
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 1, MARCH 2016 19

Wildcard Rules Caching and Cache Replacement
Algorithms in Software-Defined Networking

Jang-Ping Sheu, Fellow, IEEE, and Yen-Cheng Chuo

Abstract—In software-defined networking, flow tables of
OpenFlow switches are implemented by ternary content address-
able memory (TCAM). Although TCAM can process input pack-
ets in high speed, it is a scarce and expensive resource providing
only a few thousands of rule entries on a network switch. Rules
caching is a technique to solve the TCAM capacity problem.
However, the rule dependency problem is a challenging issue for
wildcard rules caching where packets can mismatch rules. In
this paper, we use a cover-set approach to solve the rule depen-
dency problem and cache important rules to TCAM. We also
propose a rule cache replacement algorithm considering the tem-
poral and spatial traffic localities. Simulation results show that our
algorithms have better cache hit ratio than previous works.

Index Terms—Software-defined-networking, TCAM, rule
dependency problem, wildcard rules caching algorithm, cache
replacement algorithm.

I. INTRODUCTION

S OFTWARE-Defined Networking (SDN) is a promising
network architecture that enables the network control with

more efficiency and flexibility. In the recent network archi-
tecture, decision of routing path and packet forwarding both
happen in switches or routers. The switches or routers must
encapsulate and decapsulate packets constantly. Therefore, they
cannot utilize their network bandwidth efficiently. Besides, net-
work administrator needs to set up switches or routers one by
one while adjusting customized network protocols. The fea-
ture of SDN is decoupling control components from underlying
devices, dividing network into control plane and data plane.
Because the controller manages and operates a network from
a global view of the network, it can utilize network bandwidth
efficiently or facilitate customized protocol updating [1]–[3].

There are many available controller platforms implemented
by different programming languages (e.g. NOX, Floodlight, or
Ryu) [4]–[6]. However, SDN requires a common method for
the controller to communicate with underlying devices. One
such mechanism, OpenFlow [7], lets the controller or network
administrator remotely control routing table (flow table). The
controller will find routing path for each flow, and install rules
in the flow tables of the corresponding OpenFlow switches
or routers. Each flow table entry consists of three fields (i.e.

Manuscript received August 31, 2015; revised November 29, 2015 and
February 7, 2016; accepted February 7, 2016. Date of publication February 16,
2016; date of current version March 9, 2016. This work was supported by the
Ministry of Science and Technology of Taiwan, R.O.C., under Grants 103-
2221-E-007-067-MY3 and 104-2622-8-009-001. The associate editor coordi-
nating the review of this paper and approving it for publication was L. Granville.

The authors are with the Department of Computer Science, National
Tsing Hua University, Hsinchu 30013, Taiwan (e-mail: sheujp@cs.nthu.edu.tw;
s102062560@m102.nthu.edu.tw).

Digital Object Identifier 10.1109/TNSM.2016.2530687

match, actions, and counters). The match field determines
which packets can match the rules. Once a packet matches
a rule, the OpenFlow device will apply actions in actions
field to the packet. Otherwise, the packet will be dropped or
sent to the controller by default rule. Counters field is used
when controller desires statistics of the network such as link
bandwidth or error rate.

In the de facto industry standard, the flow table is imple-
mented by TCAM [8], [9]. TCAM is a high-speed memory
which can match packet headers against stored entries in par-
allel. The controller can install exact-match rules or wildcard-
match rules in the TCAM [7], [10]. Although TCAM can match
packet headers with rules in the wire speed, network devices are
equipped with limited TCAM size because they are expensive
hardware and extremely power-hungry [11], [12].

Previous work on TCAM size capacity problem falls into
three main categories, packet classification compression [13],
[11], rules distribution along traffic route [14]–[16], and rules
caching [17]–[21], [23] respectively. Packet classification com-
pression techniques would merge two combinable rules into
a new wildcard rule. So, we can get another semantically
equivalent smaller packet classification. In rules distribution
along traffic route, we distribute safety rules across the net-
work according to routing policies to reduce the requirement of
a large flow table. In the rules caching system, the most popular
rules are cached in the small TCAM, while relying on software
to handle the small amount of “cache miss” traffic. Thus, the
application in the control plane can have the abstraction of arbi-
trarily large flow table in the OpenFlow switch. In this paper, we
focus on the rules caching system.

