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On the Theoretical Gap of Channel Hopping
Sequences With Maximum Rendezvous Diversity in

the Multichannel Rendezvous Problem
Cheng-Shang Chang , Fellow, IEEE, Jang-Ping Sheu , Fellow, IEEE, and Yi-Jheng Lin

Abstract— In the literature, there are several well-known peri-
odic channel hopping (CH) sequences that can achieve maximum
rendezvous diversity in a cognitive radio network (CRN). For
a CRN with N channels, it is known that the period of such
a CH sequence is at least N 2. The asymptotic approximation
ratio, defined as the ratio of the period of a CH sequence
to the lower bound N 2 when N → ∞, is still 2.5 for the
best known CH sequence in the literature. An open question in
the multichannel rendezvous problem is whether it is possible
to construct a periodic CH sequence that has the asymptotic
approximation ratio of 1. In this paper, we tighten the theoretical
gap by proposing CH sequences, called IDEAL-CH, that have the
asymptotic approximation ratio of 2. For a weaker requirement
that only needs the two users to rendezvous on one commonly
available channel in a period, we propose channel hopping
sequences, called ORTHO-CH, with period (2p + 1)p, where
p is the smallest prime not less than N .

Index Terms— Multichannel rendezvous, worst case analysis.

I. INTRODUCTION

THE multichannel rendezvous problem that asks two
users to find each other by hopping over their avail-

able channels is a fundamental problem in cognitive radio
networks (CRNs) and has received a lot of attention lately
(see, e.g., the excellent book [1] and references therein). Such
a problem is also found to be relevant and useful to new net-
working trends, such as the Internet-of-Things (see, e.g., [2],
[3], [4]). In this paper, we tighten a theoretical gap on the min-
imum period of the periodic channel hopping (CH) sequences
that achieve maximum rendezvous diversity. A channel is
called a rendezvous channel of a periodic CH sequence if
two asynchronous users (with any arbitrary starting times of
their CH sequences) rendezvous on that channel within the
period of the sequence. A periodic CH sequence is said to
achieve maximum rendezvous diversity for a CRN with N
channels if all the N channels are rendezvous channels. In the
asymmetric setting, it was shown in Theorem 1 of [5] that
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there do not exist deterministic periodic CH sequences that
can achieve maximum rendezvous diversity with periods less
than or equal to N2. For the symmetric setting, the negative
result of Theorem 1 of [5] is further extended in Theorem 3
of [6]. It was shown that the length of the period p satisfies
the following lower bound:

p ≥

⎧⎨⎨
⎨⎩

N2 + N if N ≤ 2
N2 + N + 1 if N ≥ 3 and N is a prime power

N2 + 2N otherwise.

The lower bound is not always tight. Via extensive computer
enumeration, it was shown in [6] that the lower bound is
tight when N = 1, 2, 5, 6. It is also tight for N = 8 by
an explicit CH sequence in [7]. In the literature, there are
various periodic CH sequences that can achieve maximum
rendezvous diversity, see, e.g., CRSEQ [8], JS [9], DRDS [6],
T-CH [10], and DSCR [11]. In particular, T-CH [10] and
DSCR [11] have the shortest period 2N2 +N�N/2� when N
is a prime. These CH sequences are called nearly optimal CH
sequences as their periods are O(N2), which is comparable to
the lower bound N2. However, the asymptotic approximation
ratio, defined as the ratio of the period to the lower bound N2

when N → ∞, is still 2.5 for T-CH and DSCR, 3 for CRSEQ
and DRDS. One of the open questions in the multichannel
rendezvous problem is whether it is possible to construct a
periodic CH sequence that has the asymptotic approximation
ratio of 1. The main objective of this paper is to further
tighten the theoretical gap by proposing CH sequences, called
IDEAL-CH, that have the asymptotic approximation ratio of 2.
To the best of our knowledge, this is the best asymptotic
approximation ratio in the literature.

The mathematical tools for the construction of IDEAL-CH
are (i) perfect difference sets [12] and (ii) ideal matrices [13].
Using difference sets for constructing CH sequences is not
new (see, e.g., [6], [7]). However, it seems that researchers
in the field may not be familiar with the concept of ideal
matrices. To our surprise, we find out that the constructions of
CRSEQ [8], T-CH [10], and DSCR [11], are all based on ideal
matrices and they are “equivalent” in that sense. In particular,
CRSEQ, T-CH, and DSCR all add a “stay” matrix in front of
a “jump” matrix constructed from an ideal matrix. The added
“stay” matrix increases the length of a CH sequence. To push
the asymptotic approximation ratio further down, our idea is
to embed difference sets into an ideal matrix. By doing so,
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we are able to eliminate the need for adding a “stay” matrix
and thus shorten the length of IDEAL-CH.

CRSEQ, JS, DRDS, T-CH and DSCR, and IDEAL-CH are
sequences that can achieve maximum rendezvous diversity
within their periods. A weaker requirement is to ask the two
users to rendezvous on one commonly available channel and
measure the maximum time-to-rendezvous (MTTR). For this,
we propose a CH sequence, called ORTHO-CH, which can
guarantee the rendezvous of the two users within a period
of the ORTHO-CH sequence. When the available channel set
of a user is a subset of the N channels, the period of our
ORTHO-CH sequence is (2p + 1)p, where p is the smallest
prime not less than N . Thus, ORTHO-CH has the MTTR
bound (2p + 1)p. Such a result is comparable to the best
algorithms in the literature, e.g., FRCH [14] with the MTTR
bound (2N +1)N for N �= ((5+2α)∗r−1)/2 for all integer
α ≥ 0 and odd integer r ≥ 3, and SRR [15] with the MTTR
bound 2p2 + 2p.

The paper is organized as follows: In Section II, we provide
a brief review of the multichannel rendezvous problem, includ-
ing the classification of the problem in Section II-A, the for-
mulation of the problem and summaries of known results
in Section III-B. In Section III, we propose the IDEAL-CH
sequences that have the asymptotic approximation ratio of 2.
By extending the mathematical theories for IDEAL-CH,
we propose in Section IV the ORTHO-CH sequences that have
the MTTR bound p(2p+1), where p is the smallest prime not
less than the total number of channels. The paper is concluded
in Section V.

II. THE MULTICHANNEL RENDEZVOUS PROBLEM

In this section, we provide a brief review of the multichannel
rendezvous problem (MRP).

A. Classification of the Problem

As mentioned in the Introduction, the multichannel ren-
dezvous problem asks two users to find each other by hopping
over a set of possible channels (discrete locations) with respect
to time. In view of this, there are three key elements in the
multichannel rendezvous problem: (i) users, (ii) time, and
(iii) channels. Based on the assumptions on users, time, and
channels, CH schemes can be classified into various settings.
To compare the level of difficulty between two settings A and
B, we use the partial ordering A ≺ B when the assumption in
setting A is stronger than that in B. Thus, the CH sequences
constructed by using a weaker assumption in setting B are
also applicable in setting A.

1) Users: There are three commonly used settings for users:
(i) the symmetric setting (sym for short), (ii) the ID setting
(ID for short), and (iii) the asymmetric setting (asym for short).
In the symmetric setting, users are indistinguishable and thus
follow the same algorithm to generate their CH sequences.
On the other hand, users are distinguishable by their unique
identifiers (ID) in the ID setting. For instance, a device in a
CRN may be equipped with a unique 48-bit medium access
control (MAC) address. The asymmetric setting is a special
case of the unique ID setting when these two users can be

distinguished by one bit ID, e.g., user 1 is assigned with
ID 0 and user 2 is assigned with ID 1. In the asymmetric
setting, the two users can be assigned two different roles
so that they can follow two different algorithms to generate
their CH sequences. In the literature, these CH algorithms are
called role-based CH algorithms (see, e.g., [16]–[18], [19]).
For instance, a user can be assigned the role of a sender or the
role of a receiver. The receiver can stay on the same channel
while the sender cycles through all the available channels.
Since users follow different algorithms, the time-to-rendezvous
can be greatly reduced by using role-based algorithms. In the
general ID setting, a common approach is to map an ID into an
M -bit binary vector and partition the time into intervals with
M time slots. Then, ask each user to play a role in the �th

time slot in an interval according to the �th bit in the mapped
binary vector. However, using IDs to generate CH sequences
might be vulnerable to attacks from adversaries. As such, it is
preferable to remain anonymous in practice.

