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Synthesizing Nested Loop Algorithms
Using Nonlinear Transformation Method

Jang-Ping Sheu, Member, IEEE, and Chih-Yung Chang

Abstract—In this paper, we synthesize nested For-loops with
partitions on the innermost loop. First, we present a nonlinear
transformation algorithm to exploit the parallelism of the For-
loops. By the mapping of nonlinear transformation, iterations
of For-loops can be executed in a parallel form. The proposed
algorithm is useful in exploiting the parallelism of For-loops
with one or more partitions on the innermost loop. Then, we
also design algorithms to partition and map the nested For-loops
onto the fixed size systolic arrays. Based on the time and space
mapping schemes, all the iterations of For-loops can be correctly
executed on the array processors in a parallel form.

Index Terms— Data dependence, hyperplane method, nested
For-loops, parallel processing, systolic arrays.

I. INTRODUCTION

OR-LOOPS are widely used in programs such as matrix

multiplication, recurrence evaluations, Gaussian elimina-
tion, LU decomposition, shortest path finding, and a version
of discrete Fourier transform which spend a large amount
of computing time. Since For-loops are the main source of
parallelism in programs, it is attractive for researchers to
exploit their parallelism. Although For-loops offer a large
amount of parallelism, it is sometimes difficult to identify
the parallelism. In order to exploit the concurrence operations
of For-loops, it becomes necessary to construct the data
dependence graph which indicates the dependence relations
between statements [2], [4], [6], [11], [14]. The analysis of
data dependencies in high-level language programs for the
purpose of detecting concurrence of operations has drawn con-
siderable attention. Kuck [5] has exploited the parallelism of
simple loops and introduced the notion of dependence relations
between assignment statements. Banerjee [1] extended the
methodology of transforming ordinary programs into highly
parallel forms. With investigation based upon dependencies
between statements, they have provided algorithms for ex-
ploiting parallelism in loops.

Several approaches on the analysis of parallel execution
of For-loops are based on the iteration level [2], [9], [11].
Lamport [6] tried to execute the loop body concurrently for
all iterations which do not have any dependence relations
between them. Moldovan [11] mapped n-dimensional For-
loops to a t-dimensional time hyperplane and s-dimensional

Manuscript received October 2, 1990; revised March 4, 1991. This work
was supported by the National Science Council of the Republic of China
under Grant NSC 80-0408-E-008-09.

The authors are with the Department of Electrical Engineering, National
Central University, Chung-Li 32054, Taiwan, R.O.C.

IEEE Log Number 9100387.

space hyperplane, where n = s + t. Lee [7], [8] proposed
the necessary and sufficient conditions for mapping the For-
loops onto special purpose VLSI systolic linear arrays and
multidimensional arrays.

It is a simple and fast method to use a linear transformation
function to identify the execution time of each index point
for constructing the parallel executable For-loops. However,
for many algorithms, there is more than one partition on the
innermost loop. If algorithms have partitions on the innermost
loop, the degree of parallelism may not be improved by
using the linear function. Therefore, we propose the nonlinear
transformation functions for solving such For-loops. First,
we propose a nonlinear time transformation algorithm to
parallelize the execution of For-loops. Then, we construct the
structure of systolic arrays and map each iteration of For-loops
onto a processing cell of VLSI systolic arrays by using the
proposed space mapping algorithm. Besides, we discuss how
to partition the For-loops when the number of processors is
fixed. Algorithms and examples are also given to show how
to map all the iterations onto the systolic arrays structure and
perform in a parallel form.

The rest of this paper is organized as follows. In Section 1II,
we introduce the linear transformation method and then state
the For-loops model and basic concepts of the nonlinear
transformation method. In Section III, we will propose the
nonlinear transformation algorithm for parallelizing the exe-
cution of the For-loops model. In Section IV, we present an
approach to space transformation and discuss how to partition
the For-loops into bands that are suitably executed on fixed
size systolic arrays. Finally, some conclusions are given in
Section V.

II. BACKGROUND AND BASIC CONCEPT

During parallel execution of a program, data dependence,
which defines a partial execution order on the statements of a
program, must be observed in order to preserve the semantics
of the program. A data dependence is defined between two
statements (not necessary distinct) S; and Sy, if a scalar or
array variable is generated by S; and then used in S;. We
denote this relation by symbol §; — S». Let I denote the set
of all positive integers and I™ denote the set of n-tuples of
positive integers. The index set of a loop body is a subset of
I™ and is defined as

J={01, i)l L1 Syl S gin S un}

where n is the depth of the nested loop, and [; and u;
are the lower bound and upper bound corresponding to the
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index variable j; in a sequential loop program. Assume
that the data dependence relation exists in two statements
Sy and S, and S;(j1) — S2(j2), where ji and j; € I™ [2].
The data dependence vector is defined by d = ja — J1.
The positive value of dependence vector d indicates that the
execution of two statements S (71) and S2(j2) performs with
d iterations difference.

The hyperplane method proposed by Moldovan [11] applies
a linear time function II to transform each d into IId. To
ensure a correct execution order, II must satisfy the condition
Ild; > 0 for each dependence vector d;. Assume that any
single computation or set computations performed at one index
point j € I™ takes one unit time; thus, a computation indexed
by j in the original algorithm will be processed at time IIj.
By using this transformation function II, the iteration indexes
J1 and jo € I™ satisfied II(j;) = II(j2) can be cxecuted
concurrently. The hyperplane method is an easy way for
mapping the original loops to a parallel form. However, if
there are some partitions on the innermost loop, the degree of
parallelism is inverse proportional to the number of partitions
by using the hyperplane method. We consider the model of
n-nested For-loops with p partitions on the innermost loop.
Let P; denote the ith partition in the innermost loop body and
JP denote the corresponding index set performing on F;. The
loop form can be viewed as follows.

