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ABSTRACT Mobile users’ service satisfaction plays a vital role in improving the revenue of telecom
companies. When user data demands are uniform, satisfying the user requests is much easier than when
demands are diverse. Yet, in a multicast scenario, each user may wish to view the same multicast data at
different bit rates based on their own device capacities or resolutions. In this paper, we consider device-to-
device (D2D) multicast users who may demand the multicast data at various rates, and in return, they offer
different profits (revenue) to the telecom operator. Moreover, users may have different channel qualities
from the base station, which will also affect the data rates. We show that satisfying the user requests to
maximize the profit becomes NP-hard when the resource blocks are limited, and propose a greedy heuristic
and two approximation algorithms to solve this problem. Besides, we consider an alternative objective of
maximizing the number of satisfied users and propose a greedy heuristic algorithm for this variant. Our
simulation results demonstrate that the proposed algorithms offer higher profit, throughput, and satisfy more
users than the other candidate algorithms.

INDEX TERMS Approximation algorithm, device-to-device multicast, profit, satisfied user, service
satisfaction.

I. INTRODUCTION
Recently, due to the unprecedented rise in mobile gen-
erated traffic, there has been a tremendous demand for
spectrum resources. The recent survey by Cisco has antic-
ipated that by 2021, with the introduction of the fifth-
generation (5G) mobile networks, there will be 24.5 million
mobile devices [1]. In addition, by the next decade, mobile
traffic will increase by 100 folds [2]. The recent progress
in the device-to-device (D2D) communications has brought
some hope to meet this enormous spectrum demand [3].
In a D2D scenario, users reuse the cellular user’s (CU’s)
spectrum for data transmission and thus conserve the resource
blocks (RBs) [4]. Here, the resource block (RB) corresponds
to the time and frequency component of an orthogonal fre-
quency division multiple access (OFDMA) subframe. As two
nearby devices can communicate directly, the burden on the
base station (e-NB) can be greatly reduced. However, in
practice, there is interference challenge between the e-NB,
the CUs, andD2D transmitter-receiver pair [4]. In an underlay
based traditional D2D communication, the e-NB serves the
CUs in the downlink by allocating RBs. The CUs utilize
the uplink frequencies for their data uplink while the D2D

user (DUs) reuse the same uplink frequencies to communi-
cate with other DUs. In such a scenario, interference between
the users will be the main issue to be addressed. The interfer-
ence in the said underlay model can be mitigated by suitable
power regulation, spectrum and efficient radio resource man-
agement schemes [5]–[7].

Nowadays, multimedia broadcast multicast service
(e-MBMS) based video service has attained much more
attention, as it can efficiently support many users located
in a small geographical region at a high data rate [8], [9].
As an example, the e-MBMS in conjunction with D2D
will be implemented in 2020 Olympics, to provide live
video broadcast to thousands of viewers in the stadium [10].
In this scenario, we can imagine that there will be a need for
transmission and resource allocation by considering user’s
video quality demand. Few subscribers with lower tariff plans
and value added services might request the data at lower
rates based on their device capacity or resolution. On the
other hand, users with better tariff plans may demand the
data at a higher rate. In this situation, satisfying a user
request also depends on their channel quality (CQI) and
RB requirements. Therefore, the operator needs to make a
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wise decision in choosing the correct set of users to serve to
maximize the profit. Our present work is mainly motivated
by this requirement.

When users have different CQIs, one may consider
throughput maximization by serving all the users simply at a
single robust CQI [11]. Alternatively, one may serve the users
with different CQIs by forming groups based on the best CQI
at a time [12]. However, these traditional methods suffer from
poor quality of service (QoS) or lower service fairness issues.
Militano et al. [15] discussed the throughput maximization
problem, where users have varying CQI in a two-hop single
frequency D2D networks by efficiently enabling all the relay
nodes that maximize the throughput. They investigated down-
link (DL) and uplink (UL) resource allocation by assuming
the time division duplex (TDD) model, and distributed all the
RBs to the eligible users by a single frequency. Therefore, all
the users who reuse the same RBs will be compelled to use
the same CQI. However, as per this method, an immediate
requirement for the second hopD2Dusers is to have a channel
quality at least same as the first hop CUs that serve them,
which may not be possible in a random scenario.

In this paper, we consider a multicast scenario in a TDD
based two-hop D2D network, where each user possesses
distinct CQI and data request rates, while in return each
user may offer different profits to the operator. We divide
the transmission into downlink (DL) and uplink (UL) slots,
where CUs are served in the DL slots, and the underlaid
DUs are served in the UL slots by reusing the RBs. Our
two primary objectives are (i) to maximize the profit of the
telecom operator and (ii) to maximize the number of satisfied
users when RBs are limited. However, these two objectives
are related as latter is a special case of the former. The first
objective targets at maximizing the overall revenue of the
operator by satisfying the users that offer the best profit.
On the other hand, the second objective has the intuition that
by satisfying more number of users, the operator may find it
easy to attract new customers to join the network.

The main contributions of this work are as follows.
i. We are the first to consider profit maximization prob-

lem in the D2D model and we show that the problem is
NP-hard as given in subsection III. B.

ii. We propose a greedy heuristic and two approximation
algorithms to address the objective of maximizing the
operator’s profit. In the greedy heuristic, we prioritize
the users based on individual user’s profit to RB ratio.
In the other two approximation algorithms, we assign
the RBs by considering all possible CQI combinations
to the users in the DL and UL slots. These two algo-
rithms promise an approximation ratio of 2 and 2g
respectively, where g represents the number of CQI
groups we use.

iii. We propose a greedy heuristic to address the sec-
ond objective of maximizing the number of satisfied
users.

iv. Finally, we perform simulation whose results show that
the performance of all our proposed algorithms is better

than the baseline algorithms when we consider profit,
data rate, fairness index and satisfied user count.

We organize rest of this paper in the following way.
In Section II, we review some of the most relevant research
works that have drawn our attention. In Section III, we
describe our system model, which is followed by our algo-
rithms in Section IV. Section V narrates our simulation
results, and finally, in Section VI we conclude the paper.

II. RELATED WORK
In the past few years, several researchers have studied
resource allocation schemes for throughput maximization in
the context of multicast scenario [11]–[26]. One category of
literature addresses the objective of improving the overall
system throughput by jointly optimizing power and resource
allocation with the aid of game theory [13] [18]–[23].
The other category aims at efficient resource allocation
schemes to maximize the throughput based on transmission
rate [11], [12], [24], [25].

