditions.

First, let us assume that failures are absent. Under normal conditions, only the
first replica of the primary partition list will get the request. If no data are modified
during the execution, the result will be sent to the client and only one request is
made. If the request has updated some data, the request will propagate to the servers
on the rest of the partition list. Each server will wait for the acknowledgement of
its successor after the server has sent out its request. Upon receiving that signal
from its successor, the server will send the acknowledgement to its predecessor. But
from the viewpoint of the client, the request is made only once, and only one copy
of the result is received by the client. The request and the acknowledgement sent
by the client and servers are shown in Figure 2.

Secondly, there may be failures in the primary partition. This kind of failure can
occur in two places: the first replica or the replica in the rest of the primary partition
list. In both cases there are two types of failure-occurrence time: before or after the
replica server propagates its request.

Figure 1. Partitions of replicas
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Figure 2. Messages sent in normal condition. The numbers indicate the message sequence of a
request–service cycle. All servers in the primary partition will relay the request and wait for the result
(acknowledge) of its successor. Servers in the back-up partitions do not synchronize with those in the

primary partition

When failure occurs in the first replica before the request is propagated to its
successors, the client will detect that the first replica server has failed, and the same
request will be sent to the first replica server’s successor. Then everything continues
just as if no error has ever occurred, except that the client repeats the request and
the result is sent directly from the next server to the client, as shown in Figure 3.

Now consider the case of failure occurring in the first replica after the request is
propagated to its successors. If the first replica server fails after the request has
propagated to the successor, the successor will receive the same request twice. Since
the request carries with it a sequence number, the successor will execute the request
only once, and the result is sent directly from the next server to the client, rather
than to the first server, as shown in Figure 4. When failure occurs in the other
replicas before (or after) the request is propagated to their successors, the working
scheme is the same as when the failure occurs in the first replica except that the
word ‘client’ is replaced by ‘predecessor’ above.

Finally, when all the replicas in the primary partition fail, as shown in Figure 5,
one of the back-up partitions is selected to take over as the new primary partition.
Nevertheless, how to choose it? We use a straightforward way. The partitions are
given in a default order to reduce the complexity of the system implementation.

Figure 3. Failure occurs in the first replica before the request is propagated to its successors
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Figure 4. Failure occurs in the first replica after the request is propagated to its successors

Figure 5. Messages sent in the case where the whole primary partition fails

When a new primary partition takes over, the status of the file is restored to what
it was at the latest checkpoint, and the execution then continues.

Recovery

Recovery from a failure is important for a fault-tolerant system. In contrast to
fault detection and assessment, which are passive because they are not intended to
change the system,

 21 the recovery does produce changes in the system in order to
accomplish the restoration; therefore it is active. Our recovery management has at
least two responsibilities. One is to restore the file system to the latest consistent
state after failures. The other is that the consistency among the replicas must be
guaranteed after crashed servers return to service in the network.

The recovery strategies can be divided into two classes: the centralized approach
and the distributed one. When traditional file systems are replaced by distributed
file systems, the recovery mechanism is more complex because distributed storage
imposes a big problem for consistency, and different kinds of errors are added by
communication failures, server failures, and perhaps even failures of the recovery
processes themselves. Since most of the recovery mechanisms come from database
systems, our discussion about recovery relies on analogies with the ways in which
database models handle recovery.

There is a way to classify recovery mechanisms according to the file-system states
after the restoration. Backward recovery restores all the objects to the state before
the atomic action begins, without regard to the current state. On the other hand,
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forward recovery makes use of a part of the current state to produce a new state
that is error-free. We use backward recovery, as it is more straightforward. Atomic
action 22 is a very important characterization of a distributed recovery model. An
action whose updates can be performed without undoing the updates of other actions
is called recoverable. In our model recoverable atomic action is assumed.

One problem arises when we handle storage recovery. Should we choose a new
server and mark the crashed server obsolete after the server fails; or should we wait
for the failed server to come back? The former approach can ensure that there are
always available back-ups. The disadvantage is that the overhead of recreating a
new back-up may be very high. Besides, making a whole server obsolete because of
a single update failure seems to be unreasonable. As a result, we have chosen the
second approach to reduce the overhead. Moreover, we think that the server storage
is relatively stable, as it does not fail very often. In the condition that several back-
ups exist, we prefer to wait for the server’s recovery.

