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Laser-Powered UAV Trajectory and Charging
Optimization for Sustainable Data-Gathering

in the Internet of Things
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Abstract—This work examines the trajectory design and energy
charging strategy of a data-gathering unmanned aerial vehicle
(UAV). The UAV utilizes laser charging from high-altitude plat-
forms (HAPs) to replenish its battery, enabling sustained travel
across multiple data-gathering points. The trajectory is determined
by a sequence of hovering positions at which the UAV stays to
perform both data collection and energy charging. The UAV’s
hovering positions affect both the sensors’ transmission rates and
the laser-charging efficiency. To minimize the total task completion
time, it is necessary to choose hovering positions that consider
both data upload and energy charging times. In this work, we first
propose the Minimum Completion Time Trajectory and Charging
Optimization (MinTime-TCO) algorithm, where the hovering po-
sitions and charging energies are optimized in turn using a block
coordinate descent approach. Given the UAV’s hovering positions,
we propose the Minimum Charge Rate Search (MCRS) algorithm
to optimize the charging energies at these positions. We show that
MCRS is optimal in terms of minimizing the total task completion
time. Then, given the charging energies, we propose the Hovering
Position Optimization (HPO) algorithm, employing successive con-
vex approximation to address the non-convexity of the optimization
problem. We also propose a low-complexity alternative based on dy-
namic programming to further reduce computational complexity.
Simulation results demonstrate the effectiveness of the proposed
algorithms against several baseline strategies.

Index Terms—UAV communication, Internet of Things,
laser charging, successive convex approximation, dynamic
programming.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) serve as an efficient
means of data-gathering from the Internet of Things (IoT)

or wireless sensor networks (WSNs) due to their high mobil-
ity and ease of deployment [1], [2], [3]. The mobility allows
UAVs to fly close to sensors for data collection, significantly
reducing the transmit power consumption of sensors, and thus

Received 17 December 2023; revised 30 November 2024; accepted 18 De-
cember 2024. Date of publication 26 December 2024; date of current version
4 April 2025. This work was supported in part by the National Science and
Technology Council, Taiwan, under Grant 111-2221-E-007-042-MY3 and Grant
112-2221-E-007-046-MY3. Recommended for acceptance by A. Abdrabou.
(Corresponding author: Y.-W. Peter Hong.)

Yue-Shiuan Liau and Y.-W. Peter Hong are with the Institute of Communi-
cations Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
(e-mail: s109064702@m109.nthu.edu.tw; ywhong@ee.nthu.edu.tw).

Jang-Ping Sheu is with the Institute of Communications Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan, and also with the Department
of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan
(e-mail: sheujp@cs.nthu.edu.tw).

Digital Object Identifier 10.1109/TMC.2024.3523281

extending their lifetimes. However, the UAVs’ limited bat-
tery capacity and substantial propulsion energy consumption
limit their flight range and coverage. Several works, e.g., [4],
[5], assumed the availability of fixed charging stations on the
ground and optimized their data-gathering operations accord-
ingly. However, IoT sensors or devices may be deployed in
areas with limited infrastructure, such as forests, battlefields,
and disaster sites. In these cases, deploying and maintaining
a fixed charging facility on the ground would be costly and
could impede data-gathering efficiency by necessitating frequent
UAV trips to the charging stations for battery replenishment.
Hence, integrating efficient wireless charging technology [6],
[7] is essential to offer increased flexibility in the trajectory
design and sustain the data-gathering operation over a large
area.

Many works in the literature, e.g., [8], [9], [10], [11], explored
the use of wireless power transfer (WPT) within the radio fre-
quency (RF) band for the remote charging of UAVs. The UAVs’
transmit resources and flight trajectories were often jointly op-
timized to reduce the total mission cost, such as task comple-
tion time or total energy consumption. However, RF wireless
charging is limited to short distances due to the rapid dispersal
of electromagnetic waves over the air and, thus, imposes strict
constraints on the trajectory design of the UAVs. To increase
the charging range, recent literature adopted laser charging as a
promising alternative to RF charging, using a more concentrated
beam for energy transfer [12], [13]. The demonstration by Pow-
erLight Technologies [14] shows that laser charging can support
UAV energy over hundreds of meters, providing more flexibility
for the UAV trajectory design. Moreover, [13] showed that laser
charging is particularly effective for data-gathering applications,
where UAVs must cover extensive areas compared to RF wire-
less or tethered charging solutions. Most works, e.g., [15], [16],
[17], [18], [19], [20], [21], [22], assume that the laser beam
director that emits the laser beam to the UAV is located on the
ground and may be susceptible to blockage by buildings, trees, or
other obstacles. Consequently, several other works, such as [23],
[24], explored the feasibility of mounting the laser beam director
on high altitude platforms (HAPs), allowing for more efficient
energy harvesting through technologies like large solar panels or
wind turbines. While practical challenges remain in deploying
laser charging stations on HAPs with the current technology,
several organizations (such as PowerLight Technologies [14]
and the Japan Aerospace Exploration Agency (JAXA) [25])
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continue to advance the technology and will eventually enable
more compact and efficient charging systems for HAPs.

This work examines the trajectory design and energy charging
strategy of a laser-powered UAV for data-gathering in IoT or
WSNs. Laser charging is facilitated by HAPs deployed at fixed
positions above the sensor field to support data-gathering across
all sensors. The trajectory design involves optimizing a set
of hovering positions where the UAV stays to collect sensor
data while replenishing its battery through laser charging. The
selected hovering positions impact both the transmission rates
of sensors and the efficiency of laser charging by the HAPs.
In this work, we aim to minimize the overall task completion
time by optimizing the hovering positions of the UAV and its
charging energies at these positions, taking into account both
data upload and energy charging times at different points. The
main contributions of this paper are summarized as follows:
� We propose the Minimum Completion Time Trajectory and

Charging Optimization (MinTime-TCO) algorithm where
the UAVs’ hovering positions and charging energies are
optimized in turn using a block coordinate descent (BCD)
approach to minimize the time required to gather data from
all sensors.

� Given the UAV’s hovering positions, we propose the Mini-
mum Charge Rate Search (MCRS) algorithm to determine
the optimal charging energies at various points. We prove
that the MCRS algorithm is optimal in terms of minimizing
the total task completion time.

� Then, given the charging energies, we propose the Hover-
ing Position Optimization (HPO) algorithm, employing a
successive convex approximation (SCA) method to address
the non-convexity of the objective and constraints. This is
referred to as the HPO-SCA algorithm.

� To reduce the computational complexity, we also propose
a low-complexity HPO algorithm based on the dynamic
programming (DP) principle. This approach, referred to as
HPO-DP, yields complexity that scales linearly with the
number of data-gathering points.

� Finally, we provide simulation results to demonstrate the
effectiveness of the proposed algorithms against several
baseline approaches.

The remainder of this paper is organized as follows. Section II
reviews existing works on UAV communications that utilize RF
or laser charging to support the UAV’s energy usage. Section III
describes the system model and problem formulation. Section IV
proposes the MinTime-TCO algorithm, which alternates be-
tween the MCRS and HPO-SCA algorithms in turn to find the
optimal hovering positions and charging energies. Section V
proposes the HPO-DP algorithm as a low-complexity alterna-
tive to the HPO-SCA algorithm. The optimality of the MCRS
algorithm is then proved in Section VI. Finally, simulation
results are provided in Section VII and the paper is concluded
in Section VIII.

II. RELATED WORKS

This section reviews several works that utilize far-field WPT
technology, such as RF wireless charging or laser charging, to

support the UAV’s energy usage. While these works present
interesting solutions to sustain longer UAV operations, the in-
efficiency of RF wireless charging over long distances and the
susceptibility to blockage experienced by ground laser chargers
highlight the need to deploy laser chargers in the sky, which is
the focus of our work.

Specifically, several works in the literature, e.g., [8], [9], [10],
[11], considered the use of RF wireless charging to sustain
the operations of UAV-enabled base stations or data-gathering
nodes. Reference [8] employed a wireless RF charging station
on the ground to power a UAV-enabled aerial base station. The
worst-case throughput of the ground users was maximized by
jointly optimizing resource allocation and UAV placement. The
work in [9] extended the problem to systems with multiple
UAV-enabled aerial base stations. The downlink sum rate of
the aerial base station was maximized by jointly optimizing
user association, resource allocation, and base station placement.
Moreover, [10] introduced a non-disruptive wireless recharge-
able UAV network model that allows UAVs to be charged during
flight by wireless chargers, eliminating the need to hover at
fixed positions or return to dedicated charging platforms. To
minimize the energy waste of wireless chargers, a heuristic
exhaustive candidate solution was proposed where a charger
tends to simultaneously charge as many UAVs as possible. Ref-
erence [11] considered using two types of UAVs: charging UAVs
and mission UAVs, where the former was used to charge the
latter without interrupting the mission. The total time required
for mission UAVs to complete their tasks was minimized by
scheduling charging times and planning travel paths for charging
UAVs using deep reinforcement learning. In the above works,
RF wireless charging was adopted to facilitate far-field charging
of UAVs without returning to dedicated charging platforms and,
thus, provide more flexibility for the UAVs’ trajectory designs.
However, the rapid dispersal of RF waves can significantly
reduce energy transfer efficiency, especially in far-field charging
scenarios.

