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a b s t r a c t 

Software-defined networking (SDN) is an emerging architecture that offers advantages over traditional 

network architecture. Segment routing (SR) defines the path of information through the network via an 

ordered list of multi-protocol label switching (MPLS) mechanisms on the packet headers at the ingress 

device, and this system makes SDN routing management more simple and efficient. SR can also solve 

some scalability issues in SDN. In this paper, we propose a routing algorithm for SDN with SR that can 

meet the bandwidth requirements of routing requests. Our algorithm considers the balance of traffic load 

and reduces the extra cost of packet header size in a network. Simulation results show that the perfor- 

mance of our algorithm is better than that of previously developed algorithms in terms of the average 

network throughput and the average rejection rate of routing requests. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Software-defined networking (SDN) [1] is an emerging architec-

ture that is flexible, manageable and responsive to rapid changes.

This architecture enables the network controls to be directly pro-

grammed through an open standardized interface called OpenFlow

[2] . The SDN paradigm provides clear advantages over traditional

network architecture, and it has attracted growing attention from

many businesses in recent years. SDN provides fine-grained traf-

fic distribution control in a network, as it can decide forwarding

behavior based on different combinations of packet header fields,

unlike traditional coarse-grained systems of destination-based for-

warding. However, the SDN attribute implies that an SDN switch

requires a larger sized flow table than that of a traditional switch

for storing the same number of flows [3] . Flow tables are imple-

mented by ternary content addressable memory (TCAM) [4] , which

is an extremely expensive and power-hungry resource. In general,

TCAM can support from a few hundred to several thousand entries

which direct SDN in facing challenges such as network scalability

[5] . 

SR is currently undergoing an Internet Engineering Task Force

(IETF) draft [6] , which is driven by Cisco and is supported by many

leading telecom companies. In general, the SR approach shows

promise as an alternative network-operating model. SR is a net-

work technology that offers a new method of packet forwarding
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hat minimizes the need for keeping large numbers of network in-

ormation states and therefore helps to overcome the TCAM de-

ciency problem. This approach can definitely add capacity to IPs

nd multi-protocol label switching (MPLS) networks, as the SR data

lane can be applied to IPv6 and MPLS. There are many advantages

hen we integrate SR in the data plane and in SDN-based con-

rol layer technologies. As for scalability and agility, SR avoids the

equirement for millions of label codings to be stored in each net-

ork device along the path, and it reduces the number of forward-

ng rules in the TCAM. Furthermore, SR eliminates the complexity

f maintaining large numbers of forwarding rules, so there are no

ommunication delays between network devices and the SDN con-

rollers [7] . 

In this paper, we study the traffic engineering issue in SDN

8] with SR. We show that through traffic engineering, we can

chieve the goals of optimizing network performance and network

esource utilization. With SR, the SDN controller only needs to en-

ode end-to-end route information into the packet header as an

rdered list of labels to the ingress network device. The controller

oes not need to add forwarding rules to each individual device

long the path, and it can re-send a packet without the need for

ew forwarding state redistribution in the related switches. In ad-

ition, the intermediate nodes do not need to maintain any per-

ow state. Intermediate nodes simply act on the routed behavior,

hich is recorded in the segment header. This approach provides

 much more simple and scalable solution for traffic engineering.

owever, as OpenFlow [9] defines each MPLS label with 32 bits

which is a large label), SR has a drawback in that it requires extra

er-packet header size overhead. This requirement arises because

http://dx.doi.org/10.1016/j.comnet.2016.03.017
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Fig. 2.1. SR traffic engineering with an SDN controller. 
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R represents the route information as a set of labels, and it im-

lements the labels by using the MPLS label field in the packet

eader. 

In this paper, we propose a heuristic routing algorithm with a

andwidth guarantee. The proposed algorithm not only achieves

he goal of using traffic engineering to balance the network traffic

oad, but it also promises to reduce the network overhead cost. In

ther words, our algorithm adopts an extra-hop limitation, and it

onsiders a link’s residual bandwidth and link criticality. Link crit-

cality is based on the concept of the minimal interference rout-

ng method (MIRA) [10] . This concept is applied to minimize the

ossibility of rejecting requests when the network becomes over-

oaded, with an aim of upgrading the network’s performance. We

btain a better network performance than that of other traditional

outing algorithms such as the shortest path first (SPF) [11] , widest

hortest path (WSP) [12] , shortest widest path (SWP) [13] or MIRA

10] algorithms. Extensive simulations show that our algorithm can

ower the unsatisfied request rate and raise the bandwidth satisfac-

ion rate compared to that of the previous approaches. 

The rest of this paper is organized as follows. We introduce the

elated previous works in Section 2 . In Section 3 , we present our

roposed algorithm. The performance evaluation is presented in

ection 4 , and Section 5 concludes the paper. 