In the symmetric setting, the two users are indistinguishable.
The key in the symmetric setting is to break symmetry. One
way to break symmetry is to select a channel from the available
channel set of a user and use that as the ID of a user. One
problem for that is when the two users select the same channel
and thus have the same ID. In the level of difficulty of the three
settings for users,

asym ≺ ID ≺ sym.

2) Time: For the multichannel rendezvous problem, we only
consider the discrete-time setting, where time is indexed from
t = 0, 1, 2, . . .. There are two settings for time: (i) the
synchronous setting (sync for short) and (ii) the asynchronous
setting (async for short). In the synchronous setting, the clocks
(i.e., the indices of time slots) of both users are assumed to
be synchronized to the global clock and thus the time indices
of these two users are the same. When the clocks of the two
users are synchronized, both users can start their CH sequences
simultaneously to speed up the rendezvous process. On the
other hand, in the asynchronous setting, the clocks of both
users may not be synchronized to the global clock and thus
the time indices of these two users might be different. In a
distributed environment, it might not be practical to assume
that the clocks of two users are synchronized as they have not
rendezvoused yet. Without clock synchronization, guaranteed
rendezvous is much more difficult. In the level of difficulty of
the two settings for time,

sync ≺ async.

3) Available Channels (Search Space): For the multichannel
rendezvous problem, we only consider distinct channels (dis-
crete locations in [20]) as the search space. These N channels
are indexed from 0, 1, . . . , N −1. The available channel set of
a user is a subset of these N channels. There are two settings
for available channels: (i) the homogeneous setting (homo for
short) and (ii) the heterogeneous setting (hetero for short).
In the homogeneous setting, the available channel sets of the
two users are assumed to be the same. On the other hand,
in the heterogeneous setting, the available channel sets of the
two users might be different. In a CRN, two users that are close
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to each other are likely to have the same available channel sets.
Due to the limitation of the coverage area of a user, two users
tend to have different available channel sets if they are far
apart. Rendezvous in a homogeneous environment is in general
much easier than that in a heterogeneous environment. In the
level of difficulty of the two settings for available channels,

homo ≺ hetero.

4) Labels of Channels: There are three widely used settings
for the labels of channels: (i) the globally labelled setting
(global for short), (ii) the locally labelled setting (local for
short), and (iii) the indistinguishable setting (ind for short).
In the multichannel rendezvous problem, the N channels are
commonly assumed to be globally labelled, i.e., the labels of
the channels of the two users are the same. On the other hand,
the users are only allowed to label their available channels
by themselves in the locally labelled setting. In the locally
labelled setting, the labels of channels could be different.
In the book [1], the locally labelled setting is referred to
as the oblivious setting. The most difficult setting for labels
of channels is where users are not allowed to leave any
marks for channels (see, e.g., [21]). In such a setting, these
N channels are indistinguishable and a user even does not
know the previous channels on which it hops. Thus, nothing
can be learned from a failed attempt to rendezvous in the
indistinguishable setting. In the level of difficulty of the three
settings for labels of channels,

global ≺ local ≺ ind.

Like the notations in queueing theory, a multichannel ren-
dezvous problem (MRP) can be described by a series of
abbreviations and slashes such as

A/B/C/D,

where A is the abbreviation for the setting of users, B is
the abbreviation for the setting of time, C is the abbreviation
for the setting of available channels, and D is the abbre-
viation for the setting of labels of channels. For instance,
the sym/async/hetero/global MRP denotes the problem where
(i) the two users are symmetric and thus follow the same
algorithm, (ii) the clocks of the two users are not synchronized,
(iii) the available channel sets of the two users are different,
and (iv) the channels are globally labelled.

We note that there are five categories for the classification of
the multichannel rendezvous problem in the book [1]: < Alg,
Time, Port, ID, Label >. Here we combine the Alg (algorithm)
category and the ID category into our user category. Also,
the symmetric (resp. asymmetric) port setting in [1] corre-
sponds to the homogeneous (resp. heterogeneous) setting in
which the two users have the same (resp. different) available
channel sets. Thus, the four categories in our classification are
basically the same as the five categories in [1].

B. Mathematical Formulation of the Problem

To formulate the multichannel rendezvous problem (MRP),
let us consider a CRN with N channels (with N ≥ 2),
indexed from 0 to N−1. There are two (secondary) users who

would like to rendezvous on a common unblocked channel by
hopping over these channels with respect to time. We assume
that time is slotted (the discrete-time setting) and indexed from
t = 0, 1, 2, . . .. The length of a time slot, typically in the order
of 10ms, should be long enough for the two users to establish
their communication link on a common unblocked channel.
In the literature, the slot boundaries of these two users are
commonly assumed to be aligned. In the case that the slot
boundaries of these two users are not aligned, one can double
the size of each time slot so that the overlap of two misaligned
time slots is not smaller than the original length of a time slot.

The available channel set for user i, i = 1, 2,

ci = {ci(0), ci(1), . . . , ci(ni − 1)},
is a subset of the N channels. Let ni = |ci| be the number
of available channels to user i, i = 1, 2. In the homogeneous
setting, the available channel set for each user is simply the
set of the N channels, i.e.,

c1 = c2 = {0, 1, . . . , N − 1}.
We assume that there is at least one channel that is com-

monly available to the two users (as otherwise, it is impossible
for the two users to rendezvous), i.e.,

c1 ∩ c2 �= ∅. (1)

Denote by X1(t) (resp. X2(t)) the channel selected by
user 1 (resp. user 2) at time t (of the global clock). Note that
{X1(t), t ≥ 0} and {X2(t), t ≥ 0} are sequences of random
variables. Then, the time-to-rendezvous (TTR), denoted by T ,
is the number of time slots (steps) needed for these two users
to select a common available channel, i.e.,

T = inf{t ≥ 0 : X1(t) = X2(t)} + 1, (2)

where we add 1 in (2) as we start from t = 0. The maximum
time-to-rendezvous (MTTR) is defined as the essential supre-
mum of the random variable T , i.e., the least upper bound
of T . As such, we say a CH scheme has a maximum time-to-
rendezvous (MTTR) bound γ (for some finite constant γ) if
T ≤ γ.

In addition to the time-to-rendezvous, we are also interested
in the time to achieve maximum rendezvous diversity, denoted
by T �, which is defined as the first time that the two users
have met each other on every commonly available channel.
Specifically, let Ti be the first time that these two users hop
on channel i at the same time, i.e.,

Ti = inf{t ≥ 0 : X1(t) = X2(t) = i} + 1. (3)

Then

T � = max
i∈c1∩c2

Ti. (4)

Note that T can also be presented as follows:

T = min
i∈c1∩c2

Ti. (5)

Clearly, T ≤ T �. The maximum conditional time-to-
rendezvous (MCTTR) is defined as the essential supremum
of the random variable T �, i.e., the least upper bound of T �.
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TABLE I

KNOWN RESULTS OF VARIOUS RENDEZVOUS ALGORITHMS IN THEIR MOST DIFFICULT SETTINGS

As such, we say a CH scheme has a maximum conditional
time-to-rendezvous (MCTTR) bound γ if T � ≤ γ.

In the literature, there are three commonly used metrics for
evaluating the performance of a CH sequence:

(i) expected time-to-rendezvous (ETTR),
(ii) maximum time-to-rendezvous (MTTR), and
(iii) maximum conditional time-to-rendezvous (MCTTR).

The simplest way to generate CH sequences is the ran-
dom algorithm that selects a channel uniformly at random
in a user’s available channel set in every time slot. The
random algorithm performs amazingly well in terms of ETTR
and its ETTR is quite close to the lower bound in the
asym/async/hetero/local MRP (see, e.g., [22]). As such, it out-
performs many CH algorithms proposed in the literature
in terms of ETTR, including the modified modular clock
algorithm [23], FRCH [14], CBH [24], the advanced ren-
dezvous protocol (Adv. rdv) [25], CHGA [26], JS [9]. How-
ever, the random algorithm does not have bounded MTTR.