To improve the efficiency of wireless charging, recent works,
e.g., [15], [16], [17], [18], [19], [20], [21], [22], have adopted
ground laser chargers to provide the long-distance energy charg-
ing required by UAVs. In particular, [15] considered the com-
munication between a laser-powered UAV and a ground station
and aimed to maximize the downlink throughput between the
two terminals by optimizing the UAV’s trajectory at a fixed
altitude. [16] examined the resource allocation for a UAV relay
that assists the transmission between a ground terminal and many
IoT devices. The ground terminal provides both a free-space
optical link and a high-power laser beam to power the UAV. The
laser charging time, data upload time, and relay power allocation
were jointly determined to maximize the number of IoT devices
that can be served. [17] examined a similar UAV relay problem
and proposed to maximize the energy efficiency of both informa-
tion transmission and laser charging by jointly determining the
transmit and charging powers and the UAV trajectory. Ref. [18]
considered an ultra-reliable and low latency communications
(URLLC) application with a laser-powered UAV as a relay
between a ground controller and a robot on the ground acting
as the receiver. The decoding error rate was minimized by
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jointly optimizing the transmit powers, UAV trajectory, and code
length. Moreover, in [19], a laser-powered UAV base station
was used to serve multiple ground users through simultaneous
wireless information and power transfer. A clustering-based
hybrid multiple access technique was proposed, combining
both orthogonal and non-orthogonal multiple access schemes.
Ref. [20] proposed a deployment strategy for laser-powered
UAV base stations and analyzed the resulting coverage using
tools from stochastic geometry. The user’s connectivity profile
was analyzed under different laser charging capabilities and
optical turbulence. Ref. [21] considered the use of a UAV relay
between a ground base station and multiple ground users and
proposed a cost-aware UAV placement strategy to ensure quality
communication and energy links for the UAV, ground devices,
and users. The UAV was powered by both laser beam directors
on the ground and local renewable energy sources. Further-
more, [22] examined the use of UAV-enabled flying energy
sources, powered by ground laser chargers, to support a set of
mission UAVs through RF wireless charging. The positions of
the flying energy sources were determined by a multi-agent deep
deterministic policy gradient method, considering both fairness
and energy consumption.

While the above works show the efficacy of laser charging
in prolonging the lifetime of UAV networks, these works as-
sumed that the laser beam directors are located on the ground,
making them susceptible to blockage by buildings, hilly terrain,
or smoke. This motivates the deployment of laser chargers
in the sky to establish a more direct path between the laser
beam director and the energy receiver. Several recent works
(e.g., [23], [24]) have thus considered the use of HAPs to
serve as the aerial laser charging station. In particular, [23]
considered a multi-drone-enabled data collection system that
consists of several Low Altitude Platforms (LAPs) collecting
data from IoT devices and a HAP that provides energy to the
LAPs through laser charging. The total laser charging energy
of the HAP was minimized by jointly optimizing the LAPs’
trajectory and their laser charging durations, subject to battery
constraints. An approximate solution was obtained based on
the well-known 2-opt algorithm. However, [23] assumed that
laser charging can only be conducted at a fixed position directly
below the HAP and, thus, the LAPs (or UAVs) must detour
back to this fixed position when charging is required, signifi-
cantly increasing the mission completion time. [24] considered
a HAP-aided multiaccess edge computing system where the
HAP delivers energy by laser charging to aerial users and each
aerial user then uses the energy to maintain flight operation
and execute or offload computation tasks. By considering a
terrestrial adversary that distributes false charging locations to
aerial users, a Colonel Blotto game framework was adopted
to examine the dynamics of the attack-defense interaction be-
tween the adversary and the defender (i.e., HAP). This work
focused on the privacy awareness and attack prevention, and
did not address the data gathering problem considered in our
work.

Notice that most works mentioned above consider using
UAVs as aerial base stations or relays and aim to maxi-
mize the throughput or minimize the energy consumption for

Fig. 1. Illustration of the proposed UAV data-gathering scenario in which
a UAV visits J hovering positions to collect data from the J sensors while
replenishing its battery through laser charging by the I HAPs.

serving ground users. In contrast, our work explores the use of
laser-powered UAVs specifically designed for data gathering in
IoT networks. In this case, the trajectory design of the UAV
must consider the locations and data sizes of sensors alongside
the charging efficiency at various hovering points. Moreover,
different from [20], we allow energy storage at the UAV to
preserve the energy received at efficient charging points for
later use during the data-gathering operation. We also impose
a constraint on the UAV’s battery capacity, introducing addi-
tional challenges in the optimization process. The proposed
MCRS algorithm determines the optimal charging policy under
these constraints and, thus, is a highlight contribution of this
work.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a UAV-enabled data-gathering scenario, as
shown in Fig. 1, where a UAV is dispatched to collect data
from J sensors on the ground. The sensors’ locations are fixed
with coordinates given by sj = [sj,1, sj,2, 0], for j = 1, . . . , J .
The UAV collects data from the sensors in turn by visiting the
positions u1, u2, . . ., uJ , where uj = [uj,1, uj,2, uj,3] is the
position at which the UAV hovers when collecting data from
sensor j. The UAV’s height uj,3 is restricted within minimum
and maximum valuesHmin andHmax to account for operational
regulations. We assume that the visiting order is determined a
priori (e.g., by solving the Traveling Salesman Problem) and
that the sensors are labeled accordingly. To provide the energy
necessary for the UAV to traverse the network, we also deploy I
HAPs, each carrying a long-distance laser-charging system, to
charge the UAV remotely. The i-th HAP is located at coordinates
ai = [ai,1, ai,2, ai,3] and is assumed to be relatively stationary
compared to the speed of the UAV. In this work, we assume that
laser charging occurs only at the UAV’s hovering positions (i.e.,
u1, . . ., uJ ) to avoid the need to track the UAV’s movement and
align the laser beams in real-time, which may be challenging in
practice.
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A. Communication Model

For the communication channel, we adopt the probabilistic
path loss model in [21], [26], where the average channel gain
between the UAV and sensor j can be expressed as

ḡj(uj) � ΦLoS
j (uj)

ρLoS0

‖uj − sj‖αLoS

+ (1− ΦLoS
j (uj))

ρNLoS
0

‖uj − sj‖αNLoS , (1)

where ΦLoS
j (uj) is the probability of Line-of-Sight (LoS) be-

tween sensor j and the UAV, ρLoS0 and ρNLoS
0 are the reference

channel gains at 1 m distance for the LoS and Non-Line-of-Sight
(NLoS) channels, respectively, and αLoS and αNLoS are the path
loss exponents. Following [21], [26], the probability of LoS is
given by

ΦLoS
j (uj) =

1

1 + C2 exp
{
−C1

[
180
π arcsin(

uj,3

‖uj−sj‖ )− C2

]} ,
(2)

where 180
π arcsin(

uj,3

‖uj−sj‖ ) is the elevation angle, C1 and C2 are
two constant values that depend on the environment. According
to [21], [26], (C1, C2) can be chosen as (0.429, 4.88), (0.1581,
9.6117) and (0.136, 11.95) for rural, urban, and dense urban
environments, respectively.

Following arguments in [27], [28], we assume that the average
channel gain is dominated by the LoS term and, thus, can be well
approximated by the first term in (1), i.e.,

ḡj(uj) ≈ ΦLoS
j (uj)

ρLoS0

‖uj − sj‖αLoS � gj(uj). (3)

Consequently, the data rate between the UAV and sensor j can
be written as

Rj(uj) = B log

(
1 +

P txgj(uj)

BN0

)
, (4)

where B is the bandwidth, P tx is the transmit power, and N0 is
the noise power spectral density. We assume that only one sensor
is transmitting in each time slot and, thus, there is no co-channel
interference. By letting Dj be the size of the data to be uploaded
by sensor j, the upload time of sensor j can be computed as
Dj/Rj(uj).

B. Energy Consumption Model

Here, we consider only the flight propulsion energy consump-
tion of the UAV, since the receiving energy of the communication
device is relatively negligible. We assume that the UAV either
hovers at a data-gathering point or travels at a constant speed ofV
m/s from one point to another. The power consumption in these
two cases is denoted byP0 andP1, respectively. These values can
be calculated, for example, by setting the flight velocities to 0 and
V m/s, respectively, under the power consumption model in [29],
[30]. The flight time required for the UAV to travel between data

gathering points j1 and j2 is given by
‖uj1

−uj2
‖

V , and, thus, the

corresponding flight energy consumption is
‖uj1

−uj2
‖

V P1. While
it is possible to further optimize the flight velocity over different

segments of the trajectory, for simplicity, we do not take this
into account in our work.

C. Charging Model

The energy required for the UAV to traverse multiple data-
gathering points is provided through laser charging by the I
HAPs. We assume that charging can occur only when the UAV
is at one of its hovering positions, so as to avoid the need for
real-time beam tracking. Hence, we shall often refer to uj as the
charging (or hovering) position j. Following [31], the charging
power received by the UAV from HAP i at hovering position j
can be expressed as

pch
i,j(uj) =

ηP L exp(−γ‖ai − uj‖)
(ζ + φ‖ai − uj‖)2 , (5)

where P L denotes the laser power emitted by the HAPs, η
captures the combined efficiency of the energy harvesting cir-
cuit, optical transceiver, and receiver area, and γ represents the
medium’s attenuation coefficient. Additionally, ζ represents the
length of the beam, and φ represents the angular spread of the
beam. By assuming that the UAV is always charged by the closest
HAP, the charging power (or charge rate) of the UAV hovering
at position j can be expressed as

pmax
j (uj) = max

i∈{1,...,I}
pch
i,j(uj). (6)

Let e � (e1, . . . , eJ ) be the charging policy with ej being the
energy to be harvested by the UAV at position j. In this case,
the time required to charge the UAV at position j is given by
ej/p

max
j (uj). Moreover, since the UAV must remain at hovering

position j until the data from sensor j is completely uploaded,
the hovering time at position j can be expressed as

max

(
Dj

Rj(uj)
,

ej
pmax
j (uj)

)
. (7)

Thus, the energy consumption for the UAV hovering at position
j is max(

Dj

Rj(uj)
,

ej
pmax
j (uj)

)P0. Suppose that the battery capacity

of the UAV is E and the battery is fully charged upon arrival at
the initial position u1.