. Related works 

.1. Preliminary of segment routing 

For each pair of host communications within the same SDN/SR

omain, a network uses an interior gateway protocol (IGP), such

s the open shortest path first (OSPF) protocol, to enable routing

o the destination by default. SR [6] uses a node segment to rep-

esent the action that a packet should follow to take the shortest

oute. In other words, every node in the same SR domain keeps

 node segment information link to each of the other nodes in its

orwarding table, as the default rules and the node segment rep-

esents global awareness. In addition, SR adopts an adjacency seg-

ent to control traffic, which represents the action that the packet

hould transfer to a specific egress data link with an adjacent node,

nd this adjacency segment represents local awareness. However,

nlike in the node segment , each node only needs to install its lo-

al adjacency segment rules in its forwarding table. The combina-
ion of node segments and adjacency segments forms a sequence list

f labels that are applied to the packet header by the SDN con-

roller, and they are reflected instantly as the desired traffic path.

herefore, SR brings several orders of scaling gains, as it does not

old any state for the flows in the intermediate devices. However,

R contributes to another noticeable problem, because it uses an

PLS label field to place the segment labels. As a result, SR may

equire a larger packet header, which reduces the available band-

idth. 

We illustrate an overview of intra-domain SDN-based SR in

ig. 2.1 . The mark on each switch is the node segment , and the

umber next to the switch, F , is the adjacency segment of switch F .

he SDN controller computes an explicit route by the routing mod-

le, and it configures the forwarding table of the ingress switch

ith an ordered list of segments. For example, assume that there

s a traffic demand from switch A to H. The path information { A -

 - F - C - G - H } is encoded in the packet header as a set of MPLS la-

el stacks, which completely removes the need for installing rules

n the switches along the path. First, the switch A processes the

op label, which is a node segment, and then forwards the packet

long the shortest path toward the network device with the node

egment F . Then, switch F pops the top label, and the following top

abel is 1003 . Therefore, switch F forwards the packet toward its

utput port 1003. After arriving at switch C, the switch forwards

he packet to H along the shortest path, and so on. Thus, SR can

educe the number of forwarding rules in TCAM. 

The following paragraphs summarize some of the previous

tudies related to the SR technology. First, the authors in [14] con-

ider the problem of determining the optimal parameters for SR

n offline and online cases. The authors propose a traffic matrix

blivious algorithm for the offline case, and another algorithm for

he online case. In the online case, the network has a central-

zed controller that can use an online approach to solve the SR

roblem, as is done in our SDN-based environment. These authors

ive formulas and linear programs for defining the optimal param-

ters of SR. Their paper focuses on determining the optimal pa-

ameters as traffic split values. These values are applied to min-

mize the worst-case link utilization by taking equal-cost multi-

ath routing (ECMP) into account in offline cases. The traffic split

alues also serve to minimize rejections of requests in online cases.

owever, our research is dedicated to designing an efficient rout-

ng algorithm for better network performance (such as improved
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r  
network throughput and rejection rate) and to focus on finding the

single shortest path without ECMP. We consider the link criticality

and the link residual bandwidth in evaluating the weight of a link.

Moreover, our algorithm limits the maximal path length of a route

to reduce the network’s consumption of bandwidth. 

The authors in [15] raise the issue of energy consumption when

deploying large-scale distributed infrastructures. They propose the

use of SR-based energy-efficient traffic engineering to reduce the

energy consumption of backbone networks. Through the SDN ap-

proach, the network can selectively switch off a subset of links.

The authors implement this technique in the OMNET ++ simulator

that dynamically decides the number of power-on links, and there-

fore saves energy. The goal of these authors is to determine the

status of network devices, regardless of whether they are required

to transfer data. Our paper, however, aims to build a bandwidth-

satisfying path that increases the total network throughput and re-

duces the request rejection rate, rather than decreasing the energy

consumption. 

The authors in [16] introduce an architecture that integrates the

SDN paradigm with SR-based traffic engineering. Their paper fo-

cuses on the problem of mapping computed paths onto SR paths.

They propose an SR path assignment algorithm that aims to find

the shortest list of segments corresponding to the desired path.

Our work, however, focuses on the issue of a routing algorithm

rather than an SR label assignment. 

The authors in [17] propose a segment list-encoding algorithm

to express a given path, which minimizes the segment list depth

in SR-based networks. In addition, these authors provide a method

for ECMP-aware shortest path computation that is subject to a con-

sidered set of multiple constraints. Our work also takes the label

stack depth into consideration, and we propose a routing algorithm

to reduce the extra cost of the packet header, which is caused by

label stack depth. In addition to the label stack depth issue, we

consider the balance of traffic load in our routing algorithm, with

an aim to improve performance in terms of the network through-

put and the rejection rate. As a result, our work focuses on the

issue of improving the routing algorithm rather than solving the

segment list computation problem. 

In [18] , an SR technology is implemented in a multi-layer net-

work test bed. The authors design an SDN-based SR solution to

control network edge nodes for configuring the label stacks. This

paper also demonstrates scalability tests for different label stacking

conditions. The main issue dealt with in their work is the imple-

mentation and demonstration of SDN-based SR. However, the au-

thors do not discuss the routing algorithm for the SDN controller

to configure the route in edge nodes. 