For j; = l; to uy by ky

For j,_1 =lpn_1 t0 upn_1 by kn_1
For j, = I} to ul by kL
P,
End 7,
For j, = li to ui by k,zl

Py
End j,

For 7, = I2 to u? by kP
Py
End j,
End 5,1

End j, (L1)

The values of [; and u; are the lower bound and upper
bound corresponding to the index variable j;, and the values
of I and i, denote the lower bound and upper bound of
index variable 7, on partition P;. Assume that there is no
overlap on the index set of different partitions in the nested
loops algorithm. Without loss of generality, we assume that
Il =i + 1for1<i<p-landk;=1for1<j<n.
We first consider the For-loops model with two partitions
and the model with p partitions can be examined in the next
section. Assume that D; and D, are the dependence matrices
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of two partitions P; and P, respectively. Let Ji and J2
denote the corresponding index sets performing on partitions
Py and P, respectively. There are three cases of dependence
relation between J7* and JJ.

Case 1: Some iterations of J7 data dependent on some
iterations of Jy'.
Some iterations
iterations of J3'.

Case 3: Both of case 1 and case 2 hold.

In order to simplify the discussion, we define the following
terms:

Definition 2-1: A dependence vector d; is an interdepen-

dence vector, denoted as d, if ,
dieD; and 3jeJP suchthatj—d;€J3 or
d; € Dy 3jeJp suchthat j—d; € Jp.
Let D$ and D5 denote the matrices of interdependence vectors
of partitions P; and P,, respectively. The interdependence
matrix D¢ is defined as D® = D} U D5.
Definition 2-2: The interdependence index set J¢ is defined
as

Case 2: of J7* data dependent on some

and

Je = {jlj € J{" and j — di € J3'}
U{j—dilj € Ji and j— d; € J3}
U {jlj € J5 and j - d; € J7'}
UG- dilf e gy andj—d; € 7}
for all d; € D1 and d; € D».
To illustrate the ideas of the nonlinear transformation method,
we start with the following example.
Example 2.1:
For j; =0t0 5
For jo =0to 2
A(j1,d2) = A(jr — L, ja + 1) + A(G1 — 1, J2)
End jo
For jo=3t0 5
A(j1,J2) = A(jr, J2 — 1) * A1 — 2,52 + 1)
End j2
End 7,
In this example, the two-dimensional index set J = {(4,

§2)|0 < 51,2 < 5} has two partitions on the innermost loop.
We have

JE = {(51,42)|0 < j1 5,0 < jo < 2}
JZ = {(j1,72)|0 < j1 5,3 < j2 < 5}

The index dependence graph can be shown in Fig. 1. We can
easily find four dependence vectors in this example:

dy=(1,-1)" =d§, dp=(1,0),

ds = (0,1)" = d, dy = (2,-1)".
The dependence matrices Dy and D, corresponding to parti-
tions P; and P, are

Dlz[_i (1)]:[&152] and DF[‘; _ﬂ:[@,m

and

and



306 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 3, JULY 1991

DN

Fig. 1. The index dependence graph of Example 2.1.

respectively. Obviousty, from the index dependence graph
as shown in Fig. 1, the interdependence index set is J¢
{(j1,32)I0 < 51 £ 5,2 < jp < 3}. By Definition 2-1, we
can find an index jo = (1,3) € JJ that satisfies jo —
d3 = (1 2) € J? and an index 7; = (1,2) that satisfies

= (0,3) € J2. Thus, the dependence vectors (1, —1)°
and (0, 1) belong to the interdependence matrices D$ and D3,
respectively. That is

D* = DU D = {_i ‘”

After obtaining the interdependence matrix D° and index
set J¢, we can determine the parallel execution order of each
index in each partition with a linear transformation function.
All the indexes belonging to J? and JZ will be mapped by the
linear transformations IT*! and II*2, respectively. However,
this mapping will ignore the interdependence relations between
partitions P; and P,. In order to preserve the valid execution
order, some delay C; should be added to each index j.

In the next section, we will discuss how to determine the
interdependence matrix D¢, index set J¢, and the delay C;
for each index j.

III. THE NONLINEAR TRANSFORMATION ALGORITHM

In this section, we will describe the nonlinear transformation
algorithm for the nested For-loops with partitions on the
innermost loop. First, we consider the loops with two par-
titions on the innermost loop. Before describing the nonlinear
algorithm, we will prove some lemmas for determining the
interdependence matrix D® and interdependence index set J°.

Lemma 3.1: A dependence vector d = (a1,az,--+,a,) €
Ds if and only if

0<a,<(ud-02+1).

Proof: Necessary: Assume that d is an interdependence
vector € D§. Since d = (a1,02,-+,an) is 2 dependence
vector, there at least exist two iterations j; € Ji* and j2 €
J§ such that jo = j1 + d. Let j, = (by;ba,---,b,) and
j1 = (cl,cz,--’,cn). This implies ap, = b, —cn > 0.
Furthermore, we want to prove the right side of the nonuniform
equanon Because d € D,, there exist at least two 1ndexes
jo and 32 € Jp such that jj = j» + d. Let j5 =
(b, b, - -+, L), then b, — by = an. Since 12 < b, < ul
and l2 < b <2, it 1mp11es that b/, — b, < u2 — l2 Thus,
an < uZ - 12 + 1 is satisfied.