Due to energy causality, the UAV cannot consume energy
before it is harvested from the HAPs. Therefore, to sustain travel
across multiple data-gathering points, it is necessary to ensure
that the total energy harvested by the UAV up to any position j is
greater than or equal to the total energy consumed upon arrival
at the next position j + 1, i.e.,

Ein
j+1(e, {uj′ }Jj′=1) �E +

j∑
j′=1

ej′ −
j+1∑
j′=1

‖uj′ − uj′−1‖
V

P1

−
j∑

j′=1

max

(
Dj′

Rj′(uj′)
,

ej′

pmax
j′ (uj′)

)
P0 ≥ 0, (8)

for j = 1, . . . , J , where u0 = u1 and uJ+1 = uJ . This is
referred to as the energy causality constraint. The function
Ein

j+1(e, {uj′ }Jj′=1) on the left-hand-side (LHS) of (8) is the
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remaining battery energy upon arrival at position j + 1 under
charging policy e and hovering positions {uj′ }Jj′=1.

Moreover, since the UAV cannot be charged beyond its battery
capacity E, the remaining energy upon departure from any
position j must not be greater than E, i.e.,

Eout
j (e, {uj′ }Jj′=1) �E +

j∑
j′=1

ej′ −
j∑

j′=1

‖uj′ − uj′−1‖
V

P1

−
j∑

j′=1

max

(
Dj′

Rj′(uj′)
,

ej′

pmax
j′ (uj′)

)
P0 ≤ E, (9)

for j = 1, . . . , J . This is referred to as the battery capacity
constraint. The function Eout

j (e, {uj′ }Jj′=1) on the LHS of (9)
is the remaining energy upon departure from position j under
charging policy e and hovering positions {uj′ }Jj′=1. Notice that
the remaining energy upon arrival at position j + 1 is equal to
that upon departure from position j minus the energy consumed
for the flight from uj to uj+1, i.e.,

Ein
j+1(e, {uj′ }Jj′=1) = Eout

j (e, {uj′ }Jj′=1)−
‖uj+1 − uj‖

V
P1.

(10)

D. Problem Formulation

The main objective of our work is to determine the opti-
mal charging energies {ej}Jj=1 (or e) and hovering positions
{uj}Jj=1 that minimize the UAV’s total task completion time,
subject to energy causality and battery capacity constraints. Note
that the task completion time depends not only on the flight time
but also on the charging powers and data rates, both of which
are influenced by the UAV’s hovering positions. The problem
can be formulated as

min
ej ,uj ,∀j

J∑
j=1

max

(
Dj

Rj(uj)
,

ej
pmax
j (uj)

)
+

J−1∑
j=1

‖uj−uj+1‖
V

(11a)

subject to E +

j∑
j′=1

ej′ −
j+1∑
j′=1

‖uj′ − uj′−1‖
V

P1

−
j∑

j′=1

max

(
Dj′

Rj′(uj′)
,

ej′

pmax
j′ (uj′)

)
P0 ≥ 0, ∀j,

(11b)

E +

j∑
j′=1

ej′ −
j∑

j′=1

‖uj′ − uj′−1‖
V

P1

−
j∑

j′=1

max

(
Dj′

Rj′(uj′)
,

ej′

pmax
j′ (uj′)

)
P0 ≤ E, ∀j,

(11c)

Hmin ≤ uj,3 ≤ Hmax, ∀j. (11d)

The problem is non-convex and thus difficult to solve in general.
The non-convexity mainly arises due to the terms ej/pmax

j (uj)
and Dj/Rj(uj) appearing in both the objective and constraints.

To address these challenges, we propose an efficient solution
based on the BCD approach, where the charging energies and
hovering positions are optimized in turn until convergence. The
SCA technique is further employed to handle the non-convexity
related to the hovering positions. Using the previously defined
Ein

j+1(e, {uj′ }Jj′=1) and Eout
j (e, {uj′ }Jj′=1), the constraints in

(11b) and (11c) can be expressed as Ein
j+1(e, {uj′ }Jj′=1) ≥ 0

and Eout
j (e, {uj′ }Jj′=1) ≤ E, respectively.

IV. MINIMUM COMPLETION TIME TRAJECTORY AND

CHARGING OPTIMIZATION ALGORITHM

In this section, we propose the Minimum Completion Time
Trajectory and Charging Optimization (MinTime-TCO) algo-
rithm that solves the problem in (11) using a BCD approach. In
particular, the problem in (11) is divided into two subproblems:
the charging optimization and the hovering position optimiza-
tion subproblems, which are solved in turn until convergence.
In the first subproblem, we propose the Maximum Charge Rate
Search (MCRS) algorithm to determine the optimal charging
energies {ej}Jj=1 under fixed hovering positions {uj}Jj=1. The
optimality of the MCRS algorithm is then shown in Section VI.
In the second subproblem, we propose the Hovering Position Op-
timization (HPO) algorithm, which instead optimizes the hov-
ering positions {uj}Jj=1 under fixed charging energies {ej}Jj=1.
The HPO algorithm employs a successive convex approximation
(SCA) approach to address the non-convexity of the objective
and constraints. Thus, this method is referred to as the HPO-SCA
algorithm.

A. Subproblem I: Charging Optimization

In this subsection, we first determine the optimal charging
strategy {ej}Jj=1 under fixed hovering positions {uj}Jj=1. In
this case, with a slight abuse of notation, we can express
Ein

j+1(e, {uj′ }Jj′=1) and Eout
j (e, {uj′ }Jj′=1) as Ein

j+1(e) and
Eout

j (e), respectively. The optimization subproblem can then
be formulated as follows:

min
ej ,∀j

J∑
j=1

max

(
Dj

Rj(uj)
,

ej
pmax
j (uj)

)
(12a)

subject to Ein
j+1(e) ≥ 0, ∀j, (12b)

Eout
j (e) ≤ E, ∀j. (12c)

Notice that flight time and height restrictions are disregarded in
this subproblem since the charging occurs only at the hovering
positions, which are fixed in this problem.

To solve the charging optimization subproblem in (12), we
present the MCRS algorithm that determines sequentially the
minimum energy needed to reach each of the J hovering po-
sitions. In particular, in each iteration (say, iteration j), the
MCRS algorithm checks if position j can be reached under
the current charging solution. If not, the algorithm revisits the
charging solution at the previous j − 1 positions and increases
the charging energy at the position with the maximum charging
rate until the energy required to reach position j is obtained.
For ease of exposition, we first assume that the data upload time
(i.e., Dj/Rj(uj), ∀j) is negligible compared to the charging
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time in the following discussions. However, this may not be true
in general. In such cases, the data upload time can provide the
UAV with the opportunity to charge without incurring additional
completion time. This can be later incorporated by allowing the
UAV to prioritize charging during these intervals.

Suppose that ej,MCRS � (ej,MCRS
1 , . . . , ej,MCRS

J ) is the
charging solution obtained by the MCRS algorithm in iteration
j. This solution should only be sufficient for the UAV to reach
position j without energy depletion. For solution ej,MCRS, we
can define jfull to be the last position for which the UAV is fully
charged upon departure, i.e.,

jfull � max
{
j ′ ∈ {0, 1, . . . , j − 1} : Eout

j′ (ej,MCRS) = E
}
,

(13)
where Eout

j′ (e) is the remaining energy upon departure from
position j′ under charging policy e as defined on the LHS of
(9). Notice that, since the UAV is assumed to be fully charged
upon arrival at the initial position, we set Eout

0 (e) = E. Hence,
jfull = 0 in the initial iteration. Moreover, let

ΔEreq
j+1(e

j,MCRS) � ‖uj − uj+1‖
V

P1 − Eout
j (ej,MCRS)

(14)
be the minimum additional energy required for the UAV to reach
position j + 1. Then, in iteration j + 1, the MCRS algorithm
chooses to charge the required energy ΔEreq

j+1(e
j,MCRS) at the

position with the maximum charge rate between jfull + 1 and j,
i.e., the position

jmax = argmax
j′∈{jfull+1,...,j}

pmax
j′ (uj′). (15)

Please note that charging at positions before jfull + 1 would not
be possible since this would violate the battery constraint at
position jfull. By charging at position jmax, the charging solution
can be updated as

ej+1,MCRS
jmax = ej,MCRS

jmax +
pmax
jmax(ujmax)

pmax
jmax(ujmax)− P0

·min
{
ΔEreq

j+1(e
j,MCRS),

{
E − Eout

j′ (ej,MCRS)
}j
j′=jmax

}
.

(16)

The ratio
pmax
jmax (ujmax )

pmax
jmax (ujmax )−P0

accounts for the fact that energy

is also consumed due to hovering during the energy charg-
ing time. The minimization in the second term reflects the
fact that the charging energy at position jmax is limited by
the remaining battery capacity of all positions from jmax to
j. If ΔEreq

j+1(e
j,MCRS) ≤ min{E − Eout

j′ (ej,MCRS)}jj′=jmax ,
then the required energy to reach position j + 1 is obtained
without exceeding the battery capacity at later positions and,
thus, we are done. If not, this implies that the battery at one
of the positions from jmax to j is full and the required energy
is not yet fully obtained. In this case, we replace jfull with the
index of this position (i.e., jmost � argminj′∈{j,...,jmax}{E −
Eout

j′ (ej,MCRS)}), update the required energyΔEreq
j+1(e

j,MCRS)

using the new ej,MCRS, and repeat the process again. The
process is continued until the minimum required energy to reach
position j + 1 is obtained. In the following, we provide an
example to illustrate the procedures of the MCRS algorithm.

Fig. 2. An example of the MCRS algorithm.