Our recovery mechanism is rather simple compared with other complex schemes.
Refer to the example in Figure 1, where the responsibilities of the failed servers in
the primary partition will be taken over by their successors. As shown in Figure
6(a), when the failed server is recovered, it will restore the modified data into a
consistent state. If the whole primary partition fails, the data in the back-up partitions
may be obsolete, because the most recent update operation may not have had time
to reach the back-up partitions. However, the next partition of the primary partition
is selected as the new primary partition in our scheme. When the failed servers are
recovered, their states are updated to be consistent with those of the servers in the
new primary partition, as shown in Figure 6(b).

DISTRIBUTED FILE SYSTEM DESIGN

The goal of our distributed file system is to provide users with transparent and fault-
tolerant remote accesses to the file system. The approach we use to achieve fault
tolerance has been described in the abstract model. As for transparency, in order to
provide an interface just like the centralized time-sharing systems, four types of
transparency must be satisfied: 23 location transparency, replication transparency,
concurrency transparency and failure transparency.

To satisfy the constraints mentioned above and to implement the abstract model,
we introduce several mechanisms which will be added to the IBM PC-net with
MS-DOS environment. The result is a distributed file system that is functionally
indistinguishable from ordinary centralized MS-DOS systems, at least at the shell-
command level.

Directory-oriented replication

When fault tolerance is enforced through replication, the granularities of repli-
cation vary in size from file to disk. On one hand, a file (or even a record, though
that is unrealistic if we consider the overhead) can be the unit of replication. Such
an approach requires a mapping table for every replicated file. As the number of
replicated files or their replicas increases, the overhead of maintaining such tables
may cost too much. On the other hand, one disk or server can be dedicated to the
back-up of another disk or server. Such an approach can save us most of the overhead
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Figure 6. Recovery working schemes

of maintaining the mapping tables that is needed in other approaches. But whether
it is worth while dedicating additional disks to guarantee fault tolerance remains
questionable.

Our design is an eclectic one, which lies in the middle of the grain-size range. We
call it directory-oriented replication. The unit of replication is the directory. When
modifying a replicated file, the system will also search for and modify the replicas
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of the replicated file and preserve their consistency. We choose the directory as the
unit of replication so that the mapping overhead can be reduced. The replica
directory is just a place where we put the replicated files. It is not necessary to
replicate all the files in the replicated directory; users can specify which files are to
be replicated. The working scheme in the directory-oriented replication will be
described in combination with name-space management in the following subsections.

Name-space management

A naming service, which binds global and high-level names to objects, is a key
component in distributed file systems. A global naming service can provide names
for objects in the system that can be passed between clients without change in
interpretation, often referred to as absolute names. 24 In our distributed file system,
we want to provide a global naming facility to meet the above requirements. More
importantly, the transparency constraints must be satisfied. Users will access the
distributed file system through our naming facilities as if they were using a single
UNIX-like time-sharing system.

The prefix tables introduced by Welch and 0usterhout 25 have provided an efficient
mechanism for locating files in the Sprite distributed system. The mechanism has
four attractive features. First, clients negotiate directly with file servers to build the
prefix tables, so we can avoid the need for a separate name server and make the
file system more fault-tolerant. Secondly, their dynamic data structure permits the
system to adapt gracefully for reconfiguration. Thirdly, by placing different entries
in different clients’ prefix tables, the mechanism can support private files and a
simple form of replication. Finally, clients need not have local disks because they
can use network disks.

The V’s system’s decentralized naming facility 24 is a similar mechanism with some
variations. That is, the V mechanism replicates the top-level directories in the system.
Such an approach will increase the reliability of top-level directories with the cost
of maintaining consistency between copies of replicated directories. Another differ-
ence lies in the way of handling prefix cache misses (prefix tables are cached in the
main memory). The V system will broadcast for the real servers, whereas Sprite
leaves the naming tasks to the server that is nearest the root.