Sufficient: Assume d € Do and 0 < a, < (u2 — 12 +1).
We will prove that d is an interdependence vector. That is, we
only need to prove there at least exists one pair of indexes
(Jl,Jg) such that j, € Jr' j2 € JP, and j2 = ji + d for
de Do. Let _]2 = (bl,bz, <y bn ) and ]1 = (61,62, Cn)
The relation j; = j; +d nnphes that b, = ¢, + an. If we
take I; < b; < w; for each i < n — 1 and b, = 2, then it
is obvious that j» € J&. Since 0 < a, < (u2 =12 +1), it
implies that 212 — w2 — 1 < b, — a, < 2 — 1. Therefore,

202 —u2 —1< ¢, <I2—1. Thatis, c = (c1,¢2, ", cn) falls
in J{'. The proof is completed. a
Lemma 3.2: A dependence vector d = (a1,a2, " *,0,) €

D¢ if and only if
—(ul -1} +1)<a, <0

Proof: The proof of Lemma 3.2 is similar to Lemma 3.1
and we omit the detail. O

Applying Lemmas 3.1 and 3.2 to Example 2.1, we can
determine that d; and ds are the interdependence vectors and
thus D¢ = [dldg]

Suppose that the interdependence vectors are bidirectional,
and el and a2 are the maximal absolute values of the nth
element of all the interdependence vectors corresponding to
D¢ and D, respectively. Then, the interdependence index set
J¢ can be derived from checking the length of the nth element
value of the interdependence vectors by the following lemma.

Lemma 3.3: The interdependence index set J¢ is the union
of J§ and J5, where

Jt = {1, Jas - dn)lls £ Ji S wsy
fori<n-—1;ul —a2 +1<j,<ul} and
J28 = {(jl)jZa'"' 7Jn)|lz S ji S Ui,y
fori <m—1;12 <j, <I2+a; -1}

Proof: Let d* = (a1,a2,"-+,an-1,a2) be an interde-
pendence vector € D§. Assume j; = (c1,¢2,**,Cn) €
J{l,jz = (bl,b2, . b ) € Jz, and 32 31 + d¢. Then
o = b, —al. Snnce a? is a known fixed value, the minimal
value of ¢, occurs when b, = [2 = ul + 1 and then
uh + 1 —a2 <b, — al. Since 51 € Jp, it is clear that
¢n < ul. Thus, we obtain ul —a +1 < ¢n < ul. This
proves that

'ajn)'li th S Ui,
fori <n-—1ljul —a2 +1<j, <ub}.

Ji = {01, g2, -
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Similarly, we can derive the interdependence index set

J5 = {1, 92,5 dnllli < 5 < gy
fori<n-1LI12<j,<lZ+a,-1} O

Applying Lemma 3.3 to Example 2.1, we obtain a} =
1 and a4 = 1. The two interdependence index sets are

Ji={(1,52)I0 < j1 £5,2< j> <2} and

Js ={(41,42)I0 < j1 < 5,3 < j2 < 3}
Thus, the interdependence index set J¢ is shown in Fig. 1.

A. Nonlinear Transformation Algorithm for For-loops with
2-Partitions

In order to preserve the correct execution order of indexes
in each partition, the linear transformation functions should
satisfy the constraint described in [11]:

md; >0, I*%d; >0
for each d; € Dy

and each (Zj € D». 3.1)

However, in our nonlinear transformation method, one more
constraint is required. Now, let us consider the following
fraction of index dependence graph as shown in Fig. 1 with
deleting the dependence vector d».

52:(373)

J;. Y e -+ @
TN T

Jie - @ e --- @

J1=(3,2)j5 = (4,2)

If we take ITI*! = (0, —1), then indexes j; and j3 can be exe-
cuted concurrently. However, j, depends on j; and j3 depends
on j. The partial order relation j; — j3 contradicts to the
arrangement of concurrent execution of j; and js. To avoid the
occurrence of this situation, the linear transformation function
I1*! and I1*2 should also satisfy the following conditions:

m4(ds +d5) >0 *2(d; + d5) >0
for all d¢ € D and d € D5.  (3.2)

and

Let P; and P, be two partitions on the innermost For-
loop and JJ and J7 be their corresponding index sets.
Assume that IT*! and IT*2 are the chosen linear transformation
functions corresponding to J? and JZ, ie., II*! : JP —
Seql and TI*2 : J? — Seq2, where Segl and Seq2 are
the mapped execution sequences corresponding to sets
J7* and JZ, respectively. If the linear transformation functions
TI*! and IT*? satisfy the conditions (3.1) and (3.2), then there
exists at least one executing sequence that can combine
original sequences Seq1 and Seq2 such that the total execution
order is correct.

We now focus on combining these two sequences
which are determined by the linear transformation functions
II*! and TI*2. Since there exist some interdependence vectors
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in the index set J¢, the execution of J} and J3' should be
adjusted such that their execution order can also guarantee the
precedence relations in J€. Let us now consider the case 3
of the dependence relation existing between JI' and J3'. We
try to derive a formula for determining the delay C; of each
index j. For simplicity, we will start from the assumption
that the interdependence matrices D¢ and D3 both consist of
one interdependence vector. Let D = {d'} and D = {d*}.
Later, we will discuss how to determine the delay of each
index when the interdependence matrix consists of more than
one interdependence vector. Assume that the execution time
of index j is

IM'(j) = I*'(j) + C; foreach j€J°NJ;' and (3.3)