Example: Suppose that there are 4 hovering positions with
charge ratespmax

1 (u1) = 100W,pmax
2 (u2) = 130W,pmax

3 (u3) =
110 W, pmax

4 (u4) = 140 W. The battery capacity is E = 2000 J
and is assumed to be full upon arrival at position 1. Initially,
we set e1,MCRS to be an all-zero vector, i.e., e1,MCRS = 0.
Suppose that the remaining energy upon departure from posi-
tion 1 is Eout

1 (e1,MCRS) = 200 J and the minimum additional
energy required to reach position 2 isΔEreq

2 (e1,MCRS) = 600 J.
In this case, the MCRS algorithm will update the charging
energy at position 1 by letting e2,MCRS

1 = 100
100−P0

600, as il-
lustrated in Fig. 2(a). The charging energies at other posi-
tions remain to be 0. Notice that the energy obtained after the
first iteration is only sufficient to reach position 2 and, thus,
Ein

2 (e2,MCRS) = 0. Moreover, suppose that the minimum addi-
tional energy required to reach position 3 isΔEreq

3 (e2,MCRS) =
1200 J. Then, since pmax

2 (u2) > pmax
1 (u1), the MCRS algo-

rithm will choose to charge the additional energy at position
2 and update the charging energy at position 2 as e3,MCRS

2 =

e2,MCRS
2 + 130

130−P0
1200, as illustrated in Fig. 2(b). With the

updated solution e3,MCRS, the remaining energy upon departure
from position 2 is Eout

2 (e3,MCRS) = 1200 J and the remaining
energy upon arrival at position 3 is Ein

3 (e3,MCRS) = 0. Finally,
suppose that the minimum additional energy required to reach
position 4 is ΔEreq

4 (e3,MCRS) = 1000 J. Since pmax
2 (u2) >
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Algorithm 1: Maximum Charge Rate Search (MCRS)
Algorithm.

max{pmax
1 (u1), p

max
3 (u3)}, the MCRS algorithm will prioritize

charging at position 2 but can only obtain part of the required
energy at this position since the remaining battery capacity
upon departure from position 2 is only E − 1200 = 800 J.
Hence, the charging energy at position 2 is only updated as
e4,MCRS
2 = e3,MCRS

2 + 130
130−P0

800, as illustrated in Fig. 2(c).
Consequently, the remaining energy upon arrival at position 3 is
nowEin

3 (e3,MCRS) = 800 J. After charging 800 J of the required
1000 J energy at position 2, the remaining 200 J that is required
can only be charged at position 3, as illustrated in Fig. 2(d).
Hence, we have e4,MCRS

3 = 110
110−P0

200.
The pseudo-code of the MCRS algorithm is summarized in

Algorithm 1, and its optimality proof is provided in Section VI.
In Algorithm 1, we include the free charge procedure to account

for the energy that can be obtained without additional cost during
the data upload time. Specifically, we initialize the charging
solution as e1,MCRS = 0, set 1full to 0 (since the UAV is assumed
to be fully charged upon dispatch), and set F to be an empty
set. Here, F is used to store the indices of positions where
free charging opportunities during data upload times have not
yet been fully utilized. In the main body of the algorithm, the
positions are visited sequentially, from 1 to J , to check whether
the remaining energy of the UAV is sufficient to reach each
position. If not, the required energy is charged at the position
with the maximum charge rate. In each iteration, ej,MCRS and
jfull are initialized with the values from the previous iteration,
i.e., ej−1,MCRS and (j − 1)full. Then, the Free_Charge pro-
cedure is applied to utilize the available charging energy during
data upload times up to position j. After fully exploiting free
charging opportunities, we proceed through the while loop to
find the position jmax with the maximum charge rate and charge
the required energy at this position until the battery capacity is
reached at one of the positions from jmax to j. The process is
repeated if the required energy ΔEreq

j+1(e
j,MCRS) has not yet

been fully obtained. The Free_Charge function charges at
the earliest available position in the set F until the free charge
amount is exhausted at that position or the required energy is
obtained.

B. Subproblem II: Hovering Position Optimization

In this subsection, we aim to determine the optimal hover-
ing positions {uj}Jj=1 under fixed charging strategy {ej}Jj=1

(or e). In this case, we can express Ein
j+1(e, {uj′ }Jj′=1)

and Eout
j (e, {uj′ }Jj′=1) as Ein

j+1({uj}) and Eout
j ({uj}),

respectively, where {uj} is used as a concise notation
for {uj′ }Jj′=1. Then, the optimization subproblem can be
formulated as

min
uj ,∀j

J∑
j=1

max

(
Dj

Rj(uj)
,

ej
pmax
j (uj)

)
+

J−1∑
j=1

‖uj−uj+1‖
V

(17a)

subject to Ein
j+1({uj}) ≥ 0, ∀j, (17b)

Eout
j ({uj}) ≤ E, ∀j, (17c)

Hmin ≤ uj,3 ≤ Hmax, ∀j. (17d)

Notice that modifying the hovering positions will simultane-
ously alter the charge and data transmission rates (and, thus, the
charge and data upload times). The distance between hovering
positions will also change, further affecting the total flight time.
By (10) and the definition of Eout

j ({uj}), we can rewrite the
problem as

min
uj ,∀j

J∑
j=1

max

(
Dj

Rj(uj)
,

ej
pmax
j (uj)

)
+

J−1∑
j=1

‖uj−uj+1‖
V

(18a)

subject to Eout
j ({uj})− ‖uj+1 − uj‖

V
P1 ≥ 0, ∀j, (18b)
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Eout
j−1({uj}) + ej − ‖uj − uj−1‖

V
P1

−max

(
Dj

Rj(uj)
,

ej
pmax
j (uj)

)
P0 ≤ E, ∀j, (18c)

Hmin ≤ uj,3 ≤ Hmax, ∀j. (18d)

To provide more flexibility for the optimization of {uj}Jj=1,
we propose to remove the maximum charging constraint in (18c),
but instead account for the battery capacity limit by replacing
Eout

j ({uj}) in (18b) with the equation

min

{
E,Eout

j−1({uj}) + ej − ‖uj − uj−1‖
V

P1

−max

(
Dj

Rj(uj)
,

ej
pmax
j (uj)

)
P0

}
(19)

By doing so, we ensure that the remaining energy upon departure
from position j is not over-estimated even after removing the
constraint in (18c). Then, by introducing the auxiliary variables
bj , for all j, the problem can be reduced to the following:

min
uj ,bj ,∀j

J∑
j=1

bj +

J−1∑
j=1

‖uj−uj+1‖
V

(20a)

subject to Ẽout
j ({uj})− ‖uj+1 − uj‖

V
P1 ≥ 0, ∀j, (20b)

max

(
Dj

Rj(uj)
,

ej
pmax
j (uj)

)
≤ bj , ∀j, (20c)

Hmin ≤ uj,3 ≤ Hmax, ∀j, (20d)

where

Ẽout
j ({uj}) = min

{
E, Ẽout

j−1({uj}) + ej

− ‖uj − uj−1‖
V

P1 − bjP0

}
. (21)

It is worthwhile to remark that any solution that is feasible for
the original subproblem in (18) is also feasible for the relaxed
problem in (20). This is because, in (18), the charging energy
solution is required to satisfy the battery constraint in (18c) and,
thus, the remaining energy upon departure from any position
would not exceed E. In this case, we have Ẽout

j ({uj}) =
Eout

j ({uj}) and, thus, the constraint in (20b) becomes equiv-
alent to (18b). Therefore, the resulting objective value of the
problem in (20) should be no larger than that of the problem in
(18). Moreover, for any solution of {uj}Jj=1 that is feasible for
the above problem, there exists a charging energy solution that
satisfies the constraint in (12c) by reducing the charge amount
ej as

ereducedj ← ej −max

{
Ẽout

j−1({uj}) + ej − ‖uj − uj−1‖
V

P1

− bjP0 − E, 0

}
. (22)

Hence, we can ensure that the objective value is not increased
in the next iteration.

The optimization problem in (20) is non-convex due to the
constraint in (20c) and, thus, is difficult to solve efficiently. To
address this issue, we adopt an SCA approach where the non-
convex terms on the LHS of (20c) are replaced with their convex
upper bounds. In particular, by replacing Rj(uj) and pmax

j (uj)
with their definitions in (4) and (6) (and also (5)), we can rewrite
the constraint in (20c) for position j as

ej

maxi∈I
ηP L exp(−γ‖ai−uj‖)

(ζ+φ‖ai−uj‖)2
≤ bj , (23)

Dj

B log
(
1 +

P txgj(uj)
BN0

) ≤ bj . (24)

Let uiter
j be the coordinates of position j obtained in the

previous iteration of the MinTime-TCO algorithm, and let

aiterj = argmax
a∈{a1,...,aI}

ηP L exp(−γ‖a− uiter
j ‖)

(ζ + φ‖a− uiter
j ‖)2

(25)

be the coordinates of the corresponding HAP chosen to charge
the UAV when it is at position uiter

j . In this case, we have

ej

maxi∈{1,...,I}
ηP L exp(−γ‖ai−uj‖)

(ζ+φ‖ai−uj‖)2
≤ ej

ηP L exp(−γ‖aiter
j −uj‖)

(ζ+φ‖aiter
j −uj‖)2

(26)
with equality when uj = uiter

j . Then, by replacing the LHS
of (23) with its upper bound given above and by taking the
logarithm on both sides, we have

ln
ej
ηP L

+ γ‖aiterj − uj‖+ 2 ln(ζ + φ‖aiterj − uj‖) ≤ ln bj .

(27)

We can see that 2 ln(ζ + φ‖aiterj − uj‖) is concave with respect
to ‖aiterj − uj‖ and, thus, can be upper bounded by its first-order
Taylor expansion, that is,

2 ln(ζ+φ‖aiterj − uj‖) ≤ 2 ln(ζ+φ‖aiterj − uiter
j ‖)

+
2φ

ζ+φ‖aiterj − uiter
j ‖

(‖aiterj − uj‖ − ‖aiterj − uiter
j ‖).