2.2. Traffic engineering 

Many existing works treat traffic engineering as an indispens-

able tool for upgrading network performance, which works by ex-

plicitly directing the traffic through a finite, competitive network

resource. Traffic engineering configures the routing scheme to con-

trol how traffic is routed across the network, to optimize network

performance and use network resources efficiently. It is critical that

traffic-engineering methods utilize the measured traffic matrix for

the diagnosis and management of network congestion. The traf-

fic matrix represents the volume of traffic between sets of source-

and-destination pairs over a given time interval, and this element

is a key factor in network planning. The estimation of the traf-

fic matrix involves simultaneously gathering traffic flow measure-

ments and information on routing. SDN allows a more dynamic

network measurement, which can more easily determine the pre-

cise and timely traffic matrix due to OpenFlow and the centralized

controller [19,20] . As a result, when we study traffic engineering,

we can acquire predictions of future traffic trends through the es-
imated traffic matrix, and we can find good routing configurations

21] . 

The major objectives of traffic engineering include distributing

he network load to all links and diminishing network congestion.

n such engineering, we want to prevent some links in the network

rom being overloaded, and to prevent other links from being un-

erutilized due to a static path selection scheme. In addition, the

hosen paths need to satisfy some constraints, such as a bounded

nd-to-end delay or a guaranteed bandwidth requirement to meet

pecified quality of service (QoS) delivery standards. 

We introduce several traffic-engineering studies that are used

o solve various aspects of our problem. One of the simplest and

ost frequently used algorithms for unicast routing is the SPF

shortest path first) algorithm, which is adopted by a common

tandard routing protocol called OSPF (open shortest path first)

11] . This algorithm selects a path that has the least number of

inks and uses the smallest amount of resources. However, this ap-

roach does not consider the available capacity of all feasible can-

idate links in its path selection, and thus it may cause some links

o become congested earlier, which can lead to poor resource uti-

ization. 

In [12,13] , the routing strategies used include the widest-

hortest path (WSP) and the shortest-widest path (SWP) algo-

ithms. The width of a path represents the available bandwidth,

nd the length commonly corresponds to the number of hops.

herefore, the objective of the WSP algorithm is to select the short-

st path that has the largest amount of residual bandwidth. The

ain result of applying the WSP algorithm is to reduce network

ost, because this algorithm focuses on resource preservation by

hoosing the minimum hop count path. The SWP algorithm, how-

ver, finds the maximum amount of available bandwidth from the

ource node to the destination node. If there are multiple paths

ith the same maximum available bandwidth, this algorithm se-

ects the shortest path. The main result of using the SWP algo-

ithm is load balancing, due to selection of the path with the max-

mum available bandwidth among all feasible paths for each re-

uest. However, using the SWP algorithm involves the risk of in-

reased network cost, as the widest path generally means a longer

op count path, which ties up more resources and thus decreases

etwork throughput. 

In [10] , the authors introduce the concept of “interference,”

hich considers that routing a flow along a particular path can

educe the maximum flow between some other pairs. This concept

uggests that a newly routed connection should follow a path that

oes not cause too much interference to other paths whose links

ay be critical to future traffic demands for other pairs of hosts.

hese authors prove that the interference problem is NP-hard, and

hey propose a heuristic minimum interference routing algorithm

MIRA) to maximize the minimum-maximum flow between all of

he other source-destinations. The authors show that the MIRA’s

umber of rejections is lower than that of other algorithms that

o not consider the minimum interference criteria. However, the

IRA also has some shortcomings. For example, the complexity

f repeated maximum flow computation requires O ( VE 2 ), and the

IRA concentrates on the effect of interference on critical links

nly, thus ignoring the non-critical links (where V is the number

f switches and E is the number of links between switches). There-

ore, the routing path lengths can become long enough to make a

ath practically unusable. 

. Routing algorithm 

.1. Problem definition 

Our research aims to enable Internet service providers, who are

esponsible for ensuring that traffic is routed over feasible paths
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Fig. 3.1. Example of computing link criticality. 
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n their networks in ways that meet specific service guarantees.

herefore, the problem to be solved in this paper is to decide a

outing plan for unicast communication in SDN that is based on

R strategy. The goal of our proposed routing algorithm is to com-

ute an explicit bandwidth-satisfying path between a pair of com-

unication nodes under a given QoS requirement. To increase the

etwork throughput, the algorithm needs to reduce the potential

or rejecting traffic demands and network congestion, and to at-

ain a state of efficient network resource usage from a long-term

erspective. In addition, we need to pay attention to the path hop

ount, because this factor directly causes extra wastage of network

esources, due to the extra bandwidth occupied by the segment

ists in the packet header. 