We apply the concept of prefix tables, and exploit their fault-tolerant potential.
Some interesting features are added to the prefix tables for our model. In our
description, a client is a machine that requests services and a (file) server is the
machine that serves. A machine can be both a server and a client. A domain is a
subtree that divides the file system. A prefix is the topmost directory in the domain.
In our extended version of prefix tables, each entry is added with a new field, the
back-up-table pointer. Thus each entry in a prefix table corresponds to one of the
domains of the distributed file system. It contains the prefix of the domain, the
name of the server that stores the domain, the token of the domain, and a pointer
to the back-up table which stores the information of all the file server’s replicas in
a linear order. The client can send requests to the servers according to this linear
order.

In the file system shown in Figure 7, the prefix table of one client will have the
form shown in Figure 8. Each prefix (domain name) corresponds to a domain’s root
directory. A file server may implement more than one domain. Any naming service
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Figure 7. An example of file-system hierarchy. The root of server A is mounted on \USR1. The root of
server B is mounted on \USR2. The root of server D is mounted on \USR3\TMP. The root of server E is
mounted on \USR3. The root of server C is \. The entire file system is a combination of servers A, B,

C, D, E, but in the view of users it behaves as a single hierarchy

Figure 8. A prefix table with its back-up tables
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will be done by searching the table for matching prefixes. If several prefixes are
found, the longest one is selected. Then the prefix is truncated from the path-name,
and the remaining path-name is sent to the matching server for further search. For
example, the path-name \USRl\DFS.C will match the prefixes \ and \USRl which
correspond to domains 5 and 17 (server C and A), respectively. The latter is longer
and is thus selected. \USRl is then truncated from the path-name, which becomes
\DFS.C, and the new path-name is sent to server A for further processing. That is,
server A is responsible for the remaining naming service. Such a mechanism can
handle both absolute and relative path-names.

Now we turn to the replication aspect. If the file-name is prefixed by REP$,
which indicates that it is important (needs replication), the ‘search’ operations are
performed by using the original path-name, then the matched entry is also checked
to see if there is any back-up. If so, the back-up table pointer field of the entry will
point to the entry of the back-up table that gives the related information; otherwise
it will be null. A back-up table for server C will be like that in Figure 8. In each
entry a directory is associated with a back-up directory and a pointer to the next
back-up entry, if any. This forms a replica list. To distinguish various partitions in
the replica list, each back-up directory is associated with a partition id as shown in
Figure 8. In our example there are two directories which offer backups: \, and \DFS.
While at another client, the prefix table together with the back-up table may look
different. From the above description, we can see that each client’s view of the file
system and reliability is defined by its prefix table and back-up table. The prefix is
then replaced by the new prefix of the matching entry, and the new path-name is
sent to the prefix table for another search. For example, consider the DOS command

COPY\AUTOEXEC. BAT \DFS\REP$l

The file-name prefix REP$ specifies that the file needs back-ups. The replica directory
of \DFS is \USR3\REFlDFS. Hence two files \DFS\REP$l and \USR3\RERDFS\REP$l are
created as shown in Figure 9. Similarly, when a user executes the DOS command

DEL REP$l

at current directory \DFS, both the files \DFS\REP$l and \USR3\REl+DFS\REP$l will
be deleted.

Figure 9. An example of file replication
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However, what can we do if the directory is not replicated (no matching entry in
the back-up table)? There are two kinds of strategies to make replication. One is to
place the replica in the nearest parent directory. This approach can create many
conflicts and cause more confusion. The other is to create the corresponding back-
up directory automatically. This would lead to substantial overhead to maintain the
back-up tables. We think that neither approach is appropriate. There is another
alternative, which is to make the directory replicable. Users can specify whether
they want to replicate the directory upon creation. Thus we leave the decisions to
the users, and enhance the flexibility of the system configuration.