(28)

Then, by further replacing the term 2 ln(ζ + φ‖aiterj − uj‖) in
(27) with the right-hand-side (RHS) of (28), we obtain a convex
constraint given by

ln
ej
ηP L

+ γ‖aiterj − uj‖+ 2 ln(ζ+φ‖aiterj − uiter
j ‖)

+
2φ

ζ+φ‖aiterj − uiter
j ‖

(‖aiterj − uj‖ − ‖aiterj − uiter
j ‖)

≤ ln bj . (29)

The bound is tight at the point uj = uiter
j and thus the solution

uiter
j obtained in the previous iteration is also feasible under this

constraint. Also, by (26) and (28), it follows that any value of
uiter
j that is feasible under (29) is also feasible under the original

constraint in (27) (or, equivalently, (23)).
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Moreover, by introducing the auxiliary variable cj and by the
definition of gj(·) given in (3), the constraint in (24) can be
written as

Dj

bj
≤ B log

(
1 +

P txcj
BN0

)
, (30)

cj ≤ ΦLoS
j (uj)

ρLoS0

‖uj − sj‖αLoS . (31)

The constraint in (30) is convex, but the constraint in (31) is not.
To further cope with the non-convexity of (31), we first take the
logarithm on both sides. Then, by the definition of ΦLoS

j (uj)
in (2) and by introducing another auxiliary variable dj , we can
rewrite (31) as

ln cj ≤ ln
1

1 + C2 exp(C1C2)dj
+ ln

ρLoS0

‖uj − sj‖αLoS , (32)

exp

[
− C1

180

π
arcsin

(
uj,3

‖uj − sj‖
)]
≤ dj . (33)

By reorganizing the terms, (32) can be written as

ln cj + ln (1+C2 exp(C1C2)dj) + ln ‖uj−sj‖αLoS≤ ln ρLoS0 .
(34)

Let citerj be the solution of cj obtained in the previous iteration.
By the fact that log x is concave with respect to x, for x > 0, we
can upper bound each term on the LHS of (35) by their first order
Taylor approximations, which results in the following convex
constraint

ln citerj +
1

citerj

(cj − citerj ) + ln
(
1 + C2 exp(C1C2)d

iter
j

)

+
C2 exp(C1C2)

1 + C2 exp(C1C2)diterj

(dj − diterj ) + ln ‖uiter
j − sj‖αLoS

+
αLoS

‖uiter
j − sj‖ (‖uj − sj‖ − ‖uiter

j − sj‖) ≤ ln ρLoS0 . (35)

Similarly, to address the non-convexity of (33), we further
introduce the auxiliary variables fj and hj so that (33) can be
rewritten as

exp

(
−C1

180

π
fj

)
≤ dj , (36)

fj ≤ arcsin(hj), (37)

hj ≤ uj,3

‖uj − sj‖ , (38)

hj ≥ 0. (39)

Notice that (36) is convex, but (37) and (38) are not. By the fact
that arcsin(hj) is convex with respect to hj , for hj ≥ 0, we can
replace the RHS of (37) with its first-order Taylor approximation
around the initial solution hiter

j (i.e., the solution of hj obtained
in the previous iteration). This yields an approximate convex
constraint given by

fj ≤ arcsin(hiter
j ) +

1√
1 + (hiter

j )2
(hj − hiter

j ). (40)

Algorithm 2: Minimum Completion Time Trajectory and
Charging Optimization (MinTime-TCO) Algorithm.

By reorganizing the constraint in (38) and by taking the loga-
rithm on both sides, we have

lnhj + ln ‖uj − sj‖ ≤ lnuj,3. (41)

By the fact that lnx is concave, we can replace the LHS of
(41) with their first-order Taylor approximations to obtain an
approximate convex constraint given by

lnhiter
j +

1

hiter
j

(hj − hiter
j ) + ln ‖uiter

j − sj‖

+
1

‖uiter
j − sj‖ (‖uj − sj‖ − ‖uiter

j − sj‖) ≤ lnuj,3. (42)

By replacing the constraints in (20c) with their convex ap-
proximations in (29), (30), (35), (36), (39), (40) and (42), we
can approximate the problem in (17) with the following convex
optimization problem

min
uj ,bj ,cj ,dj ,fj ,hj ,∀j

J∑
j=1

bj +

J−1∑
j=1

‖uj − uj+1‖
V

(43a)

subject to (20 b), (20 d), (29), (30), (35),

(36), (39), (40), (42), ∀j. (43b)

The problem is convex and can be solved by off-the-shelf solvers,
such as CVX [32]. By adopting the interior point method, the
computational complexity required to solve the convex opti-
mization problem in (43) to ε accuracy is O((8J)3 ln(1/ε))
[33], [34]. The above optimization procedure is referred to as
the HPO-SCA algorithm.

Summary of the MinTime-TCO Algorithm: The proposed
MinTime-TCO algorithm solves the problem in (11) using a
BCD approach where the charging energies {ej}Jj=1 and hover-
ing positions {u}Jj=1 are optimized in turn until convergence. In
each iteration, the optimal charging energies are determined by
the MCRS algorithm, and the UAV’s charging positions are op-
timized by the HPO-SCA algorithm (i.e., by solving the convex
optimization problem in (43)). The MinTime-TCO algorithm is
summarized in Algorithm 2. Here, Obj(t) refers to the objective
value in (11) obtained during the t-th iteration. The convergence
of the MinTime-TCO algorithm is shown below.
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Theorem 1: The sequence of objective values obtained by the
MinTime-TCO algorithm is monotonically non-increasing and
thus converges.

Proof: Let {ej [t]}Jj=1 and {uj [t]}Jj=1 be the solutions ob-
tained at the end of iteration t and let J({ej}Jj=1, {uj}Jj=1)
be the objective value in (11a) as a function of the
variables {ej}Jj=1 and {uj}Jj=1. Then, in iteration t+ 1,
the solution {ej [t+ 1]}Jj=1 in Subproblem I is first ob-
tained given {uj [t]}Jj=1 by applying the MCRS algorithm,
which yields the optimal solution to the problem in (12).
Hence, it must hold that J({ej [t+ 1]}Jj=1, {uj [t]}Jj=1) ≤
J({ej [t]}Jj=1, {uj [t]}Jj=1). Then, in Subproblem II, the solu-
tion {uj [t+ 1]}Jj=1 given {ej [t+ 1]}Jj=1 is obtained by solv-
ing the optimization problem in (43). Notice that (43) is
a convex approximation of the problem in (20). The con-
vex approximations are tight at the point {uj [t]}Jj=1 and,
thus, the solutions obtained in iteration t are also feasible
under the convex constraints in (43). Hence, the solution
{uj [t+ 1]}Jj=1 along with the corresponding charging solu-
tion {ereduced

j [t+ 1]}Jj=1 described in (22) further reduces the
objective value, i.e., J({ereduced

j [t+ 1]}Jj=1, {uj [t+ 1]}Jj=1) ≤
J({ej [t+ 1]}Jj=1, {uj [t]}Jj=1). By combining the above argu-
ments and by replacing {ej [t+ 1]}Jj=1 with the updated so-
lution {ereduced

j [t+ 1]}Jj=1, we have J({ej [t+ 1]}Jj=1, {uj [t+

1]}Jj=1) ≤ J({ej [t]}Jj=1, {uj [t]}Jj=1), i.e., the sequence of ob-
jective values {J({ej [t]}Jj=1, {uj [t]}Jj=1)}∞t=1 is monotoni-
cally non-increasing. Moreover, since the objective function is
bounded below, the sequence must converge. �

V. APPROXIMATE HOVERING POSITION OPTIMIZATION BY

DYNAMIC PROGRAMMING

In the previous sections, we adopted the SCA method to
yield a tractable solution for the non-convex hovering position
optimization subproblem in (17). Even though SCA already
reduces the complexity of the problem, the need for iterative
numerical methods, such as the interior point method, to solve
the relaxed convex optimization problem in each iteration can
still be time-consuming (c.f., Table II). Therefore, in this section,
we propose a low-complexity approach using the DP principle
to search across a set of potential grid points above each sen-
sor. The complexity of the algorithm can be adjusted by the
choice of the number of grid points, with a manageable tradeoff
in performance. More importantly, when alternating with the
energy charging optimization problem, the number of iterations
required to converge when using DP is much smaller than that
when using SCA, as we show later in our experiments. The
resulting method is called the HPO-DP algorithm.

Specifically, to find the optimal hovering positions {uj}Jj=1

using DP, we first discretize the feasible hovering positions
above each sensor node j to yield the set

Uj =
{
(sj,1 +m1δ, sj,2 +m2δ,m3δ) :

m1,m2,m3 are integers,

Rj(sj,1 +m1δ, sj,2 +m2δ,m3δ) ≥ Rth

and Hmin ≤ m3δ ≤ Hmax

}
. (44)

Note that Uj is a 3-dimensional grid of feasible hovering points
above sensor j with transmission rate greater than the threshold
Rth to ensure reliable communication between sensor j and the
UAV. The number of feasible hovering positions is denoted by
Lj = |Uj |.

Let uj,l be the coordinates of the l-th point in Uj and let Vj,l
be the set of indices of points in Uj−1 that has sufficient energy
to reach point uj,l under solution e, i.e.,

Vj,l =
{
l′ ∈ {1, . . . , Lj−1} :

Eout
j−1,l′(e)−

‖uj,l − uj−1,l′ ‖
V

P1 ≥ 0
}
. (45)

Then, for each point uj,l, we can select a path arriving from
one of the points in Vj,l that yields the minimum accumulated
flight time up touj,l. The selection can be done recursively from
points inU1 to points inUJ . When arriving at the points inUj , the
accumulated flight time to reach each point uj,l ∈ Uj is updated
using the following Bellman equation

Tj,l = min
l′∈Vj,l

{
Tj−1,l′ +

‖uj,l − uj−1,l′ ‖
V

}

+max

(
Dj

Rj(uj,l)
,

ej
pmax
j (uj,l)

)
(46)

for j > 1, where T1,l = max(
Dj

Rj(uj,l)
,

ej
pmax
j (uj,l)

). Similarly, the

remaining energy upon departure from position uj,l ∈ Uj can
be updated as

Eout
j,l (e) = min

{
E, Eout

j−1,lmin
j,l
(e)−

‖uj,l − uj−1,lmin
j,l
‖

V
P1

+ ej −max

(
Dj

Rj(uj,l)
,

ej
pmax
j (uj,l)

)
P0

}
(47)

where Eout
1,l (e)=min(E,E+e1−max( D1

R1(u1,l)
, e1
pmax
1 (u1,l)

)P0)

and

lmin
j,l = argmin

l′∈Vj,l

{
Tj−1,l′ +

‖uj,l − uj−1,l′ ‖
V

}
(48)

is the index of the point in Vj,l that yields the minimum ac-
cumulated flight time to reach uj,l. By performing the above
computations recursively from points in U1 to points in UJ , we
can eventually find the set of accumulated flight timesTJ,l, for all
l ∈ UJ . Then, the point in UJ with the minimum accumulated
flight time is selected, and the desired UAV trajectory can be
obtained by backtracking through the previous positions. The
HPO-DP algorithm is summarized in Algorithm 3.