Moreover, as pointed out in [27], the deterministic setting
is the gold-standard in the theoretical analysis community
for cognitive radio networks as it does not require to have
an available source of randomness, and provides an absolute
guarantee on rendezvous time. Thus, for theoretical analysis,
researchers in the field focus mostly on MTTR/MCTTR.

In Table I, we provide a summary of the known results of
various rendezvous algorithms in their most difficult settings.

III. IDEAL-CH

In this paper, we focus on the sym/async/hetero/global
MRP. As shown in Table I, CRSEQ [8], JS [9], DRDS [6],
T-CH [10], and DSCR [11] are known CH sequences that
achieve maximum rendezvous diversity. However, the asymp-
totic approximation ratio, defined as the ratio of the period to
the lower bound N2 when N → ∞, is still 2.5 for T-CH and
DSCR, 3 for CRSEQ and DRDS. In this section, we tighten
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the theoretical gap by proposing IDEAL-CH that has the
asymptotic approximation ratio of 2.

A. MACH Sequences and Matrices

Recall that a periodic CH sequence is said to achieve
the maximum rendezvous diversity (MRD) for a CRN with
N channels if the two users rendezvous on every channel
within the period of the sequence. In the following defin-
ition, we formally state the mathematical properties for an
Asynchronous Channel Hopping sequence with Maximum
rendezvous diversity (MACH sequence).

Definition 1: An (N, p)-MACH sequence {c(t), 0 ≤ t ≤
p − 1} satisfies the following one dimensional maximum
rendezvous diversity (1D-MRD) property:

The 1D-MRD property: for any time shift 0 ≤ d ≤
p − 1 and any channel 0 ≤ k ≤ N − 1, there exists
0 ≤ t ≤ p − 1 such that

c(t) = c(t ⊕ d) = k, (6)

where ⊕ denotes addition modulo p.
We note that an MACH sequence is simply called a good

sequence in [6], and its connection to the Disjoint Relaxed
Difference Set (DRDS) was first made in that paper. Analo-
gous to the definition of an MACH sequence, we define its
2D version as follows:

Definition 2: A p × p matrix C = (ci,j) with i, j =
0, 1, . . . , p− 1 is called an (N, p)-MACH matrix if it satisfies
the following two-dimensional maximum rendezvous diversity
(2D-MRD) property:

The 2D-MRD property: for any 2D-shift 0 ≤ δ, τ ≤
p − 1 and any channel 0 ≤ k ≤ N − 1, there exist
0 ≤ i, j ≤ p − 1 such that

ci,j = ci⊕δ,j⊕τ = k. (7)

A weaker version of an (N, p)-MACH matrix is called an
(N, p)-semi-MACH matrix, in which the 2D-MRD property
may not be satisfied for τ = 0.

Our construction of CH sequences, called the IDEAL-CH,
is to construct an (N, p)-MACH matrix and then use that to
construct an (N, 2p2)-MACH sequence. In our construction,
there are two elegant mathematical tools for dealing with
circular shifts: (i) perfect difference sets [12] and (ii) ideal
matrices [13]. Intuitively, a perfect difference set with a period
p and k elements can be visualized as a dot pattern that has a
dot on the 1D-coordinate of an element. Repeat the dot pattern
infinitely often in the line. Then, for any time shift, exactly one
pair of dots will overlap in every period of p. On the other
hand, an ideal matrix can be viewed as a two-dimensional
version of a perfect difference set. A p × p ideal matrix has
exactly one element in each column and can be visualized as a
dot pattern that has a dot on the 2D-coordinate of an element
in the matrix. Repeat the dot pattern infinitely often in the
plane. Then, except for purely vertical shifts, exactly one pair
of dots will overlap within a p × p square box for any other
two-dimensional shifts (see Table II for an illustration).

Similarly, an (N, p)-MACH sequence can be repeatedly
extended to a periodic sequence in the line. For any time

TABLE II

A 7 × 7 IDEAL MATRIX IS REPEATED INFINITELY OFTEN IN THE PLANE.
IT OVERLAPS WITH THE DOTS OF THE SHIFTED 7 × 7 IDEAL MATRIX

(MARKED IN GREEN) AT EXACTLY ONE DOT PAIR (THE RED DOT).
THE 2D SHIFT IS REPRESENTED BY δ = 3 AND τ = 4

shift, every channel is a rendezvous channel within an interval
of length p. On the other hand, an (N, p)-MACH matrix
can be repeatedly extended in the plane. Then, for any
two-dimensional shift, every channel is a rendezvous channel
within a p × p square box.

The idea of constructing an (N, p)-MACH matrix is to
first construct a p × p ideal matrix, replace each column
of the ideal matrix by a permutation to form a semi-MACH
matrix, and then embed a perfect difference set in each column
of that semi-MACH matrix so that the overlaps between the
constructed matrix and any two-dimensional circular shift of
that matrix contain all the rendezvous channels. Specifically,
we show if p is a prime and is equal to L2 + L + 1
for some prime power L, our IDEAL-CH can guarantee
L2 rendezvous channels within the period 2p2. For IDEAL-
CH, the asymptotic approximation ratio is 2(L2+L+1)2

(L2)2 and it
approaches 2 when L → ∞.

B. Difference Sets

In this section, we briefly review the notion of difference
sets.

Definition 3 (Relaxed Difference Sets (RDS)): Let Zp =
{0, 1, . . . , p − 1}. A set D = {a0, a1, . . . , ak−1} ⊂ Zp is
called a (p, k, λ)-relaxed difference set (RDS) if for every
(� mod p) �= 0, there exist at least λ ordered pairs (ai, aj)
such that ai − aj = (� mod p), where ai, aj ∈ D. A (p, k, 1)-
relaxed difference set is said to be perfect if there exists exactly
one ordered pair (ai, aj) such that ai − aj = (� mod p) for
every (� mod p) �= 0. In this paper, we are only interested in
the case λ = 1 and we simply say a set D is an RDS (or a
perfect difference set) in Zp when λ = 1.

Clearly, if D = {a0, a1, . . . , ak−1} is a perfect
difference set in Zp, then D� = {(a0 + �) mod p, (a1 + �)
mod p, . . . , (ak−1 + �) mod p}, � = 0, 1, 2, . . . , p − 1, are all
perfect difference sets in Zp. Such a rotation property will be
used in our embedding of perfect difference sets. An explicit
construction of (p2 +p+1, p+1, 1)-perfect difference set was
shown in [12] for any p that is a prime power. For instance,
the set D = {0, 1, 3} is a perfect difference set in Z7. Singer’s
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construction [12] of (p2 + p + 1, p + 1, 1)-perfect difference
set is linear in p once a primitive polynomial of degree 3 in
a Galois field GF (p) is found. It is known that there exists
(at least) one primitive polynomial of any degree in GF (p).
Since there are at most p3 monic polynomials of degree 3 in
GF (p) and testing a monic polynomial of degree 3 requires at
most O(p3) steps (of GF (p) arithmetic operations), the time
complexity of finding a primitive polynomial of degree 3 in
GF (p) is at most O(p6). In the literature, there are faster
randomized algorithms that randomly generated a polynomial
to test.

In view of the mathematical property of an RDS, a periodic
CH with N rendezvous channels is equivalent to that there
are N disjoint RDS in that periodic sequence. Such an
equivalent statement was previously made in [6]. Furthermore,
the Disjoint Relaxed Difference Set (DRDS) algorithm in [6]
can be used for constructing a CH sequence with maximum
rendezvous diversity that has a period of 3N2 when the
number of channels N is a prime. In [43], [44], efficient
algorithms were proposed to find disjoint (p2+p+1, p+1, 1)-
perfect difference sets for a prime power p. If the number of
disjoint perfect difference sets that can be found for a prime
power p is not less than the total number of channel N , then
they can be used to construct CH sequences with maximum
rendezvous diversity. However, there is no lower bound on the
number of disjoint perfect difference sets that can be found for
a prime power p in [43], [44].

C. Ideal Matrices

In this section, we introduce the notion of an ideal matrix
in [13]. As discussed before, an ideal matrix can be viewed
as a two-dimensional version of a perfect difference set.