For the first category, Lin et al. [13] have given an analyti-
cal model for D2Dmulticast to measure the network through-
put based on node mobility and network assistance features.
These articles have not considered the channel quality of each
of the links for multicast. A few other works have shed light
on the same objective of throughput improvement by a game
theoretical approach to address interference mitigation with
the help of suitable power regulatory mechanisms [18], [19].
In [18], the D2D users form clusters and data is multicast into
the cluster. In this case, any lost packets will be replaced by
the users within the cluster, not by e-NB. To distribute the
resources efficiently, the authors have tried joint power man-
agement and resource distribution using game theory [19].
The different gamemodels like cooperative, non-cooperative,
and auction-based games have been suggested for resource
management. A Stackelberg based game has been pro-
posed for resource allocation between e-NB, D2D, and
CUs [20]–[23]. In these works, the authors have modelled the
scenario as a buyer-seller pair to solve the problem of inter-
ference and throughput maximization by resource allocation
for the D2D underlay networks. In these models, e-NB offers
some incentives to attract users. The authors demonstrated
that the resultant utility like throughput, power, and inter-
ference achieves a stable state of equilibrium. Another main
point to observe in these kinds of literature is all of them use
D2D as a transceiver pair for the CUs to serve as an underlay,
which is unlike our model.

For the second category, it can be further classified into
single-rate and multi-rate schemes. For single-rate schemes
which serve all the users at a single CQI, Afolabi et al. [11]
discussed a simple fairness based multicast scheme for
OFDMA multicast network. Here, e-NB considers the most
robust channel quality (CQI) to serve all the users at once.
Although, this method promises fairness, it will not be effi-
cient in quality of service (QoS) when the majority of the
users have high CQIs while only a few users have low
CQIs. Low et al. [12] considered another extreme, where
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their method serves the users with the best channel qual-
ity at every serving time interval. As a result, this scheme
renders best user group to maximize user throughput at
every time instant; nevertheless, one cannot expect fairness.
Zhang et al. [24] considered only those users with SNR above
a preset threshold to serve. Alexious et al. [25] suggested
three methods to improve the spectral efficiency. All these
methods, target to select the best modulation and coding
scheme (MCS) that enables to reach a predefined spectral
efficiency.

For multi-rate schemes, they divide the network into dif-
ferent groups and use different network coding to serve the
users. As a result, these schemes may exploit the diversity
of users’ channel qualities to serve users at different rates
simultaneously. Militano et al. [26] proposed a subgroup
based service method by considering the CQI of the users and
the number of users that come under the same CQI group. The
method of group formation considers throughput and user
fairness [27]. There are similar schemes in [28] and [29],
where the authors proposed an algorithm FAST, which is
a subgroup-based scheme for OFDMA network. In this
method, the throughput will be the product of the number of
users and the maximum CQI used for the group. It promises
the best performance at reduced computational complexity.
Chen et al. [30] proposed a group based utility improvement
scheme for e-MBMS based multicast service using dynamic
programming. They analyzed the utility and achieved a trade-
off between the unicast and multicast users group size and
throughput.

All the above works consider networks without relays.
In contrast, some authors have considered the relay-based
methods for OFDMA [16], [32], [33] and D2D [15], [31].
Zhang et al. [31] proposed a relay based D2D communica-
tion, where particular power controlled D2D users act as a
relay to forward data to their counterpart DUs and optimize
the achievable data rate of D2D users. This proposal out-
performs the direct cellular mode in data rate maximization
for D2D communications. Militano et al. [15] used single
frequency based D2D with TDD based multicast. Initially,
they enforce the channel quality of the uplink to be at least
equal to the channel quality of the downlink. Then, users with
the CQI that could maximize the throughput are served by
allocating all the RBs in DL and reusing them to relay in UL.
As a foundation for all these works, a relay based scheme in
OFDMA network has been proposed in [32] and [33]. It is
an approximation algorithm for frequency division duplex
(FDD) and Time Division Duplex (TDD) based multicast in
OFDMA relay networks. It models the problem as d-MCKP
by choosing a resource from e-NB to relay node and from
relay nodes to users.

III. SYSTEM MODEL
LetN be the number of users located in a geographical region
who demand the multicast content from the base station
(e-NB) at different data rates. The N users consist of CUs
and DUs. Let NC be the number of CUs, and ND be the

FIGURE 1. Network scenario of CUs and DUs.

number of DUs. We use CUn (1 ≤ n ≤ NC ) and DUm(1 ≤
m ≤ ND) to label the CUs and the DUs. The topology of the
connections form a two-hop tree, rooted at e-NB. See Fig.
1 for an example. We have assumed a pre-assigned network
topology, where user’s role as CU or DU is pre-determined.
It even includes parent-child relationship and their CQIs.
In addition, for scheduling, we consider the standard CQI
feedback method, where each user reports CQI to e-NB over
dedicated control channels. The e-NB adjusts the modulation
schemes based on the received CQI feedback [34].

Let dRi and Pi be the data request rate (bits/sec) and profit
($) that user i(1 ≤ i ≤ N ) offers to the operator, respectively.
Besides, different users may have their own CQIs due to
their varying distances from e-NB, and we use Ci to denote
the CQI of user i. Let T be the number of available RBs
at e-NB.

In our model, downlink (DL) time slots and uplink (UL)
time slots are interleaving, where e-NB directly serves the
CUs in the DL time slots, and the children DUs (underlay)
reuse the RBs from their respective parent CUs in the suc-
cessive UL time slots. To avoid the interference between the
users of the same channel, we compel all DUs (across the
whole network) at a particular UL time slot to reuse the same
RBs and to adhere to the same CQI (as suggested in [35]).
Furthermore, when we relay the data from DL to UL in the
consecutive slot, the CQI value of UL cannot be greater than
the CQI value of the DL, because we cannot transmit excess
data in the UL session than what we have received in the DL
session. When a CU gets multiple RBs in a DL session, all
the received RBs have to be reused to the child DU in the next
UL session. Multiple transmission sessions may be needed to
satisfy a user’s data request completely [37].

When a particular transmission session is done via a certain
CQI c, all users with CQI smaller than c cannot receive
any data in that session; in contrast, all users with CQI at
least c receive all the RBs sent in that session. Also, the
transmission rates with different CQIs could be different;
a standard assumption is that the rate is proportional to the
CQI value [15]. Since the rates will not play any role in our
discussion (except to determine the total data a user receives),
we will not define the corresponding variables explicitly for
simplicity.
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A. MAXIMIZING THE SATISFIED PROFIT AND
MAXIMIZING THE SATISFIED USERS
Our first objective is to maximize the satisfied profit where
satisfied profit refers to the revenue offered by a user when
its data request has fulfilled. As the profit offered by the
individual users may differ, the primary goal will be to pick
out the users that can maximize the total collected profit
without exceeding the available RBs.