In the rules caching system, since wildcard rules may overlap
with each other in the field space, packet classification policy
assigns different priorities to different rules to avoid conflicts. If
one packet matches multiple rules in a flow table, the OpenFlow
switch will apply the actions on the highest priority matched
rule to the packet. Unfortunately, the rule dependency problem
needs to be solved in the wildcard rule caching system [17],
[19]. For example, a high-priority rule and a low-priority rule
overlap with each other in the field space. The rule dependency
problem is that if we only cache the low-priority rule in the
TCAM, the packets falling in the overlapping regions of field
space would incorrectly match the low-priority rule (because
these packets should match the high-priority rule). To maintain
the semantic correctness of packet matching, extra cache cost is
inevitable.

Here, we propose a wildcard rules caching algorithm and a
rule cache replacement (RCR) algorithm. Our wildcard rules
caching algorithm will cache the frequently matched wildcard

1932-4537 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



20 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 1, MARCH 2016

rules with less extra cache cost. After caching wildcard rules
in the TCAM, once cache miss occurs, the RCR algorithm
would find victim rules and replace them with the cache miss
rule according to current temporal and spatial traffic localities.
This paper has following two contributions. First, the wildcard
rules caching algorithm can utilize the TCAM space more effi-
ciently compared with the cover-set caching algorithm in [19].
Second, the RCR algorithm considering traffic locality would
maintain the hit ratio high. Simulation results show that our
wildcard rules caching algorithm performs better in cache hit
ratio than cover-set caching algorithm. And, the RCR algo-
rithm gets higher cache hit ratio than least recently used (LRU)
algorithm, random replacement (RR) algorithm, and adaptive
replacement cache (ARC) algorithm [22].

We organize the rest of this paper as follows. In Section II,
we introduce the related works of wildcard rules caching. We
present our algorithms in Section III. Simulation results are
shown in Section IV. We conclude the paper in Section V.

II. RELATED WORKS

Previous work on TCAM size capacity problem falls into
three main categories, packet classification compression, rules
distribution along traffic route and rules caching, respectively.

A. Packet Classification Compression

Packet classification compression tries to use less number
of TCAM entries to represent another semantically equivalent
packet classification [13]. The compression scheme proposed
in [13] can only be used in prefix classifier. Prefix classifier
is a kind of packet classification where each field of a rule’s
predicate is specified as a prefix. All the *’s are at the end
of the ternary string. Bit Weaving [11] is the first compres-
sion scheme for non-prefix packet classifiers. In Bit Weaving, if
match fields of two entries differ by only one bit and their action
fields are same, these two entries can be merged. The differ-
ence bit is replaced with a wildcard bit (*). We could either use
Bit Weaving alone or make Bit Weaving as a post-processing
routing to cope with other compression schemes. Nevertheless,
the network application or administrator cannot get statistics of
the original rule (e.g. flow count). The reason is that when we
combine two rules, both of their counter fields are also merged.
We can only get the combined statistics rather than separated
statistics of the original rule.

B. Distributing Rules Along Traffic Route

Generally, the size of a packet classification policy is much
larger than the capacity of an OpenFlow switch. The concept
of rules distribution along traffic route is decomposing a large
packet classification policy into smaller ones and then distribut-
ing them across the network. If packets enter the network, they
must traverse along their routes in the network to perform the
complete packet classification. In [15], the authors divide a
large packet classification policy into two smaller ones itera-
tively, named Pivot Bit Decomposition (PBD). PDB chooses
an appropriate bit in the field space as pivot bit. Rules with 0 in

the pivot bit are collected together in a new flow table. The rules
with 1 in the pivot are collected in another one. Rules with don’t
care (*) will be replicated in both of flow tables.