Before presenting our proposed algorithm, we define the nota-

ions used in this paper. An SDN network topology can be repre-

ented as a weighted graph G = ( V, E ), where V is the set of nodes,

nd E is the set of edges. Each vertex in V and each edge in E rep-

esents a switch and a switch link in SDN, respectively. For each

dge e ε E , let b ( e ) denote the currently available bandwidth of a

ink that connects a pair of nodes. We define a weight function on

ach edge e ε E , which we call the link weight w ( e ). We assume

hat w ( e ) > 0, and we use this assumption to calculate the optimal

oute, which is the minimum weight path for a pair of communi-

ation nodes. As the minimum weight path may result in a longer

ath length, a longer delay time, a larger packet header overhead

nd more consumption of link bandwidth resources than a smaller

ath length, our algorithm aims to limit the maximum path length

etween the source and the destination. 

We also define a traffic matrix (TM), which records the traffic

emands in a time interval P . That is, the TM is the set of commu-

ication nodes observed in a time interval P , and they are consid-

red as the prediction of potential traffic demands in the near fu-

ure. The traffic demand is represented as a request from a source

 ε V to a destination d ε V , with requested bandwidth B sd . In ad-

ition, we define H sd as the minimum hop count path between

ource node s and destination node d . Let MAX sd be the tolerable

aximum hop count between source node s and destination node

, which is equal to H sd , plus an extra-hop count E sd . The extra-hop

ount is used to limit the maximum path length of our solution.

n this paper, we propose a routing algorithm to balance the link

oads of switches under these path length restrictions. 

.2. Routing algorithm 

In the proposed algorithm, we consider information regarding

he link’s residual bandwidth, path length and link criticality to se-

ect a path from source to destination. The link criticality is used to

redict the future traffic load of the links. We consider each node’s

ocation in the network as the criterion for defining the critical-

ty of a certain link. This concept is similar to that of between-

ess centrality in graph theory [22] , which is widely used to an-

lyze social networks. The betweenness centrality of a node v is

he average ratio by which a node s needs to pass through a spe-

ific node v to reach a node t via the shortest path in the network.

n previous work, the betweenness centrality of a specific node v,

C ( v ), is given by 
∑ 

s � = v � = t σst (v ) / σst . The σ st is the total number of

hortest paths from node s to node t , and σ st ( v ) is the number of

hortest paths between s and t that pass through node v . Clearly,

 node with higher betweenness centrality has greater influence in

ts network, and thus it is prone to become the bottleneck. 

We modify this idea from emphasizing node centrality to em-

hasizing link criticality, which means that the degree of criticality

n a link is expected to carry the traffic between all of the possi-

le pairs of nodes. We find the first k shortest paths as a means

o measure every link’s corresponding criticality, instead of find-

ng all the possible routes between a pair of nodes. Finding all of
he possible routes is not feasible, as the number of paths grows

apidly with the number of network nodes and links. We therefore

ssume that the first k shortest paths of a certain pair of nodes is

ualified to represent the possibility of each link’s criticality. This

ssumption is warranted because routes with shorter path lengths

ypically tend to utilize less network resources. As a result, we sup-

ose that the optimal route with the minimum weight is one of

he first k shortest candidate routes. 

At the beginning of our research, we can only infer the link crit-

cality by assuming that all pairs of nodes have an equal possibil-

ty for communication. That is, every host pair in the network can

otentially establish a connection, and the measure of link critical-

ty is mainly derived from the network topology. We also assume

hat we will re-compute and update every link criticality value in

he time interval P . As the SDN controller has a global view of

he network, it is easy for the controller to keep a network TM

t any time. The statistical TM is used to predict the future traffic

emands based on the observed communication pairs of nodes at

he time interval P . Therefore, the SDN controller regards the esti-

ated communicating pairs as the TM, rather than all of the pairs

f nodes in the network. 

The authors in [23–25] mention that they observe the related

roperty of traffic predictability. That is, they assume that the traf-

c distribution observed in the recent past will hold in the future.

n other words, packets exhibit a strong temporal and spatial lo-

ality phenomenon, rather than a purely random arrival pattern,

r some other commonly used arrival pattern such as the Poisson

istribution. Thus, we compute the first k shortest paths for every

ew pair in the TM at every time interval P to form the new link

riticality value for every link. This link criticality parameter can

elp to defer loading on highly critical links, and it can prevent

ritical network resources from being quickly exhausted. In other

ords, the algorithm tends to choose the links that can balance

he loads across the network. 

Let K sd denote a set of the first k shortest routes between a pair

f source and destination nodes ( s, d ), and let K sd ( e ) be the num-

er of times that the first k shortest routes include the link e ε E .

n that case, K sd ( e )/ k is considered as the occurrence rate of link

 in the first k shortest paths of the pair ( s, d ). Thus, we compute

he first k shortest paths between every possible pair of nodes in

he TM to determine the criticality of each network link. We ex-

ress the total expected load on link e as the sum of the expected

umber of demands on the link e from all possible ( s, d ) pairs of

odes in the TM. We define the equation of link criticality c ( e ) as

q. (1) . We can use the algorithm in [26] to compute the first k

hortest paths. The intent behind this link criticality parameter is

o characterize how likely it is that a particular link e can become

he bottleneck link that has a high potential to be the path for any

air of communication nodes in the network. 