Our second objective is to maximize the number (count)
of the satisfied users, where a user is satisfied if and only if
its data request has met. Note: this is a special case of the
previous problem when the profits of all users are the same.

We represent our objectives formally by an integer pro-
gram. We shall define some extra variables:

d ti : Data received by user i in the t th DL-UL slot
Rt : Number of resource blocks used in the t th

DL-UL slot.
C t
DL : CQI used by downlink in the t th DL-UL slot

C t
UL : CQI used by uplink in the t th DL-UL slot

Additionally, two 0-1 indicators:
zi: 1 if data request of user i is satisfied
yti : 1 if user i receives data during the t th DL-UL slot

The integer program is as follows:
In the following, the equations (1) and (2) represents the

objective functions of maximizing the satisfied profit and
maximizing the number of satisfied user count respectively.

max
∑N

i=1
ziPi (1)

max
∑N

i=1
zi (2)

Subject to:
∑

t
d ti ≥ zidRi (3)

d ti = ytiC
t
DLR

t if user i is a CU (4)

d ti = ytiC
t
ULR

t if user i is a DU (5)∑
t
Rt ≤ T (6)

Ci ≥ ytiC
t
DL if user i is a CU (7)

Ci ≥ ytiC
t
UL if user i is a DU (8)

C t
DL ≥ C

t
UL (9)

Both the objectives are subject to the constraints as given
in (3)- (9). Equation (3) constraints that a user is satisfied if
and only if the data received is at least the data requested.
Equations (4) and (5) compute the data received by user i
at a certain slot, under the standard assumption that trans-
mission rates are proportional to the CQI value used in the
transmission. These equations can be replacedwhenwe apply
a different model of transmission. Equation (6) constraints
that the total number of resource blocks cannot exceed T .
Equations (7) and (8) constrain that a user receives data at
a certain time-slot if and only if its CQI value is at least the
CQI used in the transmission. Finally, (9) requires that CQI
in a certain UL slot cannot exceed the DL slot immediately
preceding it.

B. MAXIMIZING THE SATISFIED PROFIT:
NP-HARDNESS PROOF
We now prove that our problem ofmaximizing satisfied profit
in NP-hard; hence, justifying the need to consider approxima-
tion algorithms.

Our proof is by a polynomial-time reduction from the
well-known NP-hard Subset Sum problem.

To prove our problem is NP-hard, our proof process
follows two standard steps:

1. First, given an instance of the Subset Sum problem, we
show that we can reduce the instance to an instance of our
problem.

2. Second, show this reduction takes polynomial time.
As a result, for the outcome of our problem, we can correctly
determine the answer to the original Subset Sum problem.

In definition 1, we have defined our multicast problem.
Definition 1: Given a two-hop TDD based D2D multi-

cast network, with users having unique CQIs, data request
rates, and profits, we aim to maximize the profit obtained
by the satisfied users assuming to have limited RBs. Fur-
ther, in this model, at the first time slot (DL) the e-NB
transmits to the CUs and in the subsequent time slot (UL)
CUs forward the data to the child DUs in the second hop.
If more than one CUwishes to forward the same data received
from the base station simultaneously to their corresponding
child, then all of them will be compelled to use the most
common CQI.

In definition 2, we describe the subset sum problem,
a well-known NP-hard problem that we use in our reduction.
Definition 2: The Subset sum is a decision problem: given

a set S of k positive integers, S = {s1, s2, . . . , sk}, and a target
value t . Determine a subset S

′

of S, such that its sum exactly
equals to t .

FIGURE 2. The instance transformed from the Subset Sum problem.

In particular, the network topology, after the transforma-
tion, will be a tree with each CU having a single child DU as
shown in Fig. 2.

There are k CUs connected from the base station with CQI
value of CU i equal to:

ri = 1 if i = 1

ri = (1+
∑

j=1 to i−1
sj)ri−1 if i 6= 1
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The data request and the profit of every CU are both zero. Let
DU i denote the child ofCU i. The CQI of each child DU from
its respective parent CU is set to ri, while the data request and
profit of DU i are risi and si, respectively.

In general, any element si of set S represents the number
of RBs needed and profit offered by DU i when data is trans-
mitted at CQI ri.

The following is a key lemma about the property of the
transformed instance.
Lemma 1: Let D∗ denote a set of DUs that offers the

maximum satisfied profit with t resource blocks. Then, the
maximum satisfied profit is at least t if and only there exists
a transmission schedule that sends exactly si resource blocks
(using CQI ri) to each DU i in D∗ and

∑
DUi∈D∗ si = t .

Proof: (←) From the resource blocks sent, all the DUs in
D∗ will be satisfied, so that total profit is at least that amount
offered by these DUs, which is

∑
DUi∈D∗ si = t . Thus, the

‘‘if’’ part follows.
(→) Consider a transmission schedule that satisfies all

DUs in D∗. Let Ri denote the number of resource blocks sent
to a satisfied DU i in D∗. If Ri ≥ si, one can retain exactly si
resource blocks to send toDU i, and upgrade the remaining to
use any higher CQI values so that all the satisfied users in D∗

are still satisfied. On the other hand, we claim that if Ri < si,
then one must be using at least

Y = s1 + s2 + . . .+ si − Ri

resource blocks with lower CQIs than ri. In such a case,
simply retain exactly s1 + s2 + . . . + si−1 resource blocks
with sj of them using rj, j < i (thus satisfying allDU1 through
DU i−1), and convert the remaining resource blocks with CQI
ri (thus keeping all those already satisfied users still satisfied,
and arriving the first case of Ri ≥ si).

To see why the claim is true, suppose to the contrary, send
less than Y blocks with CQIs lower than ri. Then, the data
received by DU i is less than

Yri−1 + Riri
≤ (si − Ri) (s1 + s2 + . . .+ si−1 + 1) ri−1 + Riri
= (si − Ri) ri + Riri = siRi,

which is impossible. Thus, the claim follows.
From the above discussion, an optimal schedule can be

converted into one that sends exactly si resource blocks
(using CQI ri) to each DU i in D∗. These resource blocks
are sufficient to satisfy all DUs in D∗, so that no fur-
ther resource blocks will be needed. Consequently, we have∑

DUi∈D∗ si ≥ t (since the total profit is at least t) and∑
DUi∈D∗ si ≤ t (since the total transmitted resource blocks is

at most t). This implies
∑

DUi∈D∗ si = t , and thus the ‘‘only
if’’ part follows as required.