I1%2(j) = IM*%(j) + C; for each j € J*N J3. G4

In order to preserve the correct execution order of each index
in J¢, the following two equations should be satisfied:
I'(5)-I2(j—d') = ' (d*) forj € J and j—d' € J3
3.5)
2(7)-1'(j—d?) = T*%(d?) for j € Jy and j—d* € J}.
3.6)
Substituting (3.3) and (3.4) into (3.5), we obtain
C;= (-G -d) +Ci_m
forje Jtandj —d* € J}.
Similarly, substituting (3.3) and (3.4) into (3.6), we obtain
Cj= (I =TG- d?) +C;_a2
forje Jyandj—d? e Jp.
The delay of index j € Ji' can be derived from the index
j—d* and its delay Cj_g. Since index j — d?! falls in the
region of the set J3 and index j —d® — d? falls in the region

of set JJ, we can obtain a recursive equation by the following
derivation:

C; =2~ )G - d') + G5
— (H*2 _ H*l)(3 . Jl)
+ (M )G -d' = d*)+ Ci_p_a

= ("2 - H*l)(d_z) +C_p_g
where Cj is the delay of index j € J' and C5_g g is the
delay of index j — d! — d? € JP. Assume that j; € J7 is
the first execution index with a delay Cj,, we will express the
delay Cj, of index j by Cj, and j;. Given the value of Cj,
and j;, we can compute the delay of each index j by

Cjparpe = (P —I)(d?) + G5,
Ciirodiy2de = (H*2 - H*l)(dz) + Cjrdr v

= 2(I1*? — I1**)(d?) + G,

Cjrandr rhie = M2 —TI)(@2) + €,
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Let j=g;+k(d'+d?) ork = - Jd‘?, we obtain
C; = 120 e @) + ¢,

J dl +d2

where Cj is the delay of index j € JJ and Cj,
of index j; € JI. Similarly,

is the delay

. J *1
Cj dl + d2 (H

where Cj is the delay of index j € J3 and Cj, is the delay of
index j; € J2. Thus, the nonlinear transformation formula is

H*2)(Jl) + Cr:71

' (j) = 1" (j) +65
where C; = dl — d2 L2 — ) (d?) + C;,,
forje JPnJ® and
I*(7) = II**(j) +C‘~
where Cj = dl " d2 L (I —T*2)(d ) + G,

for j € Jy N Je. 3.7
Equation (3.7) is derived under the assumption of D =
{d'} and Ds = {d?}. In fact, there may exist more than
one interdependence vector in the interdependence matrices
D5 and Ds. The following lemma will show how to determine
the interdependence vectors d* and d? in formula (3.7) when
there exist at least two interdependence vectors in D{ and D5.

Lemma 3.4: Assume that more than one interdependence
vector is in D and D§. Then the choice of d! and d? that
satisfy

M*2d! = min{[I*3d¢} forV d¢ € D
I*'d? = min{II*'d%} forV d5 € D5

and

will preserve the same data dependence relation in index set
J¢ after the time transformation.

Proof: Without loss of generality, let D = {dl,dz, e
d¢} and index j depend on indexes j — dl,g —d§,- ] —
d¢. In order to preserve the same data dependence relation in
J ¢, we need to add a delay C; to index j such that the index
j is performed after the mdexes j—ds,5—ds,-- B j—- de
Thus, we only need to find the last executed 1ndex j—d¢in
indexes {5~d§,5— d2, -+,j —dg} and add the delay C— to
index _] such that index j is performed after the last executed
index j — df. Then the execution of index 7 will be performed
after all the indexes j — d5,j — d§, -, j — df. Since j — df

is the last executed index in set {j — d$,j ~ d2, - dk}
it is obvious that
2 - df) =

max{II**(j — d}),11*%(j — d5), - -, 11**(j — df) }-

That is, I"2(j — df) — I*%(j — d¢) > 0 or II*3(df) <
I1*2 (d¢) for V di € Df and d¢ # d. This implies df = d*.
Similarly, we can prove the case of [I*!d? = min{H*IJ;f} for
Vd € Ds. This completes the proof of Lemma 3.4. a

From (3.7), we need to find two linear transformation
functions T1*! and II*2 for partitions P; and P, respectively.

The transformation functions I1*! and 1I*? must satisfy the
following conditions:

m*'d; >0 and II*%d; > 0,
forVd; € Dy and ¥V d; € D
*Y(ds +d5) >0 and II*(d§ +d5) >0,
for V d¢ € D5 and Vd5 € Ds.
(3.8)

After this arrangement, each index j' that does not fall in the
region of J¢ can adjust its execution time by adding the delay
Cj if indexes 3" and j are transformed to the same execution
tlme and j € J°.

Algorithm: Nonlinear Transformation for For-loops with
2-partitions
Input: An n-dimensional nested For-loops algorithm with two
partitions on the innermost loop.
Output: A parallel executing sequence for each index jed

Step 1: Determine the dependence vector matrix D.

Step 2: Determine the interdependence matrix D°® by ap-
plying Lemmas 3.1 and 3.2.
Determine the index set J¢ by applying Lemma 3.3
if D¢ is not an empty set.
Find two linear transformation functions II*! and
I1*2 such that II*! and II*2 satisfy the condition
(3.8).
Using (3.7) to rearrange the executing order of each
index j € Je.
Rearrange the executing time of each index that
falls out of the index region J¢ by adding the delay
C; if indexes 4" and 7 have the same execution
order and j € Je.