Specifically, in Line 1, we initialize Tj,l to∞ and set Eout
j,l (e)

and lmin
j,l to −1, indicating that these values have not been

calculated. Then, in Lines 2-5 we compute the flight time and
remaining energy for all points above sensor 1. Subsequently,
in Lines 6-15, we compute the minimum accumulated flight
time Tj,l to reach each discretized point in Uj , record the
preceding point lmin

j,l on the trajectory, and update the remaining
energy upon departure Eout

j,l (e). If no points above the previous
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Algorithm 3: Hovering Position Optimization by Dynamic
Programming (HPO-DP) Algorithm.

hovering position can reach the current point, we will disregard
it and retain its task completion time as ∞ to signify that it is
unreachable. Then, in Line 16, we find the point above the last
sensor that yields the minimum accumulated flight time. Finally,
in Lines 17-20, we backtrack from the l∗-th point above sensor
J to find the path that leads to the desired completion time.

It is worthwhile to note that, even though the DP principle
is adopted to minimize the total completion time, the solution
obtained by the above procedure may not necessarily be opti-
mal since the set of feasible points in the previous position is
restricted to the set Vj,l, which contains the indices of points
with sufficient energy to reach point uj,l. However, all but one
path leading up to each point in Uj−1 are eliminated except
for the path with minimum accumulated completion time. This
may eliminate paths with more remaining energy, albeit with a
slightly longer completion time. By doing so, the set of points
that a point in Uj−1 can reach is limited. This sacrifice in
optimality allows us to preserve the linear complexity of DP
and, thus, obtain a low-complexity alternative to the HPO-SCA
algorithm proposed in the previous section. But, it may affect the
monotonicity required to prove the convergence of the MinTime-
TCO algorithm. Hence, convergence is not theoretically guar-
anteed in this case. However, we see in the experiments (c.f.,
Fig. 6) that convergence can actually occur much faster than
the original MinTime-TCO algorithm, significantly reducing the
overall computation time.

Complexity Analysis: In the HPO-DP algorithm, we assume
the maximum number of discretized points overall sensor nodes
is given by L � maxj=1,...,J Lj . The initialization in Line 1
requires complexity O(LJ). The computation of the variables

associated with the first hovering position in Lines 2-5 requires
complexity O(L). In lines 6 to 15, the complexity of the two
for loops is O(LJ), and the calculation of Vj,l and Tj,l is L.
Thus, the complexity is O(L2J). Finally, in Lines 16 to 20,
the backtracking complexity isO(J). Combining all individual
complexities, the overall complexity of HPO-DP is O(L2J).

VI. OPTIMALITY PROOF OF THE MCRS ALGORITHM

In this section, we prove the optimality of the MCRS algo-
rithm proposed in Section IV-A. We consider only the case where
the data update time is negligible compared to the charging time,
i.e., Dj

Rj(uj)
� ej

pmax
j (uj)

, for all j, and that the charging power

is always greater than the hovering power consumption, i.e.,
pmax
j (uj) ≥ P0. In this case, the optimization problem in (11)

reduces to the following:

min
{uj}Jj=1,{ej}Jj=1

J∑
j=1

ej
pmax
j (uj)

+

J−1∑
j=1

‖uj − uj+1‖
V

(49a)

subject to E +

j∑
j′=1

ej′

(
1− P0

pmax
j′ (uj′)

)

−
j+1∑
j′=1

‖uj′ − uj′−1‖
V

P1 ≥ 0, ∀j, (49b)

E +

j∑
j′=1

ej′

(
1− P0

pmax
j′ (uj′)

)

−
j∑

j′=1

‖uj′ − uj′−1‖
V

P1 ≤ E, ∀j. (49c)

Moreover, we assume that all the charging powers are distinct,
i.e., pmax

j (uj) = pmax
j′ (uj′), for all j = j′. In the general case

where the upload time may not be negligible, we can simply
treat the solution ej obtained at the end of each iteration as
that obtained after exploiting the free charging opportunities up
to that point, as described in the Free_Charge procedure.
However, for ease of exposition, we do not treat this case
explicitly in the following proof.

Let ej,opt = (ej,opt1 , . . . , ej,optJ ) be the optimal charging solu-
tion that yields the minimum task completion time up to sensor
j, i.e., the minimum time needed to collect data from sensors 1
to j. In this case, the remaining energy of the UAV upon arrival
at position j should be equal to zero, i.e.,

Ein
j (ej,opt) � E +

j−1∑
j′=1

ej,optj′

(
1− P0

pmax
j′ (uj′)

)

−
j∑

j′=1

‖uj′ − uj′−1‖
V

P1 = 0 (50)

since the energy should be sufficient only to reach sensor j.
Moreover, we have ej,optj = · · · = ej,optJ = 0 since the remain-
ing sensors need not yet be visited. The following properties can
be shown for ej,opt.
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Lemma 1: Let k1 and k2 (where k1 < k2) be the indices of
two consecutive charging positions under solution ej,opt (i.e.,
ej,optk1

> 0, ej,optk2
> 0, and ej,optk = 0, for all k such that k1 <

k < k2). The following properties hold:
i) If the UAV is not fully charged upon departure from posi-

tion k1, i.e., Eout
k1

(ej,opt) < E, then k2 must have a faster
charging rate than k1, i.e., pmax

k1
(uk1

) < pmax
k2

(uk2
), and

the remaining energy upon arrival at k2 must be zero.
ii) If the UAV is fully charged upon departure from k1, i.e.,

Eout
k (ej,opt) = E, and the remaining energy upon arrival

at position k2 is nonzero, then k1 must have a faster
charging rate than k2, i.e., pmax

k1
(uk1

) > pmax
k2

(uk2
).

iii) The charging rates at positions k1 and k2 must be faster
than that at any position in between, i.e., pmax

k1
(uk1

) >
pmax
k (uk) and pmax

k2
(uk2

) > pmax
k (uk), for all k such that

k1 < k < k2.
iv) Ifk′ is the last charging position underej,opt (i.e., ej,optk =

0, for all k > k′), then pmax
k′ (uk′) > pmax

k (uk), for any k
in between k′ and j.

Proof: (i) First, we prove that pmax
k1

(uk1
) < pmax

k2
(uk2

) by
contradiction. Suppose that pmax

k1
(uk1

) > pmax
k2

(uk2
). Since the

battery capacity is not full upon departure at position k1, i.e.,
Eout

k1
(ej,opt) < E, the task completion time can be reduced

(without violating the energy causality and battery capacity
constraints in (49b) and (49c)) by increasing the charging energy
ej,optk1

by Δe, where Δe < min{E − Eout
k1

(ej,opt), ej,optk2
}, and

decreasing the charging energy ej,optk2
by the same amount Δe.

This contradicts the fact that ej,opt is optional.
The fact that the remaining energy upon arrival at k2 is

zero, i.e., Ein
k2
(ej,opt) = 0, can also be proven by contradic-

tion. Suppose that Ein
k2
(ej,opt) > 0. Then, since pmax

k1
(uk1

) <
pmax
k2

(uk2
), a better solution can be obtained by reducing

the charge amount at position k1 by a small amount Δe <
min{ej,optk1

, Ein
k2
(ej,opt), E − Eout

k2
(ej,opt)} and by increasing

the same amount at k2 without violating the energy causality and
batter capacity constraints. This again contradicts the fact that
ej,opt is optimal. (ii) The result can again be proven by contradic-
tion, similar to (i), and thus is omitted for brevity. (iii) Suppose
that there exists k in between k1 and k2 such that pmax

k (uk) >
pmax
k1

(uk1
). By the premise of the lemma, we know that the

UAV is able to go from k1 to k2 under ej,opt without charging
in between. This implies that the UAV can reach position k with
nonzero remaining energy, i.e.,Ein

k (ej,opt) > 0. In this case, we
can obtain a better solution by reducing the charging energy at
position k1 by Δe < min{Ein

k (ej,opt), E − Eout
k (ej,opt)} and

increasing the same amount at position k without violating
the energy causality and battery capacity constraints. Similarly,
suppose that pmax

k (uk) > pmax
k2

(uk2
). In this case, we can again

obtain a better solution by reducing the charging energy at k2 by
Δe < min{ej,optk2

, Ein
k2
(ej,opt), E − Eout

k (ej,opt)} and increas-
ing the same amount at position k. Hence, the result in (iii) is
shown by contradiction. (iv) The proof is similar to that in (iii)
and thus is omitted. �

Given the properties of ej,opt shown in Lemma 1, we can then
show in the following lemmas the relation between the solutions
ej,opt and e(j+1),opt. In particular, we show that e(j+1),opt can

be obtained by charging the additional energy required to reach
position j + 1 on top of the solution ej,opt.

Lemma 2: Suppose that jfull is the last position under ej,opt

at which the UAV is fully charged upon departure. Then, under
solution e(j+1),opt (i.e., the optimal charging energy solution to
reach position j + 1), the UAV must also be fully charged upon
departure from the same position jfull.

Proof: We shall prove this result by contradiction. In partic-
ular, suppose that the UAV is not fully charged upon departure
from location jfull under e(j+1),opt, i.e.,Eout

jfull(e
(j+1),opt) < E.