With the help of Lemma 1, the direct connection between
the original instance of Subset Sum, and the transformed
instance of our problem will be established by the following
lemma.

Lemma 2: Suppose that the number of resource blocks in
the transformed instance is t . Then, the maximum satisfied
profit is t if and only if the original instance of Subset Sum
contains a subset whose sum is exactly t .

Proof: It is easy to check that the following two
statements are equivalent:

1. There exists a transmission schedule that sends exactly
si resource blocks (using CQI ri) to each DU i in D∗ and∑

DUi∈D∗ si = t .
2. The original instance of Subset Sum contains a subset

whose sum is exactly t .
So, Lemma 2 follows based on the above and Lemma 1.

Hence proved.
For instance, let us consider an example of a subset sum

problem with input multi-set S = {2, 3, 5, 6, 12, 18, . . .} and
target is t = 120. Using the above transformation, one can
construct a network topology as in Fig. 2, and determine the
CQI, data rate, and profit values of each user. For instance,
the CQI of CU1 to CU3 (and from these CUs to their corre-
sponding child DUs DU1 to DU3) are 1, 3, 18, respectively.
The data rates and profits of DU1 to DU3 be (2, 2), (9, 3),
(90, 5), respectively.

Finally, the following shows that the given transformation
takes polynomial time. Note that the transformation generates
exponentially large numbers (such as ri and risi), so one must
be careful while arguing that the transformation indeed takes
polynomial time. First, let I denote the original instance of
Subset Sum problem, and I ′ denote the transformed instance
of our problem. Furthermore, let ||I || and ||I ′|| be the number
of bits to encode I and I ′, respectively. Thus, we have ||I ||
is at least �(k + log t + logmax{si}) bits. Following steps
show the generation of I ′ in time polynomial to ||I ||. Recall
that I ′ contains a two-hop tree, with size linear to k , so
that the topology can be constructed in O(k) time. Next, it
has a CQI value, a data request value, and a profit value
associated with an edge or a node. The largest of these values
is bounded by O(kmax{si})O(k) whose encoding thus takes
logO(kmax{si})O(k)

= O (k) × O(log k + logmax{si}) bits,
which is polynomial in ||I ||. Moreover, each value can be gen-
erated in time polynomial to its encoding length. In summary,
the transformation takes polynomial time. This completes the
proof.
The above discussion leads directly to the following

theorem.
Theorem 1: Maximizing the satisfied profit in a D2D net-

work with finite resource blocks is NP-hard.

IV. ALGORITHMS
This section is devoted to our proposed algorithms.
We first describe a greedy algorithm and two approx-
imation algorithms to maximize the satisfied profit,
in Sections IV. A, IV. B and IV. C, respectively. A brief
description of these algorithms is as follows.

The greedy algorithm chooses the users based on their ratio
of offered profit to the required number of RBs. Due to the
limited availability of RBs, not all users might be served.
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Themain intuition here is to serve the user with the maximum
average profit to get satisfied at the earliest to grab its profit.
It mainly has 3 phases. In the admission phase, we assign RBs
to a user if its RB requirement can be met. In the reclaiming
phase, excess RBs with a CU will be taken back and in the
unifying step, all DUs will try to use a common CQI while
retaining already satisfied users unaltered.

In the first approximation algorithm, given a range of
CQIs and a set of RBs, we enumerate all possible com-
binations of CQI on the set of RBs to multicast the data
in the DL and UL slots. Following this, we determine the
profit obtained for each CQI combination. Later, the CQI
combination that offers the maximum profit either in DL or
UL will be our solution. The main reason behind this method
is that at least we can obtain half of the total profit of an
optimal solution, where the optimal solution is the result
achieved by satisfying users in the DL and UL considered
together.

In the second approximation algorithm, given a set of RBs,
and a range of CQIs, we divide the entire range of CQIs into
multiple smaller groups based on the desired approximation
ratio. Then, we enumerate all possible CQI combinations
from each of these groups on the set of RBs to multicast in
DL and UL to determine the profit of each group. Finally, the
combination of CQIs from the group that offers the maximum
profit will be chosen as our solution.

Then, to address the objective of maximizing the number
of satisfied users, we propose a greedy algorithm in IV. D
to select the users who can maximize satisfied user count.
In our multicast model, when a user is served, its peer may
also receive the data and get satisfied at the same time. Our
algorithm targets at finding such users that have the potential
to increase the satisfied users count. The algorithm arranges
the users based on the ratio of the number of satisfiable users
to the required number of RBs and serves those with higher
ratios first. Thus, the user with the highest potential to satisfy
multiple users simultaneouslywill be served first tomaximize
the user count.

In our optimal multicast solution, we exhaustively try all
CQI combinations with our available RBs to the users in
DL and UL; and determine the profit obtained by all those
satisfied users by considering the DL and UL together.

A. MAXIMIZING THE SATISFIED PROFIT:
GREEDY HEURISTIC
As the total RBs are limited, it is intuitive to select a user
that has high potential to maximize the profit. Our greedy-
based heuristic in this subsection follows such an intuition.
The heuristic consists of two main steps:
Step 1:
i) Setting up the priority among the users. Here, we first

determine the minimum number of RBs needed by each user,
assuming that it does not receive any data shared by the other
users. This is computed by dividing its data request by its CQI
value as in (10), where Ri is the minimum number of RBs
needed by user i.

ii) Next, we determine the maximum profit per RB that
each user can offer, which is computed by dividing its profit
by the minimum number of RBs that it needs. Such a value is
called the weight of the user. Finally, we arrange all users in
descending order of their weights, which sets up the priority
among all users. (In our algorithm, when two users have the
same weight, we break ties by first selecting one whose CQI
value is lower (in case of CU) or whose parent CQI value
(in case of DU) is lower. If the CQI values are still the same,
we break ties randomly.)

Ri = ddRi/Cie (10)

Step 2:
Assigning RB to satisfy users, iteratively, based on the

priority in Step 1. Here, we consider the users one by one,
starting from the one with the highest priority, and do the
following:

1) Use an admission procedure to decide if we want to
satisfy this user. The invariant is that when we decide
to satisfy a user, this user will be assigned enough RBs
to satisfy its data request, while all the already satisfied
users remain satisfied.