By this algorithm, the total computing time of the original
For-loops algorithm is

T = max{max(IT'j) — min(IT*7), max(II*;")
— min(IT1?5")}
= max{max(II*'j + C3)
— min(II*'j + C3), max(II*?j’ + C;)
— min(IT*%j’ + C;)}, where j € Ji* and j' € J7.
Now, let us consider the For-loops algorithm in Exam-
ple 2.1. The D¢ and J¢ are obtained in Section II. In step 4
we choose IT*! = (1,0) and I1*2 = (1,1), which satisfy the
constraint (3.8). Let j; = (0,2) and C3. = 0. We can evaluate

the executing time of each index j in J¢. For example, the
delay of index j = (3, 2) is evaluated as follows:

Step 3:

Step 4:

Step 5:

Step 6:

G5 = dl T dz (I — o) (@) + &
_ (30
- 0)(0 ,1),(0,1) +0=3.
The executing order of index (3,2) is
I'(j) = II"'(j) + C; = (1,0)(3,2) + 3 =6.

All the indexes can be examined in such a way. The parallel
execution order of the For-loops in Example 2.1 is shown in
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U \J \J

0 1 2 3 4 5 J,
Fig. 2. The parallel execution order of Fig. 1.

Fig. 2. Note that all the indexes grouped by a bold line can
be executed concurrently.

For comparing the total executing time of using linear and
nonlinear transformation method, we assume that index set
J ={(j1,72)}10 < j1 < N,0 < jo, < N} and

T ={01,52)I0 £ 51 < N,0 < jo < [N/2|}
The total execution time 7; by using linear transformation
method with II = (2,1) is

T, = [Hmax{ﬂ(f}—iz)}l _1+(eN+1)

min ITd; 1 =3N+1.

The total execution time T by using our algorithm is
T, = max{max(IT*'j + C;) — min(II*'j + C3),
max(II*25’ + C;) — min(I1*?5’ + C;.)}

max{2N,2N + N — (|[N/2] + 1)}

=3N — |[N/2] -1

Thus, the ratio of total execution time improved in this
example by using nonlinear transformation method is

(T, = To)/T, = (IN/2] +2)/(3N + 1) = %

Note that, if the dependence relations between the parti-
tioned index sets J* and J3' are not bidirectional, formula (3.7)
can be simplified from the modification of expression (3.3) and
(3.4). If index sets J* depends on index set J&', the formula
(3.4) can be changed into I12(5) = IT*(j). Similarly, if index
set J3' depends on index set JJ, we change the formula (3.3)
into TI*(3) = II*1(j).

In this subsection, we have described the nonlinear trans-
formation method for the For-loops with only two partitions
on the innermost loop. In fact, there may be more than two
partitions on the innermost loop. We will state the nonlinear
transformation algorithm for the case of p-partitions in the
next subsection.
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B. Nonlinear Transformation of For-loops with p-Partitions

In this subsection, we will consider the case that the
number of partitions on the innermost For-loop is more than
two. We assume that there only exist dependence relations
between any two adjacent partitioned index sets. First, we
consider the case of three partitions on the innermost For-loop
and then consider the case of p partitions on the innermost
loop, for p > 3. Assume that the index set J can be
partitioned into three subsets J§, J7, and J3. Let D* denote
the dependence matrix corresponding to index set J*, Df; de-
note the interdependence matrix between J* and J7*, and J§;
denote the interdependence index set between the index sets
Ji* and J?*. The main idea is that we can first determine the
execution order of each index in set J U J3 by applying
the nonlinear transformation method. Then we consider the
set JP U J§ as a set Ji, and determine the execution order
of each index in set JJ U J, by applying the nonlinear
transformation method again. Consider the block dependence
graph with n = 2 as shown in Fig. 3(a). First, we choose
three linear transformation functions IT*0, I1*!, and 11*2. Each
pair of II*°,I1*!, and I1*? must satisfy the condition (3.8).
The execution order of each index j in JP U JJ can be
determined by using nonlinear transformation function IT =
IT'? described in Section III-A. Then, we adopt the same
procedure when J§ is included as shown in Fig. 3(b). Be-
cause the block dependence graph shown in Fig. 3 is bidi-
rectional, we can use a nonlinear transformation function
I1°12 to determine the execution time of each index in J§ U

12
2,7\ _ 1712(7 12
. {H () = 12() + €2,

°(7) = °(j) + €7,

for j € J§; N JY
for j € J5; N Jg.
3.9)

Now, we want to determine the delay values C;12 and C’;’. Let
AC be the delay time difference of two successive execution
indexes in JJ*. According to the dependence relations between
sets JT* and J§, we have

HIIZ(;) _ HO(} _ d_l) — H*l((il) + AC

ford* € D}, j € JPNJG, and j—d* € J¢ N JG.
(3.10)

°(j) = I*%(j — d°) = 0 (d°)
ford® € D§,j € JPNJG, and j—d° € JP N JG.
(3.11)
Substituting (3.9) into (3.10) and (3.11), we have

M2() =T2(j) + O3

]_]1 * *
where C;Q = _JO(H O — 111y (d°)
4G+ 024 I a0 o
Ji 7 dl + d° J

forjeJrj—d' e, d' € DG N Dy
and d° € Dg; N DY, (3.12)
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J1

JZ
12

J1
(b)
Fig. 3. (a) The block dependence graph of sets J? and JZ. (b) The block
dependence graph of sets J122 and Jg.

°(G) =1*°(j) + ¢9
0 _ 3_51' * * 7
where C7 =i _Jo(n P19 (dY)
o, J—Ji
+C§1+g1+JO
for j € J3,j—d° € Jp,d* € D, N D,
and d° € Dg, N D°. (3.13)

AC

The execution order of the indexes that fall out of the set J§;

can be determined according to the order of the nearest index

7 € J§ . Now, let us consider the following example.
Example 3.1:

For j; = 0 to 10

For jo=0t0 3

A(j1,J2) = A(h — Lja + 1)+ A(J1 — 1, J2)
End jg
For jo=41t07

A(J1,J2) = AL — 1,2 — 1) x A(j1 — 1,52 + 1)
End j;

For jo =8to 11
A(j1,32) = A(Gr — 1,72) — A(j1,j2 — 1)
End jo
End jl.