Definition 4 (Ideal Matrix [13]): A binary (0, 1) p × p
matrix M = (mi,j) is called an ideal matrix if it satisfies
the following two constraints:

(i) Each column of M contains exactly one 1, i.e., for
all j = 0, 1, 2, . . . , p − 1,

p−1�
i=0

mi,j = 1. (8)

(ii) The doubly periodic correlation function ρ(·, ·),
defined by

ρ(δ, τ) =
p−1�
i=0

p−1�
j=0

mi⊕δ,j⊕τmi,j (9)

where δ, τ are integers between 0 and p− 1 satisfies
the condition

ρ(δ, τ) ≤ 1 (10)

whenever either δ or τ is nonzero.

Since an ideal matrix M contains exactly p 1’s, we have

ρ(0, 0) = p. (11)

On the other hand, we have from (8) that
p−1�
δ=0

p−1�
τ=0

ρ(δ, τ)

=
p−1�
i=0

p−1�
j=0

p−1�
δ=0

p−1�
τ=0

mi⊕δ,j⊕τmi,j

=
p−1�
j=0

p−1�
i=0

mi,j

p−1�
τ=0

p−1�
δ=0

mi⊕δ,j⊕τ

= p2. (12)

Also, as each column of M contains exactly one 1, we have
for δ = 1, 2, . . . , p − 1,

ρ(δ, 0) = 0. (13)

It then follows from (10), (11), (12) and (13) that for τ �= 0

ρ(δ, τ) = 1. (14)

In view of (13) and (14), one way to visualize an ideal matrix
M as a dot pattern is to put a dot on the 2D-coordinate of a 1 in
M . Now repeat the pattern of the matrix infinitely often in the
plane. Then, the ideal matrix has the following three important
properties:

(P1) (No shift) If (δ mod p) = (τ mod p) = 0, all dots
overlap.

(P2) (Purely vertical shifts) For all the purely vertical
shifts (along the columns) with (τ mod p) = 0 and
(δ mod p) �= 0, no dot will overlap.

(P3) (The other shifts) For any the other shifts, i.e., (τ
mod p) �= 0, exactly one pair of dots will overlap.

As each column of an ideal matrix contains exactly one
dot, one can view the dot pattern from an ideal matrix as a
“graph” of a function f(·) with both its domain and range
being the set of integers {0, 1, . . . , p − 1}. The function f(·)
can be characterized as follows:

f(j) = p − 1 − i, (15)

where i is uniquely determined by the condition mi,j = 1.
With such a functional characterization, a p×p ideal matrix M
can be constructed when p is a prime.

Theorem 5 (The Elliot-Butson Construction [45]): If p is a
prime and

f(j) = ((c2j
2 + c1j + c0) mod p), (16)

with c2 �= 0, then the p × p matrix M = (mi,j) with

mi,j =

�
1, if p − 1 − i = f(j),
0, otherwise,

(17)

is an ideal matrix.
To see the insight of the Elliot-Butson construction, we note

that i is uniquely determined by j from (17). Thus, there is
exactly one 1 in each column and (8) is satisfied. To show (14),
it suffices to show that for any τ �= 0 and δ there exists a
unique j such that mi,j = mi⊕δ,j⊕τ = 1. It follows from (16)
and (17) that

((c2 j2 + c1 j + c0) mod p) = p − 1 − i
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and

((c2(j + τ)2 + c1(j + τ) + c0) mod p)
= ((p − 1 − i − δ) mod p).

Solving from these two equations yields

(2c2τj mod p) = ((−c2τ
2 − c1τ − δ) mod p). (18)

Since c2 �= 0, τ �= 0 and p is a prime, there is a unique j
satisfying (18).

One special case of the Elliot-Butson construction is to
choose

f(j) =
j(j + 1)

2
(19)

and this construction is exactly the set of the triangular
numbers used in the constructions of the jump columns in
CRSEQ [8] and T-CH [10]. Another example is to choose

f(j) =
j(3j − 1)

2
(20)

and this construction is exactly the set of the Euler pentagonal
numbers used in the constructions of the jump columns in
DSCR [11].

D. From an Ideal Matrix to a Semi-MACH Matrix

To construct a semi-MACH matrix from an ideal matrix,
the idea is to replace each column of an ideal matrix by
a permutation of (0, 1, 2 . . . , p − 1). Specifically, define the
ith-rotation to be the permutation (i, i ⊕ 1, . . . , i ⊕ (p − 1)).
Construct a p × p matrix M̃ = (m̃i,j) by replacing the jth

column of a p× p ideal matrix M = (mi,j) by the (p− i)th-
rotation if mi,j = 1. By doing so, every dot in the ideal matrix
is mapped to channel 0 (that serves as an anchor) and every
other channel simply rotates around channel 0 in a column.
In the following, we show the conversion for the 7 × 7 ideal
matrix:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 4 0 4 2 1
2 3 5 1 5 3 2
3 4 6 2 6 4 3
4 5 0 3 0 5 4
5 6 1 4 1 6 5
6 0 2 5 2 0 6
0 1 3 6 3 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

One immediate consequence of such a conversion is when
one pair of dots overlap, the p channels in that column also
overlap. In view of the three properties of an ideal matrix,
the matrix M̃ is a (p, p)-semi-MACH matrix that satisfies the
2D-MRD property except for purely vertical shifts, i.e., τ = 0
in (7).

E. From a Semi-MACH Matrix to an MACH Matrix

To deal with the problem of purely vertical shifts, the idea
of T-CH in [10] is to concatenate a p× p “stay” matrix (with
all the p elements in the kth column being k, k = 0, 1, 2, . . . ,
p−1) and a p×(p+�p/2�) “jump” matrix with the jth column
taken from the (j mod p)th column of a semi-MACH
matrix. This results in a p× (2p+ �p/2�) matrix and thus has

a period of p(2p+ �p/2�). The construction of T-CH shortens
the number of “jump” columns in CRSEQ [8] from 2p− 1 to
p+ �p/2�. It seems that DSCR [11] is somehow equivalent to
T-CH. They both are constructed by concatenating a p × p
“stay” matrix and a p × (p + �p/2�) “jump” matrix with
the jth column taken from the (j mod p)th column of
a semi-MACH matrix. The only difference is that they use
different quadratic functions in the Elliot-Butson construction
for ideal matrices.

Our idea to tackle the problem of purely vertical shifts is
to reserve some channels of the p channels for embedding
relaxed difference sets (RDS) that can guarantee the needed
overlaps for purely vertical shifts.

Now we show how to construct an (L2, p)-MACH matrix
from a (p, p)-semi-MACH matrix when p is a prime and p is
equal to L2 + L + 1 for some prime power L. The detailed
steps are outlined in Algorithm 1. Let D = {a0, a1, . . . , aL}
be an (L2 + L + 1, L + 1, 1)-perfect difference set and M̃ =
(m̃i,j) be a (p, p)-semi-MACH matrix. Let Dc = Zp\D =
{b0, b1, . . . , bL2−1}. The idea is to reserve the L+1 channels in
D for the perfect difference sets and only use the L2 channels
in Dc. The L + 1 channels in D in the jth column of M̃ are
replaced by channel (j mod L2) and the other L2 channels
are re-mapped to the L2 channels in {0, 1, 2, . . . , L2 − 1}.
Specifically, we construct a p × p matrix C = (ci,j) by the
following rule:

ci,j =

�
(j mod L2) if m̃i,j ∈ D

� if m̃i,j = b�.
(21)

For example, the matrix C mapped from the (7, 7)-semi-
MACH matrix and the perfect difference set D = {0, 1, 3} is
shown as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 4 0 4 2 1
2 3 5 1 5 3 2
3 4 6 2 6 4 3
4 5 0 3 0 5 4
5 6 1 4 1 6 5
6 0 2 5 2 0 6
0 1 3 6 3 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 3 1 0 2

0 1 2 3 2 1 0
0 1 3 0 3 1 2

1 2 2 3 0 2 1
2 3 2 1 0 3 2
3 1 0 2 0 1 3
0 1 2 3 0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

In this example, the three numbers 0, 1, 3 in D of the
jth column are mapped to (j mod 4) for j = 0, 1, . . . , 6.
Moreover, Dc = {2, 4, 5, 6} and these four numbers in
the (7, 7)-semi-MACH matrix are re-mapped to {0, 1, 2, 3},
i.e.,

2 �→ 0, 4 �→ 1, 5 �→ 2, 6 �→ 3.