2) If the user is a CU, we assign sufficient RBs to the
user to satisfy its data request, using its CQI for trans-
mission. After this, we perform a reclaim procedure,
which examines if any RBs that are already assigned to
the other CUs can be returned to the system, without
changing the satisfiability status.

3) If the user is a DU, we consider all the satisfied siblings
(i.e., those DUs sharing the same parent as the user)
and get the minimum CQI value among the user and
the siblings (known by the CQI feedback). Then, we
compute the number of RBs needed to satisfy the user
and all the satisfied siblings, where the minimum CQI
is used for transmission among them. We call this a
unify procedure. After this, we will find out the extra
number of RBs that should be sent to the user’s parent,
assign these extra RBs to the parent, and perform a
reclaim procedure on the CUs as in Step 2.

Let us now present the details of three procedures used in
Step 2 as follows.

1) ADMISSION
1. If the user is a CU: We check if the remaining number

of RBs with e-NB is at least the minimum RB needed
by the user. If so, the user is admitted. Otherwise, the
user is skipped.

2. If the user is a DU: We compute the number of RBs
needed to serve the user, and all the satisfied siblings,
after the unify process (see below). Consequently, the
parent CU of the user may require extra RBs to serve
the user and the siblings, if the user is admitted. Next,
we check if the remaining number of RBs is more than
or equal to the number of extra RBs needed by the
parent CU. If so, the user is admitted. Otherwise, the
user is skipped.
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2) UNIFY
1. If the user does not have an already satisfied sibling:

We assign sufficient RBs to the user, using its CQI
value.

2. Else, all transmissions from the parent to the user, and
the satisfied siblings are assumed to use a common
CQI, which is set to the minimum CQI among the user
and these siblings. We re-compute the number of RBs
needed to satisfy the user and these siblings, and assign
sufficient RBs (in total) to the parent to allow this to
happen.

3) RECLAIM
When a CU, say CU iCUi, is assigned with additional RBs,
all the other CUs with equal or higher CQI values can receive
the same data sent to CU i. Consequently, the number of RBs
needed by the other CUs to fulfill their data requests (or their
children’s data requests) may be reduced.

For example, when we transmit the data to the priority CU
(say user A) by a specific CQI in the DL slot, the other CU
in the DL (say user B) with a higher channel quality than the
priority user may also receive as the transmission is multicast.
Now, suppose user B had already received data due to some
other DL transmission previously, then the data received in
the current DL will be an excess. In such a case, this user B
may replace its RBs of higher CQI received in the previous
DL slot by the RBs of lower CQI received in the current DL
slot. In this way, both the users (A and B) can share the same
RBs, and the RBs of higher CQI will be given back to the
system.

To perform the procedure, we shall examine each of these
CUs in turn, and take back as many RBs as possible such that
all the satisfied users remain satisfied. This step is performed
by brute force checking and can be sped up slightly when we
use binary search to find out the maximum RBs to be taken
when we examine a particular CU.

FIGURE 3. An example of a D2D multicast scenario.

Let us consider the example in Fig. 3 to get a better
understanding of our heuristic. The CQI value of each link
is shown beside the link; while the profit and data request of
each user is shown in the lower part of the Fig. 3 as a table.
We assume that T = 10 (the total available RBs) and CQI
with value x offers 10x bits/RB.

TABLE 1. Priority computation steps.

In Step 1, we compute the minimum number of RBs
required by each user (assuming no data is received from
other users), then obtain the weights (= profit/minimum RB)
of all users to assign priority to them. The resulting priority
is given in Table 1.

In Step 2, we examine the users one by one and perform
resource allocation. Recall that in our algorithm, we assume
all RBs sent to a CU will be done via its CQI; while all these
RBs will be reused by its children via a common CQI, (which
is the minimum CQI among all its satisfied children).

A triplet (#RB, CQIown, CQIchild) can summarize the
resource allocation, specifying the number of RBs sent to
each CU, its own CQI, and the common CQI that it relays
the message to its children, respectively.
First allocation step (an example of admitting a CU):

We first choose the first priority user CU3 who needs 4RBs.
From the admission rule, the RB requirement of CU3 is
smaller than total remaining RBs (i.e., T = 10). So, e-NBwill
admit and serve CU3 by assigning 4 RBs of CQI 11 to satisfy
it. At this moment, there are no satisfied children, so we
denote such an allocation by writing (4, 11, 11) in allocation
step 1 forCU3 in Table 2. The total remaining RBs is updated
to 10 – 4 = 6.
Second allocation step (an example of admitting a DU):

Next, we choose the second priority user DU4 who needs
2RBs. Since it is a DU, we first simulate the unify procedure
to see if sufficient RBs are available to serve it. Here, DU4
does not have any satisfied siblings, we will assume its parent
CU communicates with it using its own CQI value. As its
parent (CU3) has received enough RBs where all can be
reused to serve it, no extra RBs are needed, so that DU4
is admitted, and after that, served. The CQI value of DU4
is 10, so in Table 2, we write (4, 11, 10) in allocation step 2
for its parent CU3 to indicate such an assignment. The total
remaining RBs is still 6.
Third allocation step (an example of reclaim after admit-

ting a CU): After that, we look at CU2 who is next in the
priority list. CU2 needs 4 RBs so that e-NB will admit CU2
since it has enough remaining RBs (6). Thus, it will assign
4 RBs at CQI 8 in DL slot to satisfy it. Note that CU3,
an already satisfied user, will also receive data from this
transmission, and the reclaim procedure is invoked, which
finds that 3 RBs that are sent to CU3 earlier can be taken
back, such that all the satisfied users are still satisfied.

26346 VOLUME 5, 2017



J. R. Bhat et al.: Resource Allocation Schemes for Revenue Maximization in Multicast D2D Networks

To indicate the above assignment, and the changes, we write
(4, 8, 8) in the entry for CU2, and (1, 11, 10) in the entry for
CU3, in allocation step 3 of Table 2. The total remaining RBs
is updated to 5.
Fourth allocation step (example of unify after admitting a

DU): Next, we examineDU5, and find that it can be admitted
following a simulation run of unify. As DU5 has an already
satisfied sibling (DU4), our algorithm requires that all of
them will receive RBs with a common CQI, which is equal to
min {9, 10} = 9. Then, by checking, we see that no RBs is
actually needed from its parent CU3, since they both receive
320 bits from CU2 by data sharing. Nevertheless, we would
still write (1, 11, 9) in the entry for CU3 in the allocation
step 4 of Table 2, to indicate that CU3 itself needs one RB
from e-NB, and the common CQI of its satisfied children
is 9. As no extra RBs are needed to send to CU3, the total
remaining RBs is still 5. (Note that in this step, if the CQI
of DU5 is smaller, say 3, then we will need extra RBs to
satisfy all satisfied children using the common CQI value 3;
consequently, extra RBs will be sent to the parent CU3, and
then the reclaim procedure will be invoked.)