In [16], the authors divide the network policies into two
categories, Endpoint policies and Routing policies. Endpoint
policies specify ingress and egress points of the network for
each flow. In other words, Endpoint policies do not care
the detail network topology. Routing policies specify paths
between ingress and egress points for each flow. The authors in
[16] use linear programming scheme to distribute the Endpoint
policies along the traffic route as specified by routing poli-
cies. Therefore, a large packet classification can be shared by
switches in the traffic route. Nevertheless, only safety rules (e.g.
access control or modifying packet header) can be distributed
across the network. Safety rules must conform following two
conditions. First, the match field of the safety rule does not
specify a switch port. Second, there is no execution order in
the safety rules.

C. Rules Caching

The idea of rule caching is to cache the important or needed
rules in the TCAM of the switches. In [20], the authors pro-
posed a forwarding information base (FIB) caching scheme that
stores only non-overlapping FIB entries into the fast memory
(FIB cache) while storing the complete FIB in slow mem-
ory. FIB caching is different from traditional caching schemes
which may cause a cache-hiding problem. If a packet has a
matching prefix in the cache, it may not be the correct entry
for forwarding the packet if there is a longer matching prefix in
the full FIB. The proposed scheme can prevent the cache-hiding
problem. In [21], the authors aim to speed up the rule matching
of high entropy packet fields. The high entropy packet fields
are the values of packet fields which are frequently changed
from packet to packet flowing through a switch, like layer 4
port field. The proposed algorithm can support flow caching of
forwarding decisions including L4 headers, without requiring
every new forwarded transport connection to be handled by the
slow path. The authors in [23] studied the rule caching problem
to minimize the sum of remote controller processing cost and
TCAM occupation cost. One off-line algorithm and two on-line
algorithms were proposed in this paper.

The rule dependency problem is an important challenge for
wildcard rules caching. The rule dependency problem will
decrease the efficiency of wildcard rules caching. To solve the
rule dependency problem, the authors in [18] converts wildcard
rules to a set of new micro wildcard rules without overlapping.
In [17], the authors utilize the two-stage pipeline property of
flow tables in OpenFlow switch. They partition the full field
space into small hyper-rectangles or buckets which are non-
overlapping with each other. The OpenFlow switch will cache
the bucket matched by current packets in the first stage of flow
tables. At the same time, all wildcard rules falling in the field
space of the bucket are cached in the second stage of flow tables.
With such a bucket scheme, the control bandwidth can be saved
and the semantic correctness of packet matching can also be
complied.



SHEU AND CHUO: WILDCARD RULES CACHING AND CACHE REPLACEMENT ALGORITHMS 21

The authors in [19] proposed a cover-set concept to deal with
the rule dependency problem. The cover-set concept is that we
calculate new rules that cover these packets which would incor-
rectly match the low-priority rule. The authors find immediate
ancestors of the low-priority rule in a dependency graph as the
cover-sets of the low-priority rule, but the actions of cover-sets
are replaced with forward_to_SW_switch actions (forward to
software switch). The authors splice the long chains of depen-
dent rules by creating cover-sets for each rule. Cover-sets can
help us to avoid caching high-weight rules along with lots of
low-weight dependent rules. For each un-cached rule R, the
authors calculate the ratio of the expected number of pack-
ets matching R to the number of required TCAM entries for
caching R as a contribution value of R and cache the rule which
has the maximum contribution value. The authors repeat above
steps to cache wildcard rules until there is no available TCAM
entry.

The shortcoming of the cover-set caching algorithm [19] is
that it only considers the contribution value of an individual rule
and cache the most one in each selection round. The algorithm
does not consider the accumulated contribution value for a set
of rules. In Section III, we will propose a wildcard rules caching
algorithm to cache a set of rules in each selection round. We
also propose a rule cache replacement algorithm considering
temporal and spatial traffic localities. Traffic locality can be
separated into temporal and spatial localities [25]. Temporal
locality is that if one rule is matched by current traffic, the rule
would be matched again soon after. Spatial locality is that the
traffic would concentrate at some block of the field space during
a short period.