 ( e ) = 

∑ 

∀ ( s, d ) ∈ TM 

K sd ( e ) /k (1) 

Fig. 3.1 gives an example of the measurement of each link crit-

cality in a small network. We illustrate c ( e ) with k = 2 in this ex-

mple. Assume that the TM includes three pairs of nodes ( a, f ), ( d,

 ) and ( a, e ). Then, K af , K df and K ae are { a - d - c - f, a - d - e - f }, { d - c - f, d - e -
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Table 1 

Measurement of link criticality. 

Link c(e) Link c(e) 

a-b 0 d-c 1.5 

b-c 0 d-e 1.5 

c-f 1 e-c 0.5 

a-d 2 e-f 1 

b-d 0 
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n  
f } and { a - d - e, a - d - c - e }, respectively. Note that if there is more than

one set of the first k shortest paths between two nodes, we ran-

domly select one of them as the first k shortest paths. For exam-

ple, in Fig. 3.1 , there are three sets of the first two shortest paths

between nodes a and e , which are { a - d - e, a - b - c - e }, { a - d - e, a - b - d -

e } and { a - d - e, a - d - c - e }. We randomly select { a - d - e, a - d - c - e } as the

K ae . Thus, the link criticality value of a - d is 4/2 , because K af and

K ae pass through the link a - d twice. The link criticality value of d - c

is 3/2, because K af , K df and K ae each pass through the link d - c once.

Table 1 shows the link criticality c ( e ) of each edge e that is derived

from the TM. 

The link criticality value c ( e ) is used to predict the traffic load

of a link e in the next time interval P . As the current loading

of each link e is also an important factor for the routing perfor-

mance, we also consider the current loading status of each link

e ε E . Let f ( e ) denote the total amount of traffic flows carried by

the link e. Let b ( e ) denote the remaining bandwidth of the link e .

Thus, s ( e ) = f ( e )/ b ( e ) is denoted as the congestion index of the link

e. The definition of the link congestion index s ( e ) is an increasing

and convex function. A convex function is a continuous function

whose value at the midpoint of every interval in its domain never

exceeds the arithmetic mean of its values at the end of the in-

terval. Some related works [27,28] discuss the benefit of adopting

increasing and convex functions to set the link weight. The func-

tion s ( e ) increases quickly when the amount of traffic flow passing

through the link e approaches its capacity . That is, heavily loaded

links incur a heavy penalty, as computed by s ( e ). Therefore, the

principal intuition behind s ( e ) is to use the link with the lightest

utilization. As s ( e ) increases rapidly when link utilization grows be-

yond a certain threshold, we can capture the severity of congestion

based on the immediate link utilization information. 

In this situation, we use the link criticality value c ( e ) and the

link congestion index s ( e ) to designate the weight of link e , which

is denoted as w ( e ). The link weight w ( e ) is presented in formula ( 2 )

which encourages the use of links with less criticality and of links

with more available bandwidth. The link weight function tends to

refer to the link criticality c ( e ) when the network load is light, and

it tends to refer to the link congestion index s ( e ) when the net-

work load is heavy, because s ( e ) tends to rise sharply along with

the level of link utilization. In addition, when the network resource

utility becomes saturated, it is reasonable to determine the link

weight by the link congestion index rather than by the expected

traffic load. After evaluating the link weight w ( e ), our algorithm

deletes the links that are not capable of providing the requested

bandwidth resource B sd . Finally, the weight of a path is the sum of

the weight on every link of the path. 

w (e ) = c ( e ) α + s ( e ) (1 − α) , 0 < α < 1 (2)

As we mention above, a path with a higher hop count has more

segment lists in the packet header. In addition, the longer the path

is, the more expensive it is in terms of the total amount of net-

work resources that are consumed. Thus, our problem lies in se-

lecting the minimum weight path from a given source s to a des-

tination d , for which the path length is no longer than a prede-

termined threshold MAX sd . The optimal path selection under such

constraints, and especially under additive constraints, is an NP-
omplete problem. However, the problem can be solved in polyno-

ial time if the constraint parameter is restricted and fixed [29] . In

ur problem, for example, the constraint is the hop count. That is,

e can solve the problem in polynomial time. We rely on Bellman–

ord algorithm [30] to solve the MAX sd , which is hop-constrained

or the minimum weight path problem. 

Bellman–Ford algorithm is based on the principle of relax-

tion, in which the correct distance is gradually replaced by new

maller values until it eventually reaches the optimum solution.

he longest possible path that is reachable from the source with-

ut a cycle has | V | −1 edges in the graph. The Bellman–Ford al-

orithm proceeds by relaxing all of the edges, and the procedure

eeds to be repeated | V | −1 times. We can determine that the

ellman–Ford algorithm proceeds by increasing the number of hop

ounts. That is, at each iteration, the algorithm compares the path

rom the source to a vertex of path length x + 1 and the path of

ength x from the previous iteration. This process gradually gen-

rates the shortest paths from a single source node to all of the

ther nodes for each hop count at each relaxation round. As a re-

ult, Bellman–Ford algorithm only needs to iterate MAX sd times at

ost to do the relaxation procedure and to identify the minimum

eight path between a given source and a destination under the

AX sd hop count constraint. 