In this example, the index set can be partitioned into three
subsets

JE ={(j1,72)| 0 < 41 < 10,0 < jp < 3},
JE={(j1,72)| 0< j1 < 10,4 < 52 <7},
JZ ={(j1,42)| 0 < j1 £ 10,8 < jp < 11},

and the index dependence graph is shown in Fig. 4. The
dependence matrices corresponding to sets JZ, JZ, and JZ
are

11 - 3
Dgl [ 1 1:| = [dldd] and
. 1 0] ;-
12 = |:_1 1] = [d‘idﬁ]

By applying Lemma 3.3, we obtain the interdependence
index sets

J5 = {(1,52)|0 < 51 £10,3 < jp < 4}
I = {(J1,42)10 < 51 £10,7 < 55 < 8}

and

First, we select linear transformation functions II*0 =
(1,-1),II*! = (1,0), and IT*2 = (1, 1). Applying the nonlin-
ear transformation algorithm on the index sets J}* and J3', we
can determine the execution order of each index j € JI' N JZ.
Then, we can use (3.12) and (3.13) to determine the execution
order of index j € J§, when the index set JZ is included. For
instance, given 7; = (0,4), C;, =0, and C}f = 0, the delay
of index j = (6,4) can be obtained by

12 J = Ji [rre0 1\ (70 3
J ~d‘1+(jo(n - )(d)+cji
vory iTdiac g,

Ji U gl 4 o J
_(6,0)
=20 (0,-1)(1,-1)+0+0
(6,0) _
+ 2.0) x1—-6=0

Thus, the execution order of index (6,4) is
() = () + CF°
="'())+C;+C;> =6+6+0=12.
Given j; = (0,3) and CJQ_ = 3, the delay of index (6,3) can
be obtained by

=i s “O0\ [ T i
c? (I —1*%) (d*) + 5. + —

3T Al 4 40 Jl+d°AC
_ (6,0 (6,0) _
=20 (0,1)(1,1) + 3+ @0 X 1=09.
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Fig. 4. The index dependence graph of Example 3.1.

Thus, the execution order of index (6, 3) is
n°2(5) = I*°0G) +C7 = (1,-1)(6,3) + 9 =12.

All the indexes can be examined in such a way and the
transformed order can be correctly executed in the parallel
form. The final result of parallel execution order is shown
in Fig. 5. All the indexes grouped together and marked with
the same number can be executed concurrently. Based on the
above derivation, we will describe the nonlinear transformation
method when the number of partitions on the innermost loop is
p for p > 3. First, we select p linear transformation functions
[*0 TI*!, ... I1*P~1.These p transformation functions should
satisfy the following conditions:

m*d; >0 for0<i<p-—1andVd; € D%
I*(d5 +d;) > 0
I (d$ + dj) > 0 for0<i<p-—1;

Vds e D:V dy € Dfyy andV dj € DY,

for0<i<p—2;

(3.14)

The p partitions can be combined into [p/2] sets, that is,
59,8%,---,85, where pl = [p/2]. Each index set J'
belongs to the set S} if j = |i/2]. For example, the set S0
consists of J§ and J1 and the set S} consists of J3 and J3'.

Then we w111 adjust the execution order of each index in

set S} by adding some delay, for 0 < ¢ < pl. The delay
of each index can be determined by formula (3.7). At the
second stage, we will combine sets S, 8%, Sl1 into p2
sets S3, 52, - -, §2,, where p2 = [p1/2]. Each set S ! belongs
to set 57 if [j = [7/2]. We will adjust the execution order of
each mdex 7 in S? by adding some delay which can be derived
similar to the derivation of formulas (3.12) and 3. 13) for
0 < ¢ < p2. At stage k, we will combine sets SO e ,Spk 1

into pk sets S&,- '-,Spk, where pk = [(pk —1)/2]. And
then we will adjust the execution order of each index in set
Sk, for 0 < ¢ < pk. These steps will be continuous until the
value of pk is 1. That is, the execution order of each index is

adjusted under the consideration of p- partitions globally.

IV. SPACE MAPPING ALGORITHM

In this section, we will be concerned with the mapping of
For-Loop algorithms into VLSI systolic arrays.

A. Mapping Algorithms into Systolic Arrays

In this subsection, we first consider the space mapping
under the assumption that the number of processors is equal
to the number of iterations. The problem of mapping the
algorithm into fixed size systolic arrays is considered in the
next subsection. Before describing our method, we introduce
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the space mapping proposed by Moldovan [11]. Moldovan
proposed a space transformation matrix S to transform each
index into one cell of systolic arrays. Each cell consists
of a small number of registers, ALU, and control logic. A
mesh-connected array processor is a tuple (Z n-l P), where
Z™~1 is the index set of the array and P € Z(~Dx" jg
a matrix of interconnection primitives. The position of each
processing cell is described by its Cartesian coordinates. The
interconnection between cells is described by the difference
vectors between the coordinates of adjacent cells. The matrix
of interconnection primitives is P [D1P2 -+ Pr], where
Pj is a column vector indicating a unique direction of a
communication link.