TABLE 2. Resource allocation steps (first 4 steps).

The above allocation steps have demonstrated how all the
different procedures are performed. We will skip the remain-
ing allocation steps for brevity. Finally, the last column of
Table 2 (after all allocation steps are done) shows for each
CU the number of RBs sent from e-NB, the CQI used by
e-NB to the CU, and the common CQI used for it to send
to its children. All the information of the previous allocation
steps are discarded.

Finally, we sketch the time complexity of our heuristic
algorithm. Step 1 can be performed in O(N log N ) time
by computing the weights in O(N ) time and then perform
sorting. In Step 2, we consider the N users, one by one,
where for each user, it takes O(N 2) time to check (by brute
force) if it can be admitted. In case it is a CU, the reclaim
step takes O(TN 3) time by a brute force checking, but it
can be improved to O(N 3 log T ) time with binary search
[or even to O(N 2 log T ) time by using some standard data
structure techniques]. In case it is a DU, the unify step takes
O(N 2) time, which is possibly followed by a reclaim step for
its parent CU. In summary, Step 2 takes O(N 3 log T ) time
for each user. Thus, the time complexity of the heuristic is
O(N 4 log T ).

B. MAXIMIZING SATISFIED PROFIT:
APPROXIMATION ALGORITHM 1
This subsection describes our first approximation algorithm.
Before going into the details, we introduce the following
lemma.

Lemma 3: Consider the special case of our problem where
the multicast network does not have DUs. That is, the topol-
ogy of connections forms a one-hop tree, and the transmission
from e-NB to the CUs is essentially a broadcast. Then, when
e-NB transmits a sequence of RBs by different CQIs at dif-
ferent time instances, the total data received by a CU remains
the same irrespective of the order of the CQIs used.
Example: If e-NB transmits 3 RBs with CQIs [1, 2, 2],

respectively at different time instants, then for any CU, the
data received would be the same if e-NB transmits 3 RBs with
the CQIs in a different order, say [2, 1, 2] or [2, 2, 1].

Proof: When e-NB transmits (i.e., broadcasts) an RB
with a certain CQI c, the amount of data received by user
i depends only on c and Ci (all bits if c ≤ Ci, and 0 bits
otherwise), which is independent of the other RBs. Thus,
the ordering of the CQIs used does not affect the total data
received by any user. Hence proved.
Our first approximation algorithm proceeds as follows.
1) Compute a solution that maximizes the total satisfied

profit from the CUs. That is, we ignore all the DUs
(as if their offered profits are all 0s).

2) Compute a solution that maximizes the total satisfied
profit from the DUs. That is, we ignore all the CUs
(as if their offered profits are all 0s).

3) Compare the solutions in the above steps. Return the
one with a higher total satisfied profit.

Let C be the set of CQIs used by the users in the network
and C be the size of C. As there are T RBs, by Lemma 3, we
can compute the optimal solution of Step 1 by first enumerat-
ing all size-T combinations of (possibly repeating) elements
inC, and for each combination, finding out the satisfied users
and their total profit. The number of combinations is

L =
(
T + C − 1
C − 1

)
so that the total time required is O(CNL) = O

(
CNTC

)
.

For Step 2, since the CUs are ignored, the scenario is
equivalent to e-NB sending directly to some DU D in each
round (using its parent CU as a dummy relay and using D’s
CQI in both hops). Consequently, the network topology is
equivalent to a one-hop tree, with e-NB connecting directly
to all the DUs. So, we can compute the optimal solution
in this step using the same method as in Step 1, taking
O(CNTC ) time in total. Finally, in Step 3, the total profits
of both steps are compared in O(1) time, and the desired
output is reported. The total time of all steps is thus bounded
by O(CNTC ).
Next, we will give the approximation ratio analysis. Let

OPT1 and OPT2 be the optimal profits in Step 1 and Step 2,
respectively. Let OPT be the optimal profit in this problem.
Note that OPT is no larger than OPT1 if we only consider
profits generated by satisfied CUs, and similarly OPT is no
larger than OPT2 if we only consider profits generated by
satisfied DUs. This implies the following relation:

OPT ≤ OPT1 + OPT2 ≤ 2max (OPT1,OPT2) (11)
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Since Step 3 chooses a solution with total profit
max (OPT1,OPT2), performing transmission in the same
way as specified by Step 3 must guarantee a profit at least that
value (since we may get extra profits from the ignored users),
thus our algorithm achieves an approximation ratio of 2.

C. MAXIMIZING SATISFIED PROFIT:
APPROXIMATION ALGORITHM 2
Our second approximation algorithm is a simple adaptation
of our first approximation algorithm, where the target is to
provide a tradeoff between running time and approximation
ratio. The algorithm runs as follows:

1) Partition the set C of CQI (evenly) into g groups
C1,C2, . . . ,Cg, each of size at most C ′ = dC/ge.

2) For each group Ci of CQIs,
a) Assume that we can only use CQIs from Ci.
b) Run Approximation Algorithm 1.

3) Return the best profit among all g solutions obtained
in Step 2.

The above algorithm runs Approximation Algorithm 1 for
g times, each time taking O

(
C ′NTC

′
)
time. In total, the

running time is O
(
CNTC

′
)
time.

As for the approximation ratio, let OPTi,1 and OPTi,2
denote the optimal profit attained by satisfied CUs and by
satisfied DUs, respectively, when transmissions are restricted
to use only those CQIs from Ci. Also, we let OPT denote the
optimal profit of this problem. Then, we have:

OPT ≤
∑

i=1 to g

(OPTi,1 + OPTi,2)

≤ 2gmax
i

(
OPTi,1,OPTi,2

)
(12)

On the other hand, performing transmission in the way
specified by Step 3 guarantees a total profit of at least
maxi

(
OPTi,1,OPTi,2

)
, so that our algorithm achieves an

approximation ratio of 2g.

D. MAXIMIZING SATISFIED USERS: GREEDY HEURISTIC
All algorithms discussed for maximizing satisfied profit can
readily be used for maximizing the number of satisfied users,
by setting the profit of each user to be the same. Here, we
provide a slightly different greedy heuristic for the latter prob-
lem. The algorithm is exactly the same as that presented in
Section IV. A, except that we use a different way to determine
the weights of users in Step 1; once the priority is set, Step 2
will run in the same way as before.