We illustrate the procedure of Bellman–Ford algorithm with a

op count constraint in Fig. 3.2 . To illustrate the algorithm pro-

edure, we represent the example with a directed graph. Note

hat an undirected graph also satisfies the concept of the directed

raph, because each undirected edge of a graph can be regarded as

wo oppositely directed edges. The value on each edge is the link

eight w ( e ). For each vertex v ε V , the p ( v ) is used to indicate the

rocess of tracing back the desired path. The d ( v ) on each vertex

enotes the minimum weight of the path from the source vertex to

 . In this example, we assume that the source vertex is a , and the

estination vertex is e . The minimum hop count from a to e is 2,

hich is expressed by H ae = 2, and we assume that the extra-hop

ount E ae = 2. That is, MAX ae = 4 in this example. As a result, we

eed to do the relaxation procedure four times to get the eligible

ath. The relaxation technique serves to check if we can improve

he value of the minimum weight path. After a relaxation step, we

ay update the estimated weight of the minimum weight path. 

Fig. 3.2 (a) shows the initial state of a graph G . Initially, all of

he d ( v ) are set as ∞ , except for the source vertex a , which is set as

ero. Fig. 3.2 (b) shows the result after the first relaxation step. d ( b )

s updated to 5, because we can find another less weighted path

o vertex b via vertex a with d ( a ) + w ( e ( a, b )) < d ( b ). The equation

 ( b , 1) = a means that the vertex b is relaxed from the vertex a

ith the first relaxation step. The result of the second relaxation is

hown in Fig. 3.2 (c). We can determine that the minimum weight

ath from a to e is { a - d - e }, with weight d ( e ) = 9. Similarly, the re-

ult of the third relaxation is shown in Fig. 3.2 (d). After conducting

he relaxation step four times, we can get the minimum weight

ath from a to e , as shown in Fig. 3.2 (e). In other words, d ( e ) is

he minimum weight from source a to destination e after using at

ost four hops. We can trace back the final path by using the p ( e )

rom the destination vertex e. p ( e , 4) = c means that the parent of

he vertex e is c in the fourth relaxation step. Thus, we can con-

inue the tracing work from vertex c with a decreasing hop count

y using p ( c , 3) = b in Fig. 3.2 (d). Similarly, we check p ( b , 2) = d

n Fig. 3.2 (c). This process is repeated until we trace back to the

ource vertex a by applying p ( d , 1) = a , as seen in Fig. 3.2 (b). Then

e can obtain the final path of { a - d - b - c - e } with weight 7 under

he MAX ae hop constraint. Without the hop count constraint, the

inimum weight path between source a and destination e is { a - d -

 - c - f - e } with weight 6.5, as is shown in Fig. 3.2 (f). 

In conclusion, our method computes the c ( e ) and s ( e ) to dy-

amically compose the link weight w ( e ), and the links that have
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Fig. 3.2. Example of the hop count constraint Bellman–Ford algorithm. 

a  

e  

h  

c  

n

3

 

r  

|  

p  

b  

t  

n  

t  

t

�  

T

Algorithm 1: Generate the weighted graph G 

1. Traffic matrices TM is updated after a time interval 

2. Find the first k shortest paths for ∀ ( s, d ) ε TM 

3. Compute the link criticality c ( e ) according to Eq. (1) 

4. For each edge e ε E 

5. Compute the link congestion index s ( e ) = f (e)/ b ( e ) 

6. Compute the link weight w ( e ) according to Eq. (2) 

7. Delete the edges that are less than B sd bandwidth requirement 

8. Return G 

4

 

r  

[  

e  

t  

e  

p  

a  

f  
 residual bandwidth smaller than the requested bandwidth are

liminated beforehand. Last, the Bellman–Ford algorithm with a

op count constraint is executed using the link weight w ( e ) as

omputed from ( 2 ), whenever a flow setup request arrives at the

etwork. 

.3. Time complexity 

The time complexity of finding the first k shortest paths algo-

ithm is O ( k (| V |log| V | + | E |)), where | V | is the vertices number, and

 E | is the edges number [26] . The first k shortest paths are com-

uted every time interval P . As P is a small time interval, the num-

er of communication pairs in the time interval is constant. So,

he total time complexity in computing the first k shortest paths of

odes in TM is O ( k (| V |log| V | + | E |)). The time complexity of counting

he link weight value is O ( E ) . The time complexity of finding an op-

imal path under the hop count constraint is O ( MAX sd E ). As MAX sd 

|V| , the total running time of our algorithm is O (| V |log| V | + | E |).

he proposed algorithm is summarized as follows. 
. Performance evaluation 

In this section, we compare the performance of our proposed

outing algorithm with the SPF [11] , WSP [12] , SWP [13] and MIRA

10] algorithms in terms of rejection rate, network throughput, av-

rage link utilization and average length of selected paths. In addi-

ion, we compare the performance variation with different param-

ters applied in our algorithm. We run our simulation using JAVA

rogramming language to model different network environments

nd different traffic flow distributions. The experiments with dif-

erent network size variations are also investigated in this paper.
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Fig. 4.1. Average rejection rate vs. number of requests. 