In (22), we mark the channels that are used for the perfect
difference sets in boldface. From the (rotation) property of the
perfect difference set, we know for any purely vertical shift,
there is an overlap of channel j in column j, j = 0, 1, . . . ,
L2 − 1. Also, those underlined numbers are the dots of the
p× p ideal matrix. These are used as “anchors” for any other
shifts.
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Algorithm 1 Construction of an (L2, p)-MACH Matrix

Input A set of L2 channels {0, 1, 2, . . . , L2−1} with L being
a prime power and L2 + L + 1 being a prime.
Output An (L2, p)-MACH matrix C = (ci,j) with p = L2 +
L + 1.
1: Let p = L2 + L + 1 and construct a p × p ideal matrix
M = (mi,j).
2: Construct a (p, p)-semi-MACH matrix M̃ = (m̃i,j) by
replacing the jth column of M by the (p − i)th-rotation of
(0, 1, . . . , p − 1) (for all j = 0, 1, . . . , p − 1) if mi,j = 1.
3: Construct a perfect difference set D = {a0, a1, . . . , aL} in
Zp.
4: Let Dc = Zp\D = {b0, b1, . . . , bL2−1}.
5: Construct an (L2, p)-MACH matrix C = (ci,j) by the
channel mapping rule in (21).

Theorem 6: If L is a prime power and L2 + L + 1 is a
prime, then Algorithm 1 constructs an (L2, p)-MACH matrix
with p = L2 + L + 1.

Proof: It suffices to prove the 2D-MRD property. Consider
the matrix C from Algorithm 1 and the matrix C′ = (c′i,j) with
c′i,j = ci⊕δ,j⊕τ . When δ = τ = 0, the two matrices overlap
with each other. For δ �= 0, we consider the following two
cases:

Case 1( τ = 0): This corresponds to a purely verti-
cal shift. Since we embed a perfect difference set D in
the jth column of C, the 2D-MRD property is satisfied
for channel j in the jth columns of these two matrices,
j = 0, 1, . . . , L2 − 1.

Case 2 (τ �= 0): This corresponds to a shift that is not
a purely vertical shift. From (P3) of an ideal matrix, there
is a column j1 of matrix C that overlaps with a column
j2 of matrix C′. From the deterministic re-mapping in (21),
the 2D-MRD property is satisfied for all the L2 channels in
the overlapped column. �

F. From an MACH Matrix to an MACH Sequence

In this section, we show that one can construct an (N, 2p2)-
MACH sequence from an (N, p)-MACH matrix. The idea to
take an (N, p)-MACH matrix C = (ci,j) and concatenate two
of them to form a p × 2p matrix

C̃ = (c̃i,j) = (C|C).

By doing so, we have c̃i,j = ci,(j mod p) for all i =
0, 1, . . . , p − 1 and j = 0, 1, . . . , 2p − 1. As the matrix-based
construction of CH sequences for T-CH in [10], we then
map the matrix C̃ = (c̃i,j) to the CH sequence {c(t), t =
0, 1, . . . , 2p2−1} by letting c(t) = c̃i,j with i = �t/(2p)� and
j = (t mod (2p)). Since c̃i,j = ci,(j mod p), this is equivalent
to letting c(t) = ci,j with i = �t/(2p)� and j = (t mod p).

For example, concatenating two of the (4, 7)-MACH matrix
in (22) yields the following 7 × 14 matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 3 1 0 2 0 0 1 3 1 0 2

0 1 2 3 2 1 0 0 1 2 3 2 1 0
0 1 3 0 3 1 2 0 1 3 0 3 1 2

1 2 2 3 0 2 1 1 2 2 3 0 2 1
2 3 2 1 0 3 2 2 3 2 1 0 3 2
3 1 0 2 0 1 3 3 1 0 2 0 1 3
0 1 2 3 0 1 2 0 1 2 3 0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(23)

Now the constructed CH sequence with length 98 is then

0, 0, 1, 3, 1, 0, 2, 0, 0, 1, 3, 1, 0, 2, 0, 1, 2, 3, 2, 1, 0,

0, 1, 2, 3, 2, 1, 0, 0, 1, 3, 0, 3, 1, 2, 0, 1, 3, 0, 3, 1, 2,

· · ·
3, 1, 0, 2, 0, 1, 3, 0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2.

Theorem 7: Suppose that the matrix C = (ci,j) with i, j =
0, 1, . . . , p − 1 is an (N, p)-MACH matrix. Construct the
sequence {c(t), 0 ≤ t ≤ 2p2 − 1} by letting c(t) = ci,j

with i = �t/(2p)� and j = (t mod p). Then, the sequence
{c(t), 0 ≤ t ≤ 2p2 − 1} is an (N, 2p2)-MACH sequence.

Proof: It suffices to prove the 1D-MRD property for the
sequence {c(t), 0 ≤ t ≤ 2p2 − 1}, i.e., for any time shift
0 ≤ d ≤ 2p2−1 and any channel 0 ≤ k ≤ N −1, there exists
0 ≤ t ≤ 2p2 − 1 such that

c(t) = c((t + d) mod (2p2)) = k. (24)

Let δ = �d/(2p)� be the vertical shift and τ = (d mod (2p))
and be the horizontal shift. From the matrix-based construction
of the CH sequence {c(t), 0 ≤ t ≤ 2p2 − 1}, we can
represent such a sequence by the p × 2p matrix C̃ = (C|C).
Similarly, we can also represent the sequence {c((t + d)
mod (2p2)), 0 ≤ t ≤ 2p2 − 1} by a p × 2p matrix (C1|C2)
for some p× p matrices C1 and C2. In view of the 2D-MRD
property of the matrix C = (ci,j), it suffices to show that
either C1 or C2 is a p × p square box in the plane repeated
from C.

Consider the following two cases:
Case 1 (0 ≤ τ ≤ p): In this case, the horizontal shift τ is not

greater than p. Thus, the first matrix C1 is a p×p square box in
the plane repeated from the matrix C. The 2D-MRD property
of the matrix C = (ci,j) then guarantees the 1D-MRD prop-
erty of the sequence {c((t+d) mod (2p2)), 0 ≤ t ≤ 2p2−1}.
For example, for the CH sequence in (23), the sequence
{c((t + d) mod 98), 0 ≤ t ≤ 97} in this case can be
represented by the matrix C1 marked in red and the matrix
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C2 marked in blue.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 3 1 0 2 0 0 1 3 1 0 2
0 1 2 3 2 1 0 0 1 2 3 2 1 0
0 1 3 0 3 1 2 0 1 3 0 3 1 2
1 2 2 3 0 2 1 1 2 2 3 0 2 1
2 3 2 1 0 3 2 2 3 2 1 0 3 2
3 1 0 2 0 1 3 3 1 0 2 0 1 3
0 1 2 3 0 1 2 0 1 2 3 0 1 2
0 0 1 3 1 0 2 0 0 1 3 1 0 2
0 1 2 3 2 1 0 0 1 2 3 2 1 0
0 1 3 0 3 1 2 0 1 3 0 3 1 2
1 2 2 3 0 2 1 1 2 2 3 0 2 1
2 3 2 1 0 3 2 2 3 2 1 0 3 2
3 1 0 2 0 1 3 3 1 0 2 0 1 3
0 1 2 3 0 1 2 0 1 2 3 0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Case 2 (p < τ ≤ 2p − 1): In this case, the horizontal
shift τ is larger than p. Thus, the second matrix C2 is a
p × p square box in the plane repeated from the matrix C.
The 2D-MRD property of the matrix C = (ci,j) then guar-
antees the 1D-MRD property of the sequence {c((t + d)
mod (2p2)), 0 ≤ t ≤ 2p2 − 1}. For example, for the CH
sequence in (23), the sequence {c((t + d) mod 98), 0 ≤ t ≤
97} in this case can be represented by the matrix C1 marked
in red and the matrix C2 marked in blue.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 3 1 0 2 0 0 1 3 1 0 2
0 1 2 3 2 1 0 0 1 2 3 2 1 0
0 1 3 0 3 1 2 0 1 3 0 3 1 2
1 2 2 3 0 2 1 1 2 2 3 0 2 1
2 3 2 1 0 3 2 2 3 2 1 0 3 2
3 1 0 2 0 1 3 3 1 0 2 0 1 3
0 1 2 3 0 1 2 0 1 2 3 0 1 2
0 0 1 3 1 0 2 0 0 1 3 1 0 2
0 1 2 3 2 1 0 0 1 2 3 2 1 0
0 1 3 0 3 1 2 0 1 3 0 3 1 2
1 2 2 3 0 2 1 1 2 2 3 0 2 1
2 3 2 1 0 3 2 2 3 2 1 0 3 2
3 1 0 2 0 1 3 3 1 0 2 0 1 3
0 1 2 3 0 1 2 0 1 2 3 0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
With Theorem 7, we propose the construction of the

IDEAL-CH in Algorithm 2.