First, we determine theminimumnumber of RBs as in (10).
Later, we find the weight of CUs and DUs as follows:

1. If the user is a CU, we assume that a minimum number
of RBs is transmitted to the CU to satisfy it, using its
own CQI. We then obtain the maximum satisfied user
count, which is the number of CUs that are satisfied
with this transmission. For instance, when wemulticast
to user A, peer CUs B, C , and D also may get satisfied.
Then, the satisfied user count for user A becomes four.

2. If the user is a DU, we assume that a minimum number
of RBs is transmitted to the DU, relayed via its parent
CU, using the DU’s own CQI in both hops. We then
obtain the maximum satisfied user count, which is the
number of CUs and DUs that are satisfied with this
transmission.

3. The weight of a user is equal to its maximum satisfied
user count divided by the minimum number of RBs
to satisfy the user. Users are prioritized by descending
order of their weights.

Intuitively speaking, the priority rule in Section VI.A
pessimistically computes the minimum potential of profit
increase (per RB) for each user, while the priority rule in this
section optimistically computes the maximum potential of
profit (i.e., user count here) increase for each user. The latter
rule can easily be generalized for the maximizing satisfied
profit problem (using maximum satisfied profit instead of
maximum satisfied user count to calculate the weight) though
it might not be suitable for that. Since a bias is easily created
when there is a group of users with high combined profits
who can satisfy one and the other (but with mediocre profit
per user). In contrast, it seems that such a bias cannot be easily
created for the satisfied user’s problem, because all users
carry the same profit (or, if so, then the selected users may
as well give a good enough solution). Thus, this priority rule
is used primarily in the maximizing satisfied users heuristic,
but not in the maximizing satisfied profit heuristic.
Finally, the time complexity of this algorithm remains the

same as the heuristic algorithm in Section VI. A.

V. PERFORMANCE EVALUATION
A. SIMULATION SETTINGS
In this section, we present our experimental setup and sim-
ulation results. We simulated our experiments with Matlab,
by making suitable modifications to the LTE system level
simulator available online [36]. Here, the experimental sce-
nario consists of a single base station that controls the CUs
and DUs. We have used the TDD model, where we divide
the communication into DL and UL slots. The e-NB com-
municates with CUs in the DL and data transmission from
CUs to DUs takes place in the UL slots. We have considered
that the CQI value of any user depends on the distance,
power, and path loss. The main simulation parameters are
listed in Table 3. In the experimental setup, the users will be
distributed randomly in a single cell around the e-NB.

B. SIMULATION RESULTS FOR MAXIMIZING
SATISFIED PROFIT
We have evaluated our simulation performance by creating
two scenarios. In the first scenario, wemaintained the number
of RBs as a constant and varied the UEs from 10 ∼ 50.
In the second scenario, we kept the number of users a constant
and observed the performance by varying the number of RBs
from 10 ∼ 50. In both the scenarios, the CQI, data request,
and profit values of each CU and DU are assigned randomly.
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TABLE 3. Main simulation parameters.

In this two-hop network, we allow any user to assume the role
of CU or DU. In addition, the child DUs of a CU are assigned
randomly.

FIGURE 4. Satisfied profit for fixed number of RBs.

In Fig. 4, we determine the satisfied profit by varying the
number of UEs from 10 to 50 for a fixed set of 25 RBs.
In general, the overall profit increases as we increase
the number of users. In the case of our Approximation
Algorithm 1, we assign the RBs in the DL and UL slots
by all possible combination of CQIs. Later, we choose the
maximum profit between the two hops. However, we have
avoided the repeated combinations to reduce the running time
asmentioned in the description of our algorithm in Section IV.
B. In the case of Approximation Algorithm 2, we have made
multiple groups of CQIs and chosen the group that offers
the maximum profit between the two hops. The practical
performance of profit value in case of both approximation
algorithms remains almost similar as many users had their
CQI values concentrated more at one region of entire CQI’s
range. As a result, both algorithms may end up choosing
almost the same users. However, the profit value of both the

algorithms is at least 50% the value of the optimal solution
at every instant. We observed that, this performance is due to
user distribution, where in most of the simulation rounds we
had almost an equal number of users distributed in DL and
UL. In the optimal solution, all the satisfied users from both
the hops contribute to the total profit. We used exhaustive
search to determine the optimal solution. In this case, we
assigned an RB by different possible CQI combinations to
both the hops, and we try until all the RBs are tested for
every CQI combination. Our greedy heuristic algorithm uses
a greedy based priority rule to choose the users having the
best profit; as a result, the total profit is higher than the other
two approximation algorithms. We compared our algorithms
with OMS [12] by modifying it for a two-hop network. The
OMS makes user groups based on the best CQIs at a TTI
and serves the subgroups by different CQIs at each TTI.
By this, it compromises with the number of users it can serve.
As a result, its performance is lower than our proposed algo-
rithms. The worst-case performance of our approximation
algorithms can be drawn by the theoretical discussions as
shown in section IV. B and C.

FIGURE 5. Satisfied profit for fixed number of UEs.

In Fig. 5, we have measured the profit for a constant user
set of 30 and by varying the RBs. Aswe vary the RBs, initially
the available RBs are not sufficient for all the 30 users to get
satisfied of their data request. Therefore, the profit collected
will be low, and it increases gradually in all the algorithms as
the number of RBs increases. In the case of Approximation
Algorithm 1, we varied the range of users CQI randomly
from 1 to 15. For assigning RBs, we could use only up
to 5 CQIs to maintain low running time. In Approximation
Algorithm 2, we observe that the profit will be maximized
when the number of groups is two, especially in the first
group, where the CQIs were half the range. This is due to
the dispersion of more users on the lower CQI range with
satisfiable data request rates. The performance of Approx-
imation Algorithm 1 is slightly better than Approximation
Algorithm 2, as it scans the entire range of CQI as a single
group and the user distribution is more dispersive in this
case. Nevertheless, both algorithms exhibit at least 50% of the

VOLUME 5, 2017 26349



J. R. Bhat et al.: Resource Allocation Schemes for Revenue Maximization in Multicast D2D Networks

optimal performance. For our greedy heuristic, it has a better
performance than the other two approximation algorithms,
despite there is no approximation ratio guarantee. In the case
of OMS, it groups users with maximum CQI; however, the
number of users that can get satisfied will be lower and so
will be the profit.

FIGURE 6. Overall satisfied data rate for fixed RBs.