Algorithm 2: Find a minimum weight path for a weighted graph G = ( V, 

E) with MAX sd hops 

1. for each vertex v ε V do 

2. d ( v ) ← ∞ 

3. end for 

4. d ( s ) ← 0 for source vertex 

5. for i ← 1 to MAX sd do 

6. for each edge e ( u, v ) ε E with weight w ( e ( u, v )) do 

7. if d ( u ) + w ( e ( u, v )) < d ( v ) then 

8. d ( v ) ← d ( u ) + w ( e ( u, v )) 

9. p ( v, i ) ← u / ∗ the parent of vertex v is vertex u at i 

iteration relaxation ∗/ 

10. end if 

11. end for 

12. end for 

13. / ∗ Trace back the route R from destination vertex with p ( d, j ) ∗/ 

14. cur_vertex ← destination vertex d 

15. add cur_vertex to R 

16. for j ← MAX sd to 1 do 

17. if p ( cur_vertex, j ) exists then 

18. cur_vertex ← p ( cur_vertex, j ) 

19. add cur_vertex to R 

20. end if 

21. end for 

22. Return R and update the residual link bandwidth of the path R 
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The topologies of these synthetic networks are randomly created

by using the Waxman method [31] . The probability of having an

edge between node u and node v is given by the formula xe −d/ ( yL ) ,

where 0 < x, y ≤ 1 are the model parameters, d is the Euclidean

distance between u and v , and L is the maximum Euclidean dis-

tance between any two nodes of the graph. An increase of the

parameter x results in a graph with higher link density, and an

increase in y yields a larger ratio of long edges to short edges.

The generated Waxman topologies are 60 nodes with 201 links, 80

nodes with 314 links, 100 nodes with 413 links and 150 nodes with

668 links. In the simulations, each source host sends flow pack-

ets to the destination host, and the flow sizes range from 10 MB/s

to 100 MB/s. The default link capacity is 1 GB/s. The parameter α
is 0.5 and k is 5, where k stands for the first k shortest paths to

compute the link criticality. In addition, the time interval P is set

as the arriving of 100 requests, and the extra-hop E sd is set to 3 in

our following simulations. 
.1. Simulation results 

Fig. 4.1 shows the average rejection rates from using the SPF,

SP, SWP, MIRA and our proposed algorithm. The average rejec-

ion rate means the number of rejected requests as a function of

he total number of requests that have arrived at the network.

hen the network cannot provide a path with sufficient band-

idth, it rejects the request due to the QoS strategy. In this test,

he SPF algorithm performs the worst, as it rejects the highest

umber of requests, and this algorithm is the first to start reject-

ng requests. That is, the SPF always chooses the minimum hop

ount path, without considering the factor of network bandwidth.

he SPF definitely uses up resources of the same path rapidly, and

t contributes to unbalanced network resource use. The WSP per-

orms better than the SPF, because it is an improvement of the

PF. The WSP avoids congestion by taking the widest path when

ore than one shortest path exists. However, the capability for

oad balancing by the WSP is limited, because this algorithm is

till restricted to routes on the shortest paths. In addition, the WSP

erforms better than the SWP in an overall perspective, although

he SWP also avoids network congestion by always selecting the

idest path. The SWP performs better than the WSP only when

he network is under a light load. However, the SWP may choose a

onger path length, which contributes to an increase in extra net-

ork resource consumption. It is obvious that the rejection rate

f SWP rises rapidly and sharply after it starts rejecting requests,

specially in a more heavily loaded network. Neither the SWP nor

he WSP considers the link criticality concept, and these algorithms

ight decide to route on paths that are critical to various pairs of

odes, thus causing congestion in the future. The MIRA, however,

etermines its route with a goal of causing minimum interference

n the network, and it performs well. Undoubtedly, an algorithm

hat considers critical links has a better performance than the SPF,

WP or WSP. However, the MIRA only considers the critical links,

o it may result in choosing many non-critical links, which can in-

rease the path length and consume the network links resource.

ur proposed algorithm considers link criticality and link usable

andwidth at the same time. In addition, our algorithm avoids

aking a lengthy path, which is beneficial for saving network re-

ources. 
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Fig. 4.2. Average network throughput vs. number of requests. 
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Fig. 4.2 shows the average network throughput of the five algo-

ithms. The network throughput is the amount of satisfied band-

idth that is routed successfully as a function of the total amount

f requested bandwidth that arrives at the network. In general, the

verage network throughput increases when the requested band-

idth increases. We can observe that the trends of the average re-

ection rate and the average network throughput are similar. Our

ethod finds the highest network throughput, and this indicates

hat our algorithm performs better than all of the other bench-

ark algorithms. The SPF gets the lowest throughput overall, but

he SWP performs even worse than the SPF when the network load

ecomes heavy, because the SWP tends to exhaust the network’s

esources earlier. The WSP shows a higher throughput than either

he SPF or the SWP. The MIRA performs better than the WSP, but

he difference between their throughputs becomes similar when

he network load becomes heavy. 