Moreover, suppose that the non-zero charging positions after
jfull are k1, k2, . . ., kL under ej,opt, where jfull < k1 < k2 <
· · · < kL < j. That is, ej,optk > 0, for k ∈ {k1, . . . , kL}, and is
equal to 0, for all other k between jfull and j. Since jfull is the
last time the UAV is fully charged, it follows from Lemma 1 (i),
(iii), and (iv) that the charging rate at position kL is higher than
that at all positions k between jfull and j (i.e., jfull < k < j).
Moreover, the charging rate at jfull is faster than at positions
jfull + 1 to k1 − 1, and the remaining energy upon arrival at
positions k2, . . ., kL, and j are zero.

If the remaining energy upon arrival at k1 is zero under ej,opt

(where the UAV is fully charged upon departure from jfull), then,
since Eout

jfull(e
(j+1),opt) < E, it is necessary to charge at some

position from jfull + 1 to k1 − 1 to gather enough energy to
reach k1 under e(j+1),opt. However, these positions have charg-
ing rates that are slower than jfull and, thus, a better solution can
be obtained by charging at jfull instead. This contradicts the fact
that e(j+1),opt is optimal. On the other hand, ifEin

k1
(ej,opt) > 0,

then, by Lemma 1 (i) and (ii), we know that jfull has a faster
charging rate than positions jfull + 1 to k2 − 1. Since the energy
upon arrival at k2 is zero (i.e., Ein

k2
(ej,opt) = 0), by similar

arguments, we can show that a better solution can be obtained
since Eout

jfull(e
(j+1),opt) < E. �

Lemma 3: Suppose that jfull is the last position under ej,opt

at which the UAV is fully charged. The charging solutions
ej,opt and e(j+1),opt must be identical up to position jfull, i.e.,
e
(j+1),opt
k = ej,optk , for k = 1, . . . , jfull.

Proof: Let e be any solution that results in the UAV being
fully charged at position jfull. In this case, we have Eout

jfull(e) =
E or, equivalently,

jfull∑
j′=1

ej′ −
jfull∑
j′=1

‖uj′ − uj′−1‖
V

P1

−
jfull∑
j′=1

max

(
Dj′

Rj′(uj′)
,

ej′

pmax
j′ (uj′)

)
P0 = 0 (51)

By substituting the above into (11b), the constraints, for j >
jfull, can be written as

E +

j∑
j′=jfull+1

ej′ −
j+1∑

j′=jfull+1

‖uj′ − uj′−1‖
V

P1

−
j∑

j′=jfull+1

max

(
Dj′

Rj′(uj′)
,

ej′

pmax
j′ (uj′)

)
P0 ≥ 0. (52)
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Notice that the above constraint is no longer dependent on the
solutions before jfull. Therefore, the constraints in (11b) become
decoupled for j ≤ jfull and j > jfull. The same can be shown
for the constraints in (11c). Hence, given that the UAV is fully
charged at position jfull, the optimization problem in (11) can be
solved separately for j ≤ jfull and j > jfull since the objective
function is additive.

By Lemma 1, we know that the UAV must be fully charged at
position jfull under both ej,opt and e(j+1),opt. This implies that
both ej,opt and e(j+1),opt can be solved separately for j ≤ jfull

and j > jfull. Hence, the solutions obtained by both ej,opt and
e(j+1),opt up to jfull must be identical. �

Using the above lemmas, we can then prove the optimality
of the MCRS algorithm in terms of minimizing the overall task
completion time. The results are summarized in the following
theorem.

Theorem 2: The MCRS algorithm yields the optimal solution
to the charge time minimization problem in (12).

Proof: The theorem is proved by induction. First, for j = 2
(i.e., the base case), the MCRS algorithm charges at position
1 the minimum energy required to reach position 2. Since
position 1 is the only possible charging position before position
2, the MCRS algorithm yields the optimal charging solution for
reaching position 2, i.e., e2,opt.

For the inductive step, suppose that the MCRS algorithm
yields the optimal solution for reaching position j, i.e.,
ej,MCRS = ej,opt, and let jfull be the last position before j
at which the UAV is fully charged. The MCRS algorithm
builds upon the solution ej,opt by additionally charging, in
each iteration, at the position with the fastest charging rate
after the last fully charged position. The process is repeated
until the minimum required energy to reach j + 1 is acquired.
Hence, the solution remains unchanged before position jfull. By
Lemma 3, we know that the optimal charging solution e(j+1),opt

must yield the same solution as ej,opt up to position jfull,
i.e., e(j+1),opt

k = ej,optk , for k = 1, . . . , jfull. Hence, the MCRS
solution e(j+1),MCRS is optimal up to the jfull-th entry, i.e.,
e
(j+1),MCRS
k = ej,optk = e

(j+1),opt
k , for k = 1, . . . , jfull. Hence,

it remains to be shown that the charging behavior of the MCRS
algorithm is optimal at positions after jfull.

Let k1, k2, . . ., kL be the non-zero charging positions be-
tween jfull and j under ej,opt. That is, ej,optk > 0, for k ∈
{k1, . . . , kL}, and is equal to 0, for all other k between jfull

and j. Since jfull is the last time the UAV is fully charged,
it follows from Lemma 1 (i), (iii), and (iv) that the charging
rate at position kL is faster than that at all positions k such that
jfull < k < j. However, it is unclear whether the charging rate is
higher at position j or position kL. In the following, we consider
separately the case where the charging rate at position j is higher
than that at position kL and the case where it is lower.

Suppose that the charging rate at position j is higher than
that at position kL. Then, the charging rate at position j must be
the fastest among all positions after jfull. In this case, the MCRS
algorithm builds upon the solution ej,opt by charging at position
j the minimum amount required to reach position j + 1, i.e.,
ΔEreq

j+1(e
j,MCRS) =

‖uj+1−uj‖
V P1, while leaving the solution

unchanged up to position j − 1. Note that charging the amount

ΔEreq
j+1(e

j,MCRS) at any position other than j would increase
the task completion time since j has the highest charging rate.
Hence, the MCRS solution to reach position j + 1 is optimal.

On the other hand, suppose that the charging rate at position
kL is higher than that at position j (and thus all positions
in between). In this case, kL is the fastest charging position
after jfull. Suppose that the minimum energy required to reach
j + 1 is less than the battery capacity at position kL, i.e.,
ΔEreq

j+1(e
j,MCRS) < E − Eout

kL
(ej,opt). In this case, the MCRS

algorithm chooses to charge the energy required at position kL
while leaving the solutions at other positions unchanged. This
solution is optimal since charging at any other position would
yield a longer completion time.

Now, suppose thatΔEreq
j+1(e

j,MCRS) > E − Eout
kL

(ej,opt). In
this case, the MCRS algorithm builds upon the solution ej,opt by
fully charging the battery in turn at positions kL, kL+1, kL+2, . . .
until the minimum energy required to reach j + 1 is acquired.
The positions kL+m, for m = 1, 2, . . ., are chosen such that
pmax
kL+m

(ukL+m
) > pmax

k′ (uk′), for allk′ > kL+m−1. Suppose the
last charging position is kL+M . In this case, the UAV must be
fully charged upon departure from each of these positions unless
m = M .

Suppose the UAV is not fully charged at position kL un-
der the solution e(j+1),opt. This implies that a portion of
ΔEreq

j+1(e
j,MCRS)must be acquired by charging at some point k′

afterkL. In this case, a better solution can be obtained by increas-
ing the charging energy at kL while reducing the same portion
at k′ since kL has a higher charging rate than k′. Furthermore,
since the UAV is fully charged at kL, by the same argument as the
proof of Lemma 3, the charging solution e(j+1),opt must remain
the same as ej,opt before position kL. Hence, fully charging the
battery at position kL and not charging anywhere else between
jfull and kL, as done in the MCRS algorithm, is optimal.

Similarly, given that kL is fully charged, the optimal solution
must also be fully charged at kL+1 since kL+1 has the fastest
charging rate for all positions after kL. If kL+1 is not fully
charged, then the missing energy must be charged at some
position k′ after kL. In this case, a better solution can be obtained
by increasing the charging energy at kL+1 while reducing the
same amount at k′. In fact, no energy should be charged at
any position in between kL and kL+1 since charging at any
of these positions implies that less energy can be charged at
kL+1 and thus a longer charging time is required. Following
similar arguments, we can show that the optimal solution must
yield fully charged batteries at positions kL, kL+1, . . ., until the
minimum required energy ΔEreq

j+1(e
j,MCRS) is acquired, which

is consistent with the MCRS algorithm. �

VII. SIMULATION RESULTS

In this section, we provide numerical simulations to demon-
strate the effectiveness of our proposed algorithms. In these
experiments, we randomly deploy J = 70 sensors according to
a uniform distribution across a 2000× 2000m2 square area. I =
3 HAPs are placed at an altitude of ai,3 = 1000 m. The horizon-
tal coordinates of the HAPs, i.e., ai,1 and ai,2, are chosen as the
centroids of the k-means clustering [35] of the J sensor nodes.
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TABLE I
SIMULATION PARAMETERS

The laser charging power is PL = 750 W. We adopt a visiting
order that is obtained by solving the Traveling Salesman Problem
over the sensors using a 2-approximation ratio algorithm [36].
The visiting order is fixed for all comparison schemes. Other
visiting orders can certainly be used in our experiments as well
but is not the focus of our comparisons. The data sizes {Dj}Jj=1

are i.i.d. uniformly distributed between 250 and 350Mbps. We
set the UAV velocity as V = 5 m/s and the battery capacity as
E = 100 kJ, which is in the order of DJI-manufactured UAV
systems [37]. The minimum and maximum UAV altitudes are
set asHmin = 100 andHmax = 500meters, respectively. Notice
that, following [23], we set the altitude of HAPs in the order of
kilometers and the altitude of UAVs in the order of hundreds of
meters. The sensor nodes use a transmission power of P tx = 0.1
mW and a bandwidth of B = 20 MHz to upload data [38].
Moreover, the parameters pertaining to the LoS probability
model are inherited from [26]. In particular, the constants C1

and C2 related to the LoS probability model are set as 0.136 and
11.95, respectively, the reference channel gains for the LoS and
NLoS channels are ρLoS

0 = 10.38 and ρNLoS
0 = 14.54, and the

path loss exponents are αLoS = 2.09 and αNLoS = 3.75 [26].
The noise power spectrum density is N0 = −123.83 dBm/Hz.
The UAV’s propulsion power consumption for velocities 0 and
V m/s are set as P0 = 110 W and P1 = 130 W, respectively,
which are computed based on the power consumption model and
corresponding parameters in [29]. The harvesting efficiency of
the UAV is η = 0.004, the attenuation coefficient of the medium
is γ = 10−6, the size of the initial laser beam is ζ = 0.1 m,
and the angular spread of the beam is φ = 3.4× 10−5 [20]. We
summarize the list of parameters in Table I.