FIGURE 7. Overall satisfied data rate for fixed UEs.

In Figs. 6 and 7, we measure the total data rate of the
satisfied users for the profit maximization algorithm.

In Fig. 6, by fixing the number of RBs to 25, we vary the
number of users and measure the overall data rate. As more
users are added into the system, the total data rate of the
satisfied user will increase gradually. However, the variation
of data rate from one user set to the other is not the same,
as each user set may possess different CQIs and data rates.
The data rate and profit of each user are independent, where
we set their values as random. Our greedy heuristic algorithm
performs better than the other two approximation algorithms.
The overall data rates of both approximation algorithms are
almost similar due to similar CQI values occupied by most of
the user set in both the cases. We compared the overall data
rate with SFN [15] which is a relay based two-hop scheme.
SFN initially confirms the CQI of DU to be better than CU

and enables only those users with best CQI values. As a result,
its performance is better than OMS and is very close to our
algorithms. However, in our scenario the channel qualities are
random, and no such mandatory requirement on child DUs
CQI are guaranteed.

In Fig. 7, we measure the overall data request of satisfied
users for the fixed UEs scenario. As we vary the number of
RBs, the accumulated data rate increases in all the algorithms.
However, the performance of our greedy heuristic algorithm
becomes close to the optimal solution when the number of
RBs is increased to 30 due to sufficient availability of RBs for
the users to get satisfied. Later, it remains constant because
almost all the satisfiable users have already been satisfied.

We observe that the performances of our approximation
algorithms are almost similar because the number of users
with CQI values concentrated in the lower range is more
which makes Approximation Algorithm 2 to perform simi-
larly to Approximation Algorithm 1.

On the other hand, until the RBs reaches to 25, the perfor-
mance of greedy heuristic is worse than these two approxima-
tion algorithms. In the cases of SFN and OMS, the data rate
gradually increases, but their performances are both worse
than our algorithms.

FIGURE 8. Jain’s fairness index for fixed RBs.

In Fig. 8, we have shown the Jain’s fairness index (FI) [29]
for varying number of UEs. It is a measure of how well the
users are served with the data. An FI value of 1 represents the
maximum fairness.

We can observe that both approximation algorithms have
almost similar fairness index as they perform similarly when
we consider throughput and users that get served. Our greedy
heuristic algorithm has higher fairness index as it satisfies
more users at a higher data rate than the rest. In the case of
OMS, the fairness index is lowest as it cannot satisfy as many
users as the proposed algorithms.

In Fig. 9, we show the Jain’s fairness index for varying
number of RBs. Again, both approximation algorithms have
almost similar fairness index as they satisfy almost same
users and collect nearly equal data throughput. Our greedy
heuristic has higher fairness index, which is near to optimal
as it satisfies more users comparatively.
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FIGURE 9. Jain’s fairness index for fixed UEs.

However, the FI value in Fig. 9 is lower than the value
in Fig. 8 until the number of RBs reaches to 30 as the
collected data rate due to satisfied users of all the algorithms
is comparatively lower. The main reason is the poor channel
quality of the UEs. As the number of RBs increases, the users
get sufficient RBs to satisfy their data requests. As a result,
the fairness index also increases when the number of RBs
increases to 40 and later. The same effect has shown by the
OMS also in this scenario.

FIGURE 10. Running time of algorithms (in seconds).

In Fig. 10, we show the running time (in log scale in
the y-axis) of all the algorithms. When we increase the num-
ber of RBs, the running time will grow exponentially in the
case of the optimal algorithms than the approximation algo-
rithms, as we need to check all possible CQI combinations
for the chosen set of RBs. However, in the case of our greedy
heuristic, the running time remains almost the same, as its
dependency on the number of RBs is low. Similarly, in the
cases of SFN (which overlaps with greedy in the figure) or
OMS, the time required remains almost the same. In general,
the running time is significant and mainly depends on the

various CQI combinations that we need to apply when vary-
ing the number of RBs as shown in Fig. 10.

FIGURE 11. Satisfied Use’s Count for fixed UEs.

FIGURE 12. Satisfied Use’s Count for fixed RB.

C. SIMULATION RESULTS FOR MAXIMIZING
SATISFIED USERS
The simulation results of the problem of maximizing the
number of satisfied users are shown in Figs. 11 and 12.
In Fig. 11, we fix the number of users to be 30 and vary
the number of RBs to determine the number of users whose
data request has been met entirely. Here, Greedy-SU repre-
sents our proposed greedy algorithm in Section IV. D, while
Greedy-SP represents the greedy algorithm in Section IV. A
when all user profits are set to 1. The number of satisfied
users increases linearly at the beginning, and the increment
gradually slows down when the number of RBs reaches a
certain value (30). This is because the high priority users
will be chosen at the beginning, and the supplied RBs will
be used by them efficiently to satisfy more users. Later, as
we increase the number of RBs further, almost every user by
then have already got satisfied. Nevertheless, our proposed
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Greedy-SU has better performance than Greedy-SP due to its
priority rule. In the case of OMS, the curve increases almost
linearly; however, the performance is worse than both our
greedy algorithms.

In Fig. 12, we measure the number of satisfied users for
the case of fixed RBs = 25, and a varying number of users.
Again, our proposed Greedy-SU algorithm gives the best
performance. We observe that, after input user set exceeds
30 users, the number of satisfiable users increases slowly
of Greedy-SU. This is because later on, those user’s RB
requirement exceeds the available RBs; hence they cannot be
satisfied by our greedy algorithm. Greedy-SP and OMS give
similar performance, where the satisfied users count increases
linearly, though Greedy-SP is still (slightly) better than OMS.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have considered the problem of revenue
maximization of the telecom operator when users have dif-
ferent data request rates, profit, and CQI. We proved this
problem is NP-hard and proposed three algorithms; one is
a greedy heuristic while the other two has approximation
ratio guarantees. All the three algorithms do better while
comparing to candidate algorithms regarding profit, fairness
index, and satisfied data rate in all the scenarios. We have
addressed the special case for maximizing the number of
satisfied users and provided another greedy heuristic. It has
a higher number of satisfied users when compared to the
other candidate algorithms for the case of fixed UEs and
fixed RBs.

In our future work, we intend to address the problem of
maximizing the profit of maximally satisfied users, which
is an NP-hard problem, too. The said objective has signifi-
cance when the operator has limited resources and to decide
whether to satisfy more users while compromising the overall
revenue or to maximize the revenue while satisfying fewer
users. This will be important for the telecom operator to
achieve a balance between these two parameters to survive
in the competitive market.
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