Fig. 4.3 shows the average link utilization, which is the total

onsumption of bandwidth by each link over the total default ca-

acity of the network. In general, a higher rejection rate results in

ower link utilization, because most of the requests are not routed.

ccordingly, the SPF has the lowest average link utilization. The

SP’s link utilization is higher than that of the SPF, because the

hroughput of the WSP is higher than that of the SPF. The link uti-

ization from our method lies between that of the WSP and the

IRA. We get a higher link utilization than that of the WSP, be-

ause the network throughput of our method is better than WSP.

owever, the rates of SWP and MIRA link utilization are higher

han that of our proposed algorithm, even though our network

hroughput is the highest. The SWP demonstrates the highest aver-

ge link utilization through its attribute of routing on longer paths.

ence, the SWP utilizes much more network resources, despite its

igh rejection rate in a heavily loaded network. The MIRA also

hows a tendency to route on longer paths, due to its lack of con-

ideration for non-critical links. As a result, we can infer that the

verage load of a network strongly relates to the length of its traf-

c routes. 

Fig. 4.4 shows the average hop count of various algorithms. The

PF and WSP algorithms have the lowest hop counts, because they

se the shortest path strategy. It is understandable that the SWP

hows the highest hop count among all of the schemes, because it
nds a path with the maximum bandwidth bottleneck in the net-

ork. The SWP may need to make a detour to get to the widest

ath. In addition, the MIRA suffers from the similar problem of

onsuming more network resources by taking longer paths. We

an verify this tendency by observing the MIRA hop count perfor-

ance. The average hop count of our proposed method with extra-

op E sd = 3 lies in the middle of all the compared algorithms. 

In the previously presented simulations, we obtain the perfor-

ance of the average rejection rate, the average network through-

ut, the average link utilization and the average hop count of a

etwork with 60 nodes. In the following simulations, we evaluate

he average rejection rate and average network throughput for net-

orks of different sizes. Experiments on networks of differing sizes

emonstrate that our algorithm performs well without network

nvironment restriction. Simulations for various network sizes are

onducted by using network topologies, which are 80 nodes, 100

odes and 150 nodes. 

Figs. 4.5 and 4.6 show the comparison between various

chemes with incremental network sizes. For each network size,

e fix the factor of network loading as a standard. That is, we cap-

ure the data under the same accumulated requested bandwidth as

 function of the total network default capacity. We can infer from

he experimental results that the SPF performs the worst among all

f the schemes, in that it has the lowest throughput and the high-

st rejection rate under many tested topologies. The WSP and SWP

how similar behavior to that seen in Figs. 4.1 and 4.2 on different

etworks. In addition, the MIRA performs well on every topology,

ut the time complexity of the MIRA cannot be tolerated in on-

ine routing, especially in a large-sized network. In conclusion, our

roposed algorithm performs the best no matter what the size of

he network, and it has reasonable time complexity for dynamic

outing. 

Fig. 4.7 shows the performance of the average rejection rate

nder different extra-hop constraints. The hop count constraint is

sed to limit the path length and to save the link bandwidth re-

ource. The path with a minimum weight summation may take a

onger path length than the minimum hop count to reach the des-

ination. However, SR needs extra labels to define each hop, and

he larger packet header sizes consume larger amounts of band-

idth resources. As a result, we use MAX sd (which is E sd +H sd ) as
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Fig. 4.3. Average link utilization vs. number of requests. 
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Fig. 4.6. Average rejection rate under different network sizes. 
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a restriction, to avoid the requirement for numerous labels. We

can deduce that the larger the E sd is, the better performance we

can get, because we increase the chances of getting the smaller-

weighted routing path. However, the improved performance ra-

tio declines as the extra-hop E sd grows larger than two hops.

Fig. 4.8 shows the average hop count of the proposed algorithm

under different extra-hop constraints. The larger the E sd is, the

more the cost also tends to increase, as the path length may be

longer. That is, there is a tradeoff between the network perfor-

mance and the network overhead. The more hops we take, the bet-

ter performance we get, but we consume more network resources.

5. Conclusion 

In this paper, we introduce an efficient heuristic algorithm

for SR in software-defined networking. The goal is to build

a bandwidth-satisfying path between a pair of communication

nodes. In addition, the algorithm should minimize the possibility

of rejecting traffic demands to increase the total network through-

put. Our proposed algorithm takes the link criticality and link

residual bandwidth into consideration. Thus, we define a new link

weight-setting scheme to reduce network congestion. Moreover,

the proposed algorithm also considers the extra network overhead

caused by the segment labels in the packet headers. We limit the

path length as a constraint to save network resources. The simu-

lation results show that our method outperforms other routing al-

gorithms in terms of average rejection rate and average network

throughput under different network sizes. In addition, the time

complexity of our algorithm is reasonable for dynamic online rout-

ing. 
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