In Figs. 3–5, we compare different hovering position opti-
mization strategies, namely, the proposed HPO-SCA and HPO-
DP algorithms, the Bat algorithm [39], and the min-max ap-
proach (MinMax). The Bat algorithm is a nature-inspired op-
timization method that was adopted in [39] for UAV position

Fig. 3. Comparison of task completion times with respect to laser power for
different hovering position optimization strategies.

optimization. The MinMax approach requires the UAV to hover
directly above the corresponding sensor nodes for both data
upload and energy charging, with heights chosen to minimize
the maximum time between data upload and charging. The
MCRS algorithm is adopted as the energy charging solution
in all cases. More specifically, to solve our constrained hover-
ing position optimization problem with the Bat algorithm, we
follow the approach given in [40] by considering a modified ob-
jective function f({uj}Jj=1) +

∑J
j=1 C(min(gj({uj}), 0))2,

where f({uj}Jj=1) is the original objective function in (18a) (or
equivalently (20a)), gj(uj) is the left-hand-side of the constraint
in (20b), and C is a large constant serving as the violation
penalty (which is chosen as C = 100 in our experiments). In the
Bat algorithm, we set the minimum and maximum frequencies
as fmin = 0 and fmax = 5, the loudness as A = 0.75, pulse
rate as r = 0.5 , and the number of bats equal to 1000. The
location of each bat can be randomly perturbed by an amount
that is Gaussian with standard deviation 0.01. For the HPO-SCA
algorithm, the initial hovering positions are chosen as points
directly above the sensors at altitude 500 m.

Specifically, in Fig. 3, we show the task completion times with
respect to laser power PL. Our proposed schemes significantly
outperform the MinMax approach, which requires UAVs to
hover directly above the sensors when collecting data. This may
require UAVs to expend more power to reach these locations
when they could otherwise have received data at a distance
from the sensor to reduce the flight time and obtain a better
charging position. Our proposed schemes also outperform the
Bat algorithm, which adopts a local search based on a few
initial solutions, but can be easily trapped inside locally optimal
solutions. Moreover, we can see that the HPO-DP algorithm
performs close to the HPO-SCA algorithm while requiring sig-
nificantly lower computational complexity (see later in Table II
and Fig. 6).

In Fig. 4, we show the task completion times with respect to
the number of sensors J . We can again see that our proposed
HPO-SCA and HPO-DP algorithms significantly outperform
both the MinMax and Bat algorithms. More interestingly, even
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Fig. 4. Comparison of task completion times with respect to the number of
sensors for different hovering position optimization strategies.

Fig. 5. Comparison of task completion times with respect to the network area
for different hovering position optimization strategies.

though the completion time increases with the number of sensors
in all cases, the impact on the HPO-SCA and HPO-DP schemes
is less than that of the MinMax and Bat algorithms. This is
because, as the number of sensors increases, the UAV’s flight
distance does not need to increase significantly since it can
collect data from multiple sensors at approximately the same
location. However, this is not the case for the MinMax strategy,
which must visit locations directly above the sensors for data
collection. The increase in dimension as the number of sensors
increases also limits the effectiveness of the local search in the
Bat algorithm.

In Fig. 5, we show the task completion times with respect to
the network area. Increasing the network area causes the sensors
to be located farther apart and thus the UAVs need to fly longer
distances for data collection. Therefore, the task completion time
increases with the network area in all cases. In fact, the advantage
of the proposed HPO-SCA and HPO-DP algorithms becomes
more significant as the network area increases since the MinMax

TABLE II
EXECUTION TIME FOR VARYING NUMBER OF SENSOR NODES

Fig. 6. Convergence of HPO-SCA and HPO-DP algorithms.

approach needs to visit the locations directly above the sensors,
which are now located farther apart. Although the Bat algorithm
does not outperform our proposed algorithm, its task completion
time does not increase as rapidly as that of MinMax.

In previous experiments, we observed that the HPO-DP algo-
rithm performs close to HPO-SCA while requiring significantly
shorter computation time. This is shown explicitly in Table II,
where we can see that the average execution time of HPO-DP for
J = 70 sensors is 40.73 seconds as opposed to 767.09 seconds
for HPO-SCA. The difference further increases with the number
of sensors. In Fig. 6, we show the number of iterations required
for the two proposed algorithms. We can see that the HPO-DP
algorithm requires only around 2 iterations to converge, whereas
the HPO-SCA algorithm requires about 7 iterations. However,
HPO-SCA can converge to a better solution since it gradually
updates the hover positions in each iteration through successive
approximation as opposed to directly moving to the best hover
positions in HPO-DP. Since HPO-DP can achieve similar per-
formance with much lower complexity, we focus on the use of
HPO-DP in the following comparisons between different energy
charging strategies.

By adopting the HPO-DP algorithm for hovering position op-
timization, we then compare with four baseline energy charging
strategies in Figs. 7– 9. That is,
� Fully Charge (FC): In this method, the UAV is fully

charged upon departure from each position.
� Greedy Charge (GC): The UAV is charged at each hover

position the minimum amount needed to reach the next
position.

� Greedy Fully Charge (GFC): Instead of charging the min-
imum amount, the UAV is fully charged whenever the
remaining energy is insufficient to reach the next position.
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Fig. 7. Comparison of task completion times with respect to laser power for
different charging strategies.

Fig. 8. Comparison of task completion times with respect to the number of
sensor nodes for different charging strategies.

Fig. 9. Comparison of task completion times with respect to the network area
for different charging strategies.

Fig. 10. Details of the time composition with respect to the number of sensor
nodes for different charging strategies.

� Drones Traveling Algorithm (DTA) [23]: A laser-powered
UAV data-gathering scheme proposed in [23], where the
laser-charging locations are fixed directly below the HAPs
and, thus, the UAV must travel to these designated locations
for charging.

In Fig. 7, we show the task completion time with respect to
laser power for different energy charging strategies, namely, FC,
GC, GFC, DTA, and the proposed MCRS. We can observe that
MCRS outperforms other baseline schemes regardless of the
laser power. This is not surprising since MCRS was shown to be
optimal in terms of minimizing the task completion time. The
advantage is most evident when the laser power is small since
MCRS is able to consistently find positions with the maximum
charge rate for charging. Notice that DTA [23] performs poorly
due to the need to reach designated charging positions and to
perform charging and data collection separately. The charging
altitude in DTA is chosen as 400 m, which is optimized by line
search.

In Fig. 8, we show the task completion time versus the
number of sensor nodes. The proposed MCRS algorithm again
outperforms all other baseline charging strategies. However,
even though both the total data and flight time increases with the
number of sensors, the task completion time does not increase
as rapidly. This is because an increase in the number of sensor
nodes provides the UAV with more opportunities to charge while
collecting data, avoiding additional delays due to charging.

In Fig. 9, we show the task completion time with respect to
the area size of the sensor field. We can see that the MCRS
algorithm again achieves the minimum task completion time
among all charging strategies. The advantage of MCRS over
other baseline strategies becomes more pronounced as the area
size increases. This is because, as the area size increases, the
distance between hovering positions will also increase, causing
the UAV to consume more energy and, thus, gain more by using
a more efficient charging strategy.

In Fig. 10, we analyze the composition of the task completion
times for different energy charging strategies. In particular, the
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Fig. 11. Details of the time composition with respect to the number of sensor
nodes for different hovering position optimization strategies.

task completion time is divided into flight time and hovering
time, where the latter is further categorized into charge time,
upload time, and charge/upload time. Charge time indicates the
time used for charging only, without collecting data from the
sensors. Upload time is the time used for data upload only,
without carrying out charging simultaneously. Charge/upload
time represents the time used for simultaneous charging and data
upload. We observe that the flight time and total upload time
(including both upload and charge/upload times) are roughly
the same for different charging strategies. The variations in task
completion times mainly come from the charging time that is
needed beyond the free charging that is received during data
upload. The ability of MCRS to fully exploit this advantage
leads to the minimum task completion time among all charging
strategies.

In Fig. 11, we compare the composition of task completion
times for different hovering position optimization strategies.
We can see that all schemes well utilize simultaneous charging
during data upload since MCRS is considered in all cases. Even
though MinMax aims to minimize the maximum charging and
upload times at each hovering position, it leads to longer flight
distance between hovering positions and, thus, more energy
consumption.

VIII. CONCLUSION

In this work, we examined the trajectory design and en-
ergy charging strategy for a data-gathering UAV utilizing laser
charging from multiple HAPs to replenish the UAV’s battery.
We proposed the MinTime-TCO algorithm that considers the
interplay between data upload and energy charging efficiency
to minimize the overall task completion time. The proposed
MinTime-TCO algorithm employs a BCD approach, where the
UAVs’ hovering positions and charging energies are optimized
in turn until convergence. Given the hovering positions, we
proposed the MCRS algorithm to optimize the charging energies
at the different hovering positions. An optimality proof of the
MCRS algorithm was also provided. Then, given the energy
charging amounts, the hovering positions were optimized by the

HPO-SCA algorithm, which utilizes SCA to address the non-
convexity of the optimization problem. An alternative HPO-DP
algorithm was also proposed to reduce the complexity at little
performance loss. Finally, numerical simulations were provided
to validate the efficacy of the proposed algorithms against several
baseline approaches.
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