We can use a utilization matrix K = [k;;] to multiply the
interconnection matrix P. Each entry kj; of matrix K has a
positive value to denote the number of utilizations of the Jth
column vector p; in matrix P. The transformation S can then
be selected such that the transformed dependencies SD are
mapped into VLSI array modeled as (Z"~1, P). This can be
written as SD = PK. This equation indicates that the total
number of steps through interconnection links is equal to the
distance of two processors that execute two indexes with data

5

10

6 7 8 9
Fig. 5. The parallel execution sequence of Fig. 4.

dependence matrix D. Matrix K = [k;;] is such that

kji >0 and 0 < Z(kﬂ) < HJZ
J

It is possible that some interconnection primitives will not
be used. These correspond to rows of matrix K with zero
elements.

In our space transformation algorithm, there are more con-
straints needed than Moldovan’s space transformation algo-
rithm. The most important thing is to guarantee the steps of
data routing must less than or equal to the time difference
between data generated and data used. Consider the index
dependence graph in Fig. 2 again, for a fixed index j € J7,
we should evaluate the time difference between data generated
and data used corresponding to data dependence vector d;. Let
Jk be an index point in J} N J°, and k11 be the successor
of ji according to the time transformation II'. By applying
formula (3.6), the difference of the added time delays between
Jk and ji 1 is equal to a constant, say C). That is, the delay
difference

C-

Tkt1 C;k = Cﬁ -Gj

Je—1

(2 1) ().

= constant C1,

where Cl = m
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Similarly, the added time delay difference between indexes
Jks Jk+1 € J2 N J¢ is a constant C2, where

d

C:f
Ty 2

(H*l _ H*Z) (Jl)

Therefore, if two successive execution indexes with depen-
dence vector d; in set J° N JI* and set J° N JZ, the time
difference between them are II*1d; + C; and II*?d; + Cy,
respectively. ‘

For any two successive execution indexes jx and jxt1 €
J¢, the space transformation function S should ensure that the
number of steps of data communication between processors
S(Gk) and S(Gr41) is less than or equal to II*'d; + Ci.
Similarly, we should ensure that the number of communication
steps of any successive execution indexes in J3 is less than
or equal to II*2d; + C». Consider the index dependence graph
as shown in Fig. 2; all indexes grouped by a bold line can
be executed concurrently. Let G; denote the execution group
with execution order ¢. There are two categories of execution
groups. The first one is that each execution group has at least
one index in J*® and the second one is that all indexes of
each execution group do not belong to J¢. Consider any two
successive execution groups G; and G;4; C J7. If both of
them belong to the first category, the execution time difference
between these two groups is a constant value II*'d; + Ci.
If there is at least one execution group belonging to the
second category, the time difference between these two groups
is TI*'d;. Thus, the utilization matrix K should satisfy the
conditions

Y (ki) ST+ Cy
Y (ki) T
1)

Similarly, the matrix K should also satisfy the following
constraints

for J,- € D' — D¢ and
for d; € D' N D°.

Zi (kij) < H*Z(ij + Cy
>, (ki) <T0%d;

for d; € D? - D¢
for Jj e D*nDe.

and

4.2)

¢ c] . The dependence

Consider the Example 2.1. Let § = [ b d

vector matrix is

D:{l

10 2] oosoy niqeq
-1 0 1

|| = 0ddsdi) = [didadid).

By solving the equation SD = PK, ie.,

2a—c¢ _
2b—d|

01 -1 -1 1 0 0 1 -1
01

-1 1 -1 1-1 0 O
we have one possible solution:

a—c a c
b—d b d

K,
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0 0 0 07

100 1

0000

Lo 0000
S:[ }andKzOOOO
0 -1 000 0
0010

0101

L0 0 0 0.

N

This solution satisfies the constraints (4.1) and (4.2) be-

cause
)Y (k) =1 < =1
i)Y (hi2) =1 <M+ Cr=1+1=2
i) Yo (ki) = 1 ST2d5 =1
iV)Zi(km) =2<M%d,+Cy=1+1=2.

All the indexes can be mapped by the space transformation
function S. Each index j is assigned onto one processing cell
S7 as shown in Fig. 6. After mapping index j into a processing
cell (x,y), if the execution of index j depends on another
index j' by a dependence vector d;, then the cell (z,y) has
two links with direction Sd; as its input link and output link.
For instance, in Fig. 1 the execution of index (1,2) depends on
the execution of indexes (0, 3) and (0, 2) with the dependence
vectors d¢ = (1,—1)" and d = (1,0)*, respectively. Since
the index (1, 2) executes on cell (1, —2), the cell should connect
links with direction Sd§ = (1,1) and Sd; = (1,0). These
links can be determined by the utilization matrix K. That is,
there is a link in the direction of p; if the value of kj; is 1. The
structure of array processors is shown in Fig. 6. For receiving
data at the right time, the detail structure of each cell with
delay buffers are shown in Fig. 7.

By applying the above space transformation, the processors
size is equal to the number of iterations in original For-
loops algorithm. This makes it impossible in technique and
cost considerations. In practice, the number of iterations is
usually larger than the number of processing cells. In the next
subsection, we will pay attention to the problem of how to
partition the mapped For-loops algorithm into bands such that
each band can be executed on fixed size array processors.

B. Partitioning Algorithms into Fixed Size Systolic Arrays

In this subsection, we first introduce our approach to the
partitioning problem of Example 2.1 and then discuss the
general case. We want to map the For-loops algorithm in
Example 2.1 into a VLSI array with M processors and assume
that the program size N >> M. For instance, assume M = 6
and the index space is

Then the problem size is N = 12 x 12 = 144. Assume

there are two partitions J7 and JZ on the innermost For-loop,
where

J? = {(j1,72)|0 < j1 €11,0 < j» <5} and
J2 = {(j1,42)|0 < j1 < 11,6 < jp <11}
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a9 index /) executing at processor cell number (xy)

Fig. 6. The cells organization for implementing Example 2.1.