III. ALGORITHMS

In this section, we present our wildcard rules caching algo-
rithm and rule cache replacement algorithm considers the traffic
localities.

A. System Model and Problem Formulation

We use the hardware-software hybrid switch design proposed
in [19] as our switch prototype. Initially, we have a wildcard
rules set for rules caching. An example is shown in Fig. 1.
Here, we assume the priority order of the rules is R1 > R2 >

R3 > R4 > R5 > R6. Each rule has two match fields, Field
1 and Field 2, which are 3 bits wide. In fact, Field 1 and
Field 2 can be represented as the source IP address and des-
tination IP address, respectively. The multi-dimensional space
expressed by the match fields of rules is called the field space
(FS). For example, Fig. 2(a) shows the wildcard rules in a two-
dimensional FS expressed by the Field 1 and Field 2. A direct
dependency exists between two rules if their FS overlap with
each other. Fig. 2(b) shows the rule dependency graph of the
rules in Fig. 2(a). For example, since the priority of R1 is higher
than R2 and their wildcard rules are overlap, we add a directed
edge from R1 to R2 to denote their dependency. In Fig. 2(b), if
rules R1 and R6 are selected to be cached in the TCAM, a cover-
set of the rule R6 (i.e. R6∗) will be cached in TCAM as shown
in Fig. 2(c). The cover-set R6∗ is used to forward a packet to the

Fig. 1. Example of a packet classification policy with six wildcard rules.

Fig. 2. Wildcard rules distribution in the FS and the dependency graph of
wildcard rules in Fig. 1.

software switch if the packet matches the intersection of rules
R6 and R4. The content of cover set R6∗ in TCAM is shown in
Fig. 2(d).

In wildcard rules caching system, for each rule R, there is a
weight to represent the number of packets expected to match
the rule R(R.�weight). Besides, there is also a cost to denote
the number of required TCAM entries for caching the rule
R(R.�cost). Given a set of wildcard rules and the TCAM size,
wildcard rules caching algorithm would cache rules to maxi-
mize the total weight of the cached rules and do not overflow
the TCAM size. However, the problem can be reduced to an
all-neighbors knapsack problem which is an NP-hard problem
[19], [26]. So, we propose a heuristic algorithm for the wildcard
rules caching.

B. Wildcard Rules Caching Algorithm

Cover-set caching algorithm proposed in [19] calculates con-
tribution value of each rule R. The contribution value of rule R
is defined as the ratio of R.�weight to R.�cost . The contri-
bution value is a metric for caching rules. Cover-set caching
algorithm would iteratively calculate contribution value of each
un-cached rule and cache the rule which has the maximum con-
tribution value until there is no available TCAM entry. For
example, Fig. 3(a) denotes a dependency graph of wildcard
rules in Fig. 1 and the weight of each rule. In general, the lower
priority rule has larger rule weight. Assume the TCAM size is
three. First, the cover-set caching algorithm would cache R6



22 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 1, MARCH 2016

Fig. 3. Example of wildcard rules caching (TCAM size is three).

and its cover-set since R6 has the maximum contribution value
40/2. Then, the remaining TCAM entry is one. There are only
rules R1 and R4 can be further cached since both of R1.�cost
and R4.�cost are one. For R1.�cost , since R1 does not have a
parent, we require only one TCAM entry for R1. For R4.�cost ,
we require one TCAM entry for R4 and another one for cover-
set of R4. However, the cover-set of R6 on edge < R4, R6 >

which is redundant and can be removed. Therefore, the con-
tribution values of R1 and R4 are 5/1 and 10/1, respectively.
The cover-set caching algorithm caches R4 and then there is no
more TCAM entry for further rules caching. Fig. 3(b) shows the
result of the cover-set caching algorithm. The cover-set caching
algorithm only considers the contribution value of an individual
rule.