Command shell and DOS manager

Our model is implemented on an IBM PC-net with MS-DOS network environment
as shown in Figure 10. The primary motivation for making such a decision is
availability, because we already have a network of PC/ATs connected by PC-net,
so we do not have to build another network from scratch. Another motivation for
such a decision is the feasibility of implementation. Although MS-DOS resembles
UNIX in many respects, there are still many differences between them. Most
obviously, MS-DOS is a single-user (single-task) system. In a network environment,
we need to handle requests for access to network resources. Fortunately, PC-net
solves most of the problems. That is part of the reason why we have chosen the PC-
net.

However, such an implementation decision has its cost. The more PC-net effec-
tively imposes decisions on us, the less flexibility we can have. Therefore, we have
still had to face some problems. The primary tasks for our implementation are:

1. Integration: despite its networking ability, PC-net is not a distributed system.
We have to integrate all the disks in the network to provide a single, consistent
UNIX-like file system view for the users. This is accomplished primarily by
a command shell at the shell command level, called dsh.

2. Fault tolerance: we have to make sure that all the files that are important and
need replication (prefixed by REP$) which are replicated, and all copies are
consistent. In the case of a fault occurrence, continuous execution should be
guaranteed. This is the job of the DOS manager at the system-calls level.

3. Recovery: when servers recover from errors, we should do all the recovery
jobs. This is the task of the recovery manager.

The command shell serves as a simulation of a UNIX-like file system on a DOS

Figure 10. System architecture of our implementation
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environment. Its primary job is to make the underlying PC-net with MS-DOS
environment transparent to the users. All the UNIX-like path-names in the user’s
commands are translated to related DOS path-names. There can be no such concept
as disk names or machine (PC) names. The users are dealing with an integrated,
single and UNIX-like file system. For example, server A is mounted on the \USRl
of server C. When the prompt is

[\USRl\DFS],

which indicates the current directory \USRl\DFS, this is actually server A’s subdirec-
tory \DFS. Through dsh, we create a virtual UNIX-like file system based on the PC-
net with an MS-DOS environment.

In addition to path-name translation, the other basic function of dsh is to execute
user programs. Our command shell can execute two categories of commands:

1. MS-DOS internal commands, such as COPY, DIR, REN, DEL, etc.
2. External commands (programs stored on the disk in the form as .EXE or .COM

files).
Our dsh also supports environment variables, such as PATH. Thus the external
commands can be executed if they are in the current directory or in the directories
recorded in the PATH environment variable.

At the system-calls level, we need a set of new system services to meet our
additional functional requirements. There are two ways to satisfy our need. One is
to build a complete new kernel. The other is to add some facilities to DOS, i.e. to
adjust DOS to fit our requirements. The former is too costly. Besides, one of our
goals is to build an interface that will combine various file systems in the future, but
not to build a new one. Therefore we have chosen the second approach.

Our DOS manager is an extension of ordinary DOS system calls. In addition to
the ordinary services provided by DOS system calls, the DOS manager is also in
charge of the file replication, fault detection and continuums execution. All file
operations making requests to DOS will be redirected to the DOS manager first. If
a reference is just to an ordinary file (not replicated), the request is passed to DOS
directly; otherwise some preprocessing work will be done before the request is passed
to DOS. After each normal DOS call returns, the DOS manager will check if there
is any fault occurrence, and will ensure the smoothness of the execution if there is
any copy available. Maintaining consistency between replicas is also the responsibility
of the DOS manager.

Recovery management

The recovery we mention here aims primarily at the restoration of failed servers.
Normally, the recovery-management structure consists of two components: the recov-
ery manager and the log manager. 26 The recovery manager is responsible for manag-
ing the update operations. The log manager records all the operations done in the
system. Since all file modifications are in-place updating, there is no cache, so the
need for log manager’s services is greatly reduced.

The recovery manager provides the following services:
1. The do operation, which commits and records the actions. Here the actions

are equal to the file-related DOS calls.
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2. The log operation, which records the failed servers and their back-ups’ update
operations after failures.

3. The duplicate operation, which copies the most up-to-date version files to the
storage that is used to support restoration.

4. The restart operation, which reboots the system in order to bring the storage
back to the committed state after a system crash.