Algorithm 2 The IDEAL-CH

Input A set of L2 channels {0, 1, 2, . . . , L2−1} with L being
a prime power and L2 + L + 1 being a prime.
Output A CH sequence {c(t), t = 0, 1, 2 . . . , 2(L2+L+1)2−
1} with c(t) ∈ {0, 1, 2, . . . , L2 − 1}.
1: Use Algorithm 1 to construct an (L2, p)-MACH matrix with
p = L2 + L + 1.
2: For t = 0, 1, 2 . . . , 2(L2 + L + 1)2 − 1, let c(t) = ci,j with
i = �t/(2p)� and j = (t mod p).

As a direct consequence of Theorem 6 and Theorem 7,
we have the following corollary.

Corollary 8: If L is a prime power and L2 + L + 1 is a
prime, then Algorithm 2 constructs a CH sequence with period

2(L2 + L + 1)2 that achieves maximum rendezvous diversity
for the L2 channels {0, 1, 2, . . . , L2 − 1}.

G. The General Construction of an (N, p)-MACH Matrix

By using a computer search for the set of numbers L with
L being a prime power and L2 + L + 1 being a prime,
we find {2, 3, 5, 8, 17, 27, 41, 59, 71, 89} for L ≤ 100. There
are 4,688 positive integers with such properties under 100,000.
For the integers that do not possess such properties, we have to
resort to less efficient constructions. Instead of using a perfect
difference set in Step 3 of Algorithm 1, we can use an RDS.
It was shown in [46] that the size of an RDS in Zp is bounded
below by

√
p. Here we show how to construct an RDS D in

Zp with the size smaller than 2
√

p.
To construct an RDS in Zp for any period p, the idea is first

to place a periodic dot pattern with the period Δ in the interval
[0, p−1], and then add Δ dots in the interval [0, Δ−1] as the
“delimiter.” As there is at least one dot within an interval of
length Δ, the Δ dots that serve as the delimiter will overlap
with at least one dot in any time-shifted dot pattern. This is
stated in the following proposition.

Proposition 9: For any Δ ≥ 2 and p ≥ Δ, the set D =
{0, 1, . . . , Δ− 1} ∪ {2Δ− 1, 3Δ− 1, . . . , �p/Δ�Δ− 1} is an
RDS in Zp.

Such a construction of an RDS can be characterized
with two parameters: the period p and the spacing Δ. For
example, if we choose Δ = 5 for p = 23, then D =
{0, 1, 2, 3, 4, 9, 14, 19} is an RDS in Z23 with 8 elements.
Note that the number of elements in D in Proposition 9 is
Δ+ �p/Δ�− 1. To minimize the number of elements in D in
Proposition 9, one may choose the spacing Δ = �√p�. Since
x ≤ �x� < x + 1 and �x� ≤ x, we have

�√p� + �p/�√p�� − 1 < 2
√

p. (25)

Thus, one can construct an RDS in Zp with the size smaller
than 2

√
p.

Instead of using a perfect difference set in Step 3 in
Algorithm 1, now we can replace it by using an RDS in Zp

with the spacing Δ = �√p� in Proposition 9. This leads
to the general construction of an (N, p)-MACH matrix in
Algorithm 3.

Even though there is a constraint for p − (�√p� +
�p/�√p�� − 1) ≥ N in Algorithm 3, such a constraint does
not affect the asymptotic ratio (in the limiting regime). This
is shown in the following corollary.

Corollary 10: The (N, 2p2)-MACH sequence constructed
by the general construction of an (N, p)-MACH matrix in
Algorithm 3 and Theorem 7 has the asymptotic ratio of 2.

Proof: Let D be the RDS constructed in Proposi-
tion 9 with the spacing Δ = �√p�. Since |D| ≤ 2

√
p,

the number of rendezvous channels |Dc| = p−|D| ≥ p−2
√

p.
Thus, the asymptotic approximation ratio is

2p2

|Dc|2 =
2p2

(p − |D|)2 → 2, (26)

when p → ∞.
Now, we show the constraint p− (�√p�+�p/�√p��−1) ≥

N does not affect the asymptotic ratio. Note that Theorem 1
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Algorithm 3 The General Construction of an (N, p)-MACH
Matrix
Input: A set of N channels {0, 1, 2, . . . , N − 1}.
Output: An (N, p)-MACH matrix with p being the smallest
prime such that p − (�√p� + �p/�√p�� − 1) ≥ N .
1: Find the smallest prime p such that p−(�√p�+�p/�√p��−
1) ≥ N and construct a p × p ideal matrix M = (mi,j).
2: Construct a (p, p)-semi-MACH matrix M̃ = (m̃i,j) by
replacing the jth column of M by the (p − i)th-rotation of
(0, 1, . . . , p − 1) (for all j = 0, 1, . . . , p − 1) if mi,j = 1.
3: Let Δ = �√p�. Construct an RDS D = {0, 1, . . . , Δ−1}∪
{2Δ − 1, 3Δ− 1, . . . , �p/Δ�Δ − 1} in Zp.
4: Let Dc = Zp\D = {b0, b1, . . . , bp−1−|D|}.
5: Construct a p×p matrix C = (ci,j) by the following channel
mapping rule:

ci,j =

�
(j mod N) if m̃i,j ∈ D

(� mod N) if m̃i,j = b�.

of [47] states that there exists a prime number p in the interval
[N, N + N0.525] for sufficiently large N ’s. This theorem
implies for any arbitrary 	 ∈ (0, 1) and for all N > N0

(a sufficiently large integer), there exists a prime pN with

(1 + 	)N ≤ pN ≤ (1 + 2	)N. (27)

Let N ′
0 = 12/	2. From (25) and (27), we have for all N >

max{N0, N
′
0},

pN − (�√pN� + �pN/�√pN�� − 1)
≥ pN − 2

√
pN

≥ (1 + 	)N − 2
�

(1 + 2	)N

= N + (	N − 2
�

(1 + 2	)N)

≥ N + (	N − 2
√

3N) ≥ N. (28)

Letting N → ∞, we have from (27) that

1 + 	 ≤ lim
N→∞

pN

N
≤ 1 + 2	.

Since 	 is arbitrary, letting 	 → 0 completes the argument. �
Regarding the computational complexity of Algorithm 3,

it is clear that Step 2 to Step 5 is O(p2). Since the smallest
prime p with p− (�√p�+ �p/�√p��−1) ≥ N is smaller than
N + N0.525 for N sufficiently large, the time complexity of
Algorithm 3 is still O(N2).

The asymptotic ratio of 2 guarantees that one can construct
a CH sequence with a period 2[(1+2	)N ]2 for any arbitrarily
small 	 and any sufficiently large N , and the MCTTR is
bounded by that period. As such, our result has the best
MCTTR bound among all the existing CH sequences when N
is sufficiently large. However, for a small number N , there is
no guarantee that our CH sequence outperforms other existing
CH sequences in terms of MCTTR.

IV. ORTHO-CH

To use the IDEAL-CH in the sym/async/hetero/global MRP,
each user can simply replace at random those channels not

in its available channel set by some channels in its available
channel set. By doing so, the two users are still guaranteed to
rendezvous on every commonly available channel in the period
of the IDEAL-CH sequence. Thus, the MCTTR is bounded by
the period of the IDEAL-CH sequence.