A possible solution to this problem is illustrated in Fig. 8. We
select the partitioning transformation IL, to divide the index set
L(J) in bands such that each band requires only six processors,
three for performing the addition operations of index points in
set JZ and three for performing the multiplication operations
of mdex points in set JZ. Note that we evenly distribute equal
size of processors to each partition if the number of iterations
of J? and J% is equal. The band boundaries must satisfy the
following equation:

I,5 mod 3 =0
M, mod3=0

for j € J2, and

for j € JZ. 4.3)

Equation (4.3) assumes that at any given moment no more
than six index points in index set J are processed, in which
three belong to index set J? and three belong to JZ. Let
II, = (2,1) and select the time transformation functions

= (1,0)] + C;
%5 = (1,1)5 + C;

forj € J?> and

for j € J3

which determine the sequence of computations inside the
bands. Each band is swept by lines whose equation is I1'j =
constant for j € J7 and II?j = constant for j € JZ. All
index points along each such line are executed simultaneously,
and notice that there are at most three such points on each line
inside one band. Inside each band, the indexes are executed
in a partial ordering imposed by the time transformations
IT' and II%. In Fig. 8, we mark the computation order of each
such line by a positive integer aside it. The time hyperplanes
! and 11 together with the partitioning hyperplanes II,
which partitions the original For-loops algorithm and map it
onto an array with only six processors. Each index j will
be assigned to a band numbered b = |(II,7)/3] and the
processor P; for executing index j is determined by the
formula ¢ = II,5 mod 3. For example, index point (1,3) is
allocated to processor P, in band 2.

Consider Fig. 9, for a given band B;, the data generated
by index point j; € JZ N J¢ should be used by another index
point jo € JZ N J¢ in the near neighbor band Bs. Thus, these
data should be transferred from processor numbered P, to
the shift registers FIFO B’. Similarly, the data generated by
index point jo € JZN J° should be transferred from processor
Pj to FIFO A’ used by the index j; € J§ N J° in the near
neighbor band. Moreover, the data generated by index j; € J}
in band B; may be used by another index j; € J} in band
Bs. These data should be transferred from processor Py into
shift registers FIFO A for use at the execution of band B,. All
the indexes can be checked that they can be processed with
a correct executing order under our partitioning method. The
maximum number of locations inside the FIFO A and FIFO
B are both 6. In general, this number is related to the size of
the problem.

The problem we address now is to map the n-depth For-
loops algorithm into the systolic arrays with n — 1 dimensions.
Assuming that the processor size is M = m; X my X

- X Mp-1 and the problem size is N, where N >> M, we
can easily partition the iterations into bands by the following
partitioning algorithm. For simplicity, we assume that the size
of p partitioned index sets are equal.

Algorithm: Mapping and Partitioning Procedure
Input: An n-depth For-Loops with p partitions on the inner-
most Loop.

Output: A parallel executing sequence that the number of
concurrently executing indexes is less than or equal to the
number of processors.

Step 1: Select p nonlinear transformation functions IT°, IT*,

-,IIP~1 by applying the Nonlinear Transforma-
tion Algorithm.

Generate all possible utilization matrices K which
satisfy conditions (4.1), (4.2), and (4.3).
Find all possible space transformations S which

Step 2:

Step 3:
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Step 4:

Step 5:
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satisfy the conditions
a) S can be solved from equation SD = PK.

= | ] is non-

b) The transformation matrix T = | g

singular.
For each valid transformation 7', the partitioning

hyperplanes II,,; are given by the row of matrix S

1,
I,

S =
My(n-1)

Partition the index set J into bands such that each
index j in band boundaries satisfies the equation

Step 6:

Step 7:

Note that

The detail layout of each cell in Fig. 6.

(Hp;g) mod m; =0 for 1<i<n-2 and
(IIp:j ) mod (m;/p) =0 for i=n-—1.

From all the possible transformations select the one
which requires the least number of bands.

The mapping of indexes to processors is as follows:
each index point j is processed in a processor
whose ith coordinate is II,;; mod m;.

index point j is partitioned into band By s,...s,,_,

whose ith coordinate &; is |IL,;j/3]. A possible policy that
orders the execution of bands in a lexicographical manner can
be selected by the same way described by Moldovan [11].

That is, for fixed II,, - - -

, Hp(n—2) execute all bands given by

II,(n_1) then change II,,,_2) and execute all I1,(,_;y again,

etc.
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Fig. 8. Partitioning of Example 2.1 with larger index set.
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Fig. 9. Partitioned index set of Fig. 8 is mapped onto six processors with
FIFO queues.

V. CONCLUSION

In this paper, we propose a nonlinear transformation algo-
rithm to solve the For-loops with partitions on the innermost
loop. For each partitioned index set J7*, we select a nonlinear
transformation function II' to map all the indexes onto a
parallel execution form. All the indexes j € JI satisfy the
equation II'j = C can be processed concurrently, where
C is a constant. Furthermore, the structure of the (n—1)-
dimensional systolic arrays for implementing the mapped

algorithm is also constructed. For a selected space mapping
function S, the layout of each cell in the systolic array can
be determined. An index j € JP can be processed with an
order II* j on the cell numbered S j. Besides, the partitioning
algorithm is also presented for executing the mapped algorithm
on the fixed size array processors. We select partitioning
functions which partition the iterations into bands such that
there are at most m iterations concurrently executing on the
array processors with size m at any given moment.
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