All the operations described above should be idempotent; that is, repeated appli-
cations of any one of them should give the same result as a single application. For
example, we can stop the duplicate operation at any time and repeat it from the
beginning, while still retaining the result of a single execution.

IMPLEMENTATION

Command shell— dsh

Our dsh implementation consists of two layers. First, we should translate a user
command’s path-name into a path-name acceptable by DOS. Next, we should execute
the command. In addition, in order to make the network transparent to the users,
new versions of commands DIR, REN and DEL are provided. We have to do this
because our experience shows that many DOS commands, such as DIR, REN and
DEL, are still using FCB-style DOS calls, although MicroSoft Inc. has declared that
they have stopped using these DOS calls after version 3.X. Since these FCB-style
DOS calls are very hard to modify (see the next sub-section for explanation), we
rewrite these commands by using the DOS system calls.

The translation mechanism is based on the extended prefix table. This table will
reside in main memory as long as dsh is active. As for executing user commands,
the MicroSoft C compiler that we have used offers a set of library functions, such
as spawnle, spawnve and system, which can spawn child processes and execute DOS
commands. For example,

system("TYPE AUTOEXEC.BAT";

can execute the DOS command TYPE AUTOEXEC.BAT, and

spawnve(P_WAIT, "PE2.EXE", argument list, environment pointer);

can spawn a child process executing PE2.EXE. With these functions,
the command shell is a simple task.

DOS manager

implementing

Two things must be done by the DOS manager. First, if the file should be fault-
tolerant (prefixed by REP$), the redirector should make sure that all copies of the
file are up-to-date, and the DOS calls execute successfully. Secondly, if any copy of
the file is not accessible (owing to errors such as server crashes), the redirector
should record such failures and continue the execution provided that there is any
copy that is accessible.
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Table I The file-handle-related system calls
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003EH Close file
003FH Read from tile handle
0040H Write to file handle
0042H Move the read-write pointer
0057H Get/set file time and date

Table II The ASCIIZ-string-related system calls

003CH Create a file and assign a handle
003DH Open a file and assign a handle
0041H Delete a file
4300H Get file attributes
4301 H Set file attributes
0056H Rename a file
005BH Create a new file (but do not destroy

existed files)

In our implementation, the system calls that correspond to the file manipulations
including the functions related to file handles and ASCIIZ strings are modified.
They are listed in Table I and Table II, respectively. All these DOS calls are file-
related. There are other calls that refer to files too. But most of them are used in
networking or peripheral I/O, or system operations. At present we do not think
there is any necessity to modify these calls.

We modify the DOS system calls through intercepting the interrupt 21H. As
shown in Figure 11, we first replace the interrupt service routine with our program
( redirector ). Thus all the function calls will be redirected to appropriate routine for
preprocessing if they are functions listed in the Tables. Then the normal DOS routine
is followed by our post-processing routines. The jobs of replication, fault detection
and forward progressing are all completed in this way.

As we have mentioned above, there are some DOS commands and even some
old application programs still using FCB-style DOS calls, which have been allegedly
discarded by MicroSoft Inc. At first we wanted to modify these DOS calls too, but

Figure 11. Intercepting INT 21H to modify DOS system calls
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we discovered that it was almost impossible. The major problem comes from the
naming structure of FCB. FCB’S file-name space is only 11 characters long (name
+ extension), which means that the file must be at its current working directory. To
perform even a simple function, such as deleting a file, we must change the working
directory first, then delete the file, and finally change the working directory back.
To illustrate, both of the functions 13H and 41 H are file deletion. But the former is
an FCB-style function. Thus deleting a file \DFS\SH.C when the current directory is
\USR1 produces the following tasks: change the current directory to \DFS first, delete
SH.C, and then change the directory back to \USR1. In an environment where all
file-related calls need to be repeated many times (for the sake of replication), this
will be quite an overhead. On the other hand, a single call, 41H, can complete all
the tasks. As a consequence, we choose to abandon these DOS calls completely and
replace them with compatible UNIX-style (handle) DOS calls.