In this section, we consider a weaker requirement that
only needs the two users to rendezvous on one commonly
available channel in a period. For this, we propose a channel
hopping sequence, called ORTHO-CH, that can guarantee the
rendezvous of the two users within a period of the ORTHO-CH
sequence. When the available channel set of a user is a subset
of {0, 1, . . . , N − 1}, the period of our ORTHO-CH sequence
is (2p + 1)p, where p is the smallest prime not less than N .
Thus, ORTHO-CH has the MTTR bound (2p + 1)p.

A. Orthogonal MACH Matrices

For the construction of the ORTHO-CH sequence, we intro-
duce a new notion of orthogonal MACH matrices.

Definition 11: A set of p × p matrices {C(r) = (c(r)
i,j ), r =

1, 2, . . . , K} is called a set of orthogonal (N, p)-MACH
matrices if it satisfies the following two properties:

(i) The cover property: for any channel 0 ≤ k ≤ N−1,
it appears at least once in every column of every
matrix in the set of matrices.

(ii) The 2D-MRD property: for any two different matri-
ces r1 and r2, any 2D-shift 0 ≤ δ, τ ≤ p−1, and any
channel 0 ≤ k ≤ N − 1, there exist 0 ≤ i, j ≤ p− 1
such that

c
(r1)
i,j = c

(r2)
i⊕δ,j⊕τ = k. (29)

We note that the cover property is not needed in
Definition 2 for an (N, p)-MACH matrix even though such a
property is satisfied in our constructions of the (N, p)-MACH
matrices in Algorithm 1 and Algorithm 3. Intuitively, one can
view an (N, p)-MACH matrix as a matrix that is “orthogonal”
to itself in the sense of the 2D-MRD property.

We choose the phrase “orthogonal” from the notion of
orthogonal Latin squares [48]. In a p × p Latin square, every
row and every column is a permutation of {0, 1, . . . , p − 1}.
Two p × p Latin squares C(r1) = (c(r1)

i,j ) and C(r2) = (c(r2)
i,j )

are said to be orthogonal if the p2 ordered pairs (c(r1)
i,j , c

(r2)
i,j ),

i, j = 0, 1, . . . , p−1 are all different. The number of mutually
orthogonal p × p Latin squares is bounded by p − 1 and it is
achieved when p is a prime power. In particular, when p is a
prime, the p − 1 orthogonal Latin squares can be constructed
by letting c

(r)
i,j = (r · i+ j) mod p, r = 1, 2, . . . , p−1. In the

following theorem, we show such a construction also leads to
a set of p − 1 orthogonal (p, p)-MACH matrices.

Theorem 12: Suppose that p is a prime. For r =
1, 2, . . . , p − 1, 0 ≤ i, j ≤ p − 1, let

c
(r)
i,j = (r · i + j) mod p. (30)

Then, the set of matrices {C(r) = (c(r)
i,j ), r = 1, 2, . . . , p− 1}

is a set of orthogonal (p, p)-MACH matrices.
Proof: As r �= 0, we have from (30), every channel 0 ≤

k ≤ p−1 appears exactly once in every column of every matrix
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in the set, and thus the cover property is satisfied. To show the
2D-MRD property, for r1 �= r2, any 2D-shift 0 ≤ δ, τ ≤ p−1
and any channel 0 ≤ k ≤ N − 1, we let i∗ be the unique
solution of the following equation:

((r1 − r2) · i mod p) = ((r2 · δ + τ) mod p), (31)

and

j∗ = ((k−r1 · i∗) mod p). (32)

Then, we have from (32) and (30) that

c
(r1)
i∗,j∗ = k.

Also, it is easy to see from (30) and (31) that

c
(r2)
i∗⊕δ,j∗⊕τ

= c
(r2)
(i∗+δ) mod p,(j∗+τ) mod p

= (r2 · (i∗ + δ) + (j∗ + τ)) mod p

= (r2 · i∗ + (r2 · δ + τ) + j∗) mod p

= (r1 · i∗ + j∗) mod p

= c
(r1)
i∗,j∗ .

�
For p = 5, the four (5, 5)-MACH matrices are as follows:⎡

⎢⎢⎢⎢⎣
0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2

⎤
⎥⎥⎥⎥⎦ , (33)

⎡
⎢⎢⎢⎢⎣

0 1 2 3 4
3 4 0 1 2
1 2 3 4 0
4 0 1 2 3
2 3 4 0 1

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

0 1 2 3 4
4 0 1 2 3
3 4 0 1 2
2 3 4 0 1
1 2 3 4 0

⎤
⎥⎥⎥⎥⎦ . (34)

These four matrices are also mutually orthogonal Latin
squares.

B. From Orthogonal MACH Matrices to Asynchronous
CH Sequences

In this section, we show that one can construct the
ORTHO-CH sequence from a set of orthogonal (p, p)-MACH
matrices, {C(r), r = 1, 2, . . . , p−1}. The idea is quite similar
to the quasi-random algorithm in [40]. Each user selects a
nonzero channel r from its available channel set as its ID
channel. Then, construct the p × (2p + 1) matrix C̃(r) by
concatenating the ID column r (that stays on channel r) and
two identical matrices of C(r), i.e.,

C̃(r) = (c̃(r)
i,j ) = (r|C(r)|C(r)). (35)

As in the matrix-based construction for IDEAL-CH, we then
map the p× (2p+1) matrix C̃(r) to the periodic ORTHO-CH
sequence with period (2p + 1)p. Channels that are not in the
available channel set are randomly replaced by channels in
the available channel set. If the two users select the same ID
channel, then both users are guaranteed to rendezvous from
the cover property of a set of orthogonal MACH matrices.

On the other hand, if the two users select two different ID
channels, then both users are guaranteed to rendezvous on
every commonly available channel from the 2D-MRD property
of a set of orthogonal MACH matrices. As such, the two users
are guaranteed to rendezvous within the period (2p+1)p. The
detailed construction is shown in Algorithm 4.

Algorithm 4 The ORTHO-CH
Input A set of available channels c that is a subset of
{0, 1, . . . , N − 1}.
Output A CH sequence {c(t), t = 0, 1, 2 . . . , p(2p + 1) − 1}
with c(t) ∈ c, where p is the smallest prime not less than N .
1: If channel 0 is the only channel in c, output c(t) = 0 for
all t = 0, 1, 2 . . . , p(2p + 1) − 1.
2: Randomly select a nonzero channel r from c as the ID
channel.
3: Find the smallest prime p such that p ≥ N and construct a
p × p matrix C(r) = (c(r)

i,j ) by letting

c
(r)
i,j = (r · i + j) mod p.

4: Let r be the p×1 column vector with all its elements being
r. Construct the p × (2p + 1) matrix C̃(r) by concatenating
the column vector r and two identical matrices of C(r), i.e.,

C̃(r) = (c̃(r)
i,j ) = (r|C(r)|C(r)).

5: For t = 0, 1, 2 . . . , p(2p + 1) − 1, let c(t) = c̃
(r)
i,j with

i = �t/(2p + 1)� and j = (t mod (2p + 1)).
6: If c(t) is not in c, replace it at random by a channel in c.

For example, if N = 4, then p = 5. Suppose that the
available channel set c = {0, 1, 3} and channel 3 is selected as
the ID channel. From (34), the 5×11 matrix C̃ is constructed
as follows:⎡

⎢⎢⎢⎢⎣
3 0 1 2 3 4 0 1 2 3 4
3 3 4 0 1 2 3 4 0 1 2
3 1 2 3 4 0 1 2 3 4 0
3 4 0 1 2 3 4 0 1 2 3
3 2 3 4 0 1 2 3 4 0 1

⎤
⎥⎥⎥⎥⎦ . (36)

Now replace the channels 2 and 4 by randomly selected
channels in c (marked in R) leads to the following CH
sequence:

3, 0, 1, R, 3, R, 0, 1, R, 3, R,

3, 3, R, 0, 1, R, 3, R, 0, 1, R,

3, 1, R, 3, R, 0, 1, R, 3, R, 0,

3, R, 0, 1, R, 3, R, 0, 1, R, 3,

3, R, 3, R, 0, 1, R, 3, R, 0, 1.