Although only part of the DOS calls need to be modified, there are still substantial
problems to be dealt with. The primary source of trouble is the fact that DOS calls
are not atomic. One DOS call may affect the next DOS call or be affected by
previous DOS calls that make the work of modification even harder. For example,
DOS calls 4EH and 4FH are correlated and often used in directory listing. The former
find the first file in the specified directory, and the rest of the files will be found by
4FH. We cannot get all the execution information from a single DOS call 4FH. That
is the reason why we only guarantee fault-tolerant file accesses, not fault-tolerant
DOS calls.

Moreover, many undocumented (or reserved) function numbers are actually being
used (34H, 37H, to name but two). These lead to some strange behaviors in our
implementation. That is why our implementation is not built completely at the
system-calls level. Initially we wanted to implement the extended prefix table at
system level. But merely intercepting every DOS call to modify the ASCIIZ strings
does not lead to the desired results. Such characteristics of the DOS kernel bring
us too many problems and have forced us to give up this idea.

DOS provides handle-style functions, which are similar to UNIX’s counterparts,
to access files. This is a very advanced programming concept. Since our DOS
manager should replicate files according to a user’s instruction, an extra mechanism
is needed to manipulate replica handles. We have responded to this by devising
handle mapping tables, in which every handle is associated with a handle list. As a
new file is created, the returned handle and the handles of its replicas are filled in
the next entry of the handle mapping tables. Thus, when handle functions are called,
the DOS manager will search the table for the handle. If it is found, this means that
the file is replicated. The same function will then be executed repeatedly with
corresponding handles. When the function calls are ASCIIZ style, the back-up table
is used to handle replication.

Recovery manager

In the current version, our recovery mechanism is simple. The do operation is
completed by each DOS call. The restart operation is just to rebuild all the system
tables and to reboot the system. The remaining operations are log and duplicate,
which are based on the same mechanism, the error-log table.

In the error-log table, each entry records a failed server, its back-up servers, and
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a list of file names as shown in Figure 12. When the DOS manager detects a failed
server, it will call the recovery manager to log such a failure. After that, as a file
corresponding to the failed server is updated, the error-log table will append this
file-name to the file-name list. When the failed server is restored, the duplicate
routine will search the table for matching server id. Then all the files that have been
updated during the failure will be copied from the back-up servers to the recovered
server.

CONCLUSIONS

We have discussed the motivation, design and implementation of our distributed file
system. Our goal of implementing a network-transparent, fault-tolerant (in the view
of file access), distributed file system has been accomplished through the design and
implementation of the command shell dsh, the DOS manager and the recovery
manager. Besides the system implementation, we introduce a new model for file
replication and the idea of directory-oriented replication. Furthermore, we have
augmented the prefix-caching mechanism with replication facilities and have made
the file system more fault-tolerant. We achieve fault tolerance by using replication.
Our model combines the primary–stand-by and modular redundancy approaches to
provide a more general and flexible replication. Our implementation is by no means
optimal in all respects. It only provides another possibility for distributed file systems.

According to our implementation experience on the system, we have found that
replication operations plus network overhead can slow down the response time
profoundly. Intuitively, a replica must be accessed after a failed access to its original
file. Hence the delay is at least twice as long as the delay for a normal access.
However, the frequency of back-up usage depends on how reliable the servers and
network are. There is still much work left to be done in this area. For example, the

Figure 12. An error-log table with its modified file-name lists
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replica list is predefine as a linear array of servers. A more flexible and efficient
algorithm is needed to organize these servers and their back-ups. For achieving
better performance, we need a formula to evaluate such parameters as how many
back-ups are needed for a certain file, how many partitions, and how many replicas
in a partition are most suitable for our system. These questions will be tackled in
the near future.

In addition, we plan to construct a set of file-system services for various user
applications. Furthermore, we intend to modify MS-DOS at the kernel level to
enhance the transparency. In addition to the naming service we have provided, we
want to introduce a more advanced memory-management scheme, such as caching,
to improve our file-system performance. Hence we also need a more complex
recovery algorithm. Another future direction is heterogeneous distributed file systems.
If we consider the various types of machines existing in our laboratories, there is
certainly enough motivation to combine them to form a heterogeneous computing
environment.
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