Theorem 13: Suppose that user i, i = 1 and 2, have the
available channel sets ci, i = 1 and 2, that are subsets of
{0, 1, 2 . . . , N − 1} and that both users use the ORTHO-CH
in Algorithm 4 to generate its CH sequence. If there is at least
one commonly available channel, i.e., c1 ∩ c2 �= ∅, then both
users are guaranteed to rendezvous within (2p+1)p time slots
for any clock drift d between these two users, where p is the
smallest prime not less than N .
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Proof: The case that one of the two users only has
channel 0 in its available channel set is trivial as that user will
stay on channel 0 all the time. Thus, it suffices to consider
the case that both users have at least one channel that is not
channel 0. Let ri be the ID channel selected by user k, k = 1
and 2, and {ck(t), t = 0, 1, . . .} be the CH sequence of user k
from the ORTHO-CH in Algorithm 4. Under the assumption
that there is at least one commonly available channel, we need
to show that there exists 0 ≤ t ≤ (2p + 1)p − 1 such that for
any time shift 0 ≤ d ≤ (2p + 1)p − 1,

c1(t) = c2(t + d). (37)

Let δ = �d/(2p + 1)� be the vertical shift and τ =
(d mod (2p + 1)) be the horizontal shift. In view of the
matrix-based construction of CH sequences, the condition
in (37) holds if and only if for any 0 ≤ δ ≤ p − 1 and
0 ≤ τ ≤ 2p−1, there exist 0 ≤ i ≤ p−1 and 0 ≤ j ≤ 2p−1
such that

c̃
(r1)
i,j = c̃

(r2)
i⊕δ,j⊕τ , (38)

where C̃(rk) = (c̃(rk)
i,j ), k = 1 and 2, are the p × (2p + 1)

matrices defined in (35). Now consider the following two
cases:

Case 1 (r1 = r2): In this case, both users select the same
ID channel from their available channel sets. As such, r1 is in
the available channel set of user 2. If τ = 0, then both users
rendezvous on the same ID channel of column 0, i.e., for all
0 ≤ i ≤ p − 1,

c̃
(r1)
i,0 = c̃

(r2)
i⊕δ,0 = r1 = r2. (39)

On the other hand, if τ �= 0, it then follows from the cover
property that column τ of C̃(r2) contains at least one r1. Thus,
there exists 0 ≤ i∗ ≤ p − 1 such that the (i∗ ⊕ δ)th element
of column τ of C̃(r2) is r1, i.e., c̃

(r2)
i∗⊕δ,τ = r1. Since the p

elements in column 0 of C̃(r1) are all r1, we then have

c̃
(r1)
i∗,0 = c̃

(r2)
i∗⊕δ,τ = r1. (40)

For example, suppose that {c1(t), 0 ≤ t ≤ 54} is the
CH sequence in (36). Then, the sequence {c2((t + d)
mod 55), 0 ≤ t ≤ 54} in this case can be represented by
the concatenation of its ID column, the first C(r2) matrix,
and the second C(r2) matrix. The overlaps of the ID column
(resp. the first matrix, the second matrix) with the sequence
{c1(t), 0 ≤ t ≤ 54} is marked in green (resp. red, blue)
in (41). Note that the 5 elements marked in green form a
permutation of {0, 1, 2, 3, 4}.⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 1 2 3 4 0 1 2 3 4
3 3 4 0 1 2 3 4 0 1 2
3 1 2 3 4 0 1 2 3 4 0
3 4 0 1 2 3 4 0 1 2 3
3 2 3 4 0 1 2 3 4 0 1
3 0 1 2 3 4 0 1 2 3 4
3 3 4 0 1 2 3 4 0 1 2
3 1 2 3 4 0 1 2 3 4 0
3 4 0 1 2 3 4 0 1 2 3
3 2 3 4 0 1 2 3 4 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

Case 2 (r1 �= r2): In this case, the two users select
two different ID channels. As such, their CH sequences are
constructed from two mutually orthogonal MACH matrices.
As in the proof of Theorem 7, we consider the following two
subcases:

Case 2.1 (0 ≤ τ ≤ p): In this subcase, the first matrix
C(r2) of C̃(r2) overlaps with a p × p square box in the
plane repeated from C(r1) (see, e.g., the square marked in
red in (41). Under the assumption that there is at least one
commonly available channel, the condition in (38) follows
immediately from the 2D-MRD property of two mutually
orthogonal MACH matrices.

Case 2.2 (p < τ ≤ 2p − 1): In this subcase, the second
matrix C(r2) of C̃(r2) overlaps with a p× p square box in the
plane repeated from C(r1). Once again, under the assumption
that there is at least one commonly available channel, the con-
dition in (38) follows immediately from the 2D-MRD property
of two mutually orthogonal MACH matrices. �

In comparison with FRCH in [14], ORTHO-CH has the
same MTTR bound (2N+1)N if N is a prime. Note that N �=
((5+2α)∗r−1)/2 is required for FRCH. For instance, if α = 0
and r = 3, then FRCH does not guarantee the rendezvous
of the two users for N = 7. To achieve such an MTTR
bound, FRCH has to remap the channels that are not in the
available channel set according to a specific remapping rule.
For ORTHO-CH, such replacements can be chosen randomly.
In comparison with the Sequence-Rotating-Rendezvous (SRR)
algorithm in [15], our ORTHO-CH sequence reduces the
MTTR from 2p2 + 2p to (2p + 1)p. Both constructions are
similar in the sense that they both are based on the two
mathematical properties of orthogonal MACH matrices (and
thus the proofs are also similar). The key difference is that
the ORTHO-CH sequence is periodic while the SRR sequence
is not. In practice, there might be a nonzero probability that
the two users may not rendezvous even when they both hop
on a common channel. In such a setting, there might be a
problem for the SRR algorithm when the two users select
the same ID channel and they miss their rendezvous on the
ID channel. In that sense, ORTHO-CH is more robust than
SRR. Similarly, IDEAL-CH is more robust than ORTH-TH as
every commonly available channel is a rendezvous channel in
IDEAL-CH. However, the period p of the general IDEAL-CH
is the smallest prime with p − (�√p�+ �p/�√p�� − 1) ≥ N ,
which is in general larger than the period of ORTHO-CH for
the same total number of channels N .

As described in the book [1], both IDEAL-CH and
ORTHO-CH sequences are known as global sequences as they
are constructed from all the N channel and then replace those
channels not in the available channel set of a user by some
channels in its available channel set. Another approach is to
construct CH sequences directly from the available channel
sets of users. Such sequences are called local sequences, e.g.,
QR [40], Catalan [27], MTP [41], FMR [42], and QECH [4].
When the numbers of channels of the two users, n1 and n2

are O(Nα) for some 0 < α < 1, then the MTTR bounds
from these local sequences are o(N2) (see Table I) and thus
better than those from global sequences. On the other hand,
if n1 and n2 are linear in N , then the O(N2) of MTTR
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bounds of global sequences are better than those of local
sequences.

V. CONCLUSION

By embedding difference sets into an ideal matrix, we are
able to tighten the theoretical gap of the asymptotic approx-
imation ratio for CH sequences with maximum rendezvous
diversity from 2.5 to 2. The factor of 2 is very similar to the
factor of 2 that incurs from assuming that the slot boundaries
are aligned (in this paper) even when the continuous-time
clocks of the two users are not synchronized. To see this,
suppose that the minimum amount of time needed for the two
users to rendezvous (by exchanging information) on the same
channel is τ . Then, one has to set the slot size to be at least 2τ
so that the overlap in a time slot is at least τ even when the slot
boundaries are not aligned. In view of this, it seems difficult to
further reduce the ratio by using the 2D-MRD property as one
needs a factor of 2 to convert it into the 1D-MRD property.

To conclude the paper, we would like to quote the following
comment from the end of the excellent book [1]:

“…, closing the gap between the lower bounds on the
maximum time to rendezvous in worst-case situations and the

upper bounds by the presented algorithms will likely be a
long term project.”
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