However, in our wildcard rules caching algorithm, we
consider the contribution value of a group of rules. For
each rule R, we would layer-by-layer combine its neighbor-
ing rules and then calculate the accumulated contribution
value from the rule R. For example, the individual contri-
bution value of R5 is 35/2. However, when R5 combines
its neighbor R3, the accumulated contribution value is
(R5.�weight + R3.�weight) / (R5.�cost + R3.�cost) =
(35+ 35) / (2+ 1) = 70/3 which is larger than the contribu-
tion value of individual rule R6 (i.e. 40/2). So, we can cache
rules R5, R3 and cover-set of R3 at the same time. Fig. 3(c)
shows the result of our wildcard rules caching algorithm which
is better than the result of Fig. 3(b).

Our wildcard rules caching algorithm will calculate the accu-
mulated contribution value for each un-cached rule. Then, we
cache a set of rules which contribute the maximum value.
We repeat the above steps until there is no remaining TCAM
entry. We divide the explanation of our wildcard rules caching
algorithm into two parts. First, we describe how to calcu-
late accumulated contribution value for an un-cached rule in
Algorithm 1. Then, our overall wildcard rules caching algo-
rithm is described in Algorithm 2.

We use Fig. 4 to illustrate how to calculate accumulated
contribution value for an un-cached rule. Assume the avail-
able TCAM size is 8. The accumulated contribution value
(ACV) for an un-cached rule R is the contribution value of
a set of rules (rule_set) which are layer-by-layer collected
upwards from the rule R to the root in a dependency graph.
In other words, the accumulated contribution value of R is
layer-by-layer accumulated until the contribution value does
not increase. This procedure includes four steps. First, in each

Algorithm 1. Calculate_ACV(R, Available_TCAM, k1, k2)

Input: R: an un-cached rule; Avail_T C AM : available TCAM
size;

k1: a constant denotes the maximum candidates array size;
k2: a constant denotes the maximum number of layers;
Output: the final ACV and rule_set of the rule R;
1. if R.�cost ≤ Avail_T C AM then
2. Mark the valid bit of R(R.isV alid) as true;

Let CMACV be the contribution value of individual
rule R;

3. Heap sort the un-cached parents of R in decreasing
order based on their contribution value;
Choose the first k1 parents as the members of
Cand_arr [R];

4. else
5. Mark the valid bit of R (R.isValid) as false and return;
6. end else
7. f lag← true; nLayer ← 1;
8. while (flag is true and nLayer ≤ k2) do
9. for each candidate c in Cand_arr [] do
10. if we can combine the candidate c and do not

overflow Avail_T C AM then
11. Calculate the accumulated contribution value

by combining c;
Store the value in Cand_arr [c].ACV and
update Cand_arr [c].rule_set

12. end if
13. end for
14. Let h be a candidate whose ACV stored in

Cand_arr [h].ACV is maximum in the candidate array;
15. if Cand_arr [h].ACV > C M ACV then
16. Let Cand_arr [h].rule_set be the contributive

candidates;
Update C M ACV ← Cand_arr [h].ACV ;
Update Cand_arr [R].rule_set ← Cand_arr [h].
rule_set ;

17. Heap sort the un-cached parents of the contributive
candidates;
Choose the first k1 parents as new candidates for the
next layer and nLayer ++;

18. else
19. Set flag as false;
20. end else
21. end while
22. Let CMACV be the final ACV of the rule R;

layer, we calculate accumulated contribution values by comb-
ing candidates iteratively if it does not overflow the available
TCAM size (candidates are un-cached parent rules of lower
layer). And we store the accumulated contribution values in
a candidate array (Cand_arr []). For example, in Fig. 4(a),
there is only one rule R9 in the bottom layer (layer_0). Since
layer_0 is the bottom layer, we use the ratio of R9.�weight
to R9.�cost as the initial accumulated contribution value i.e.,
9/4. Note that, the R9.�cost = 4 because we need one TCAM
entries for R9 and another three for cover-sets of R9. We store



SHEU AND CHUO: WILDCARD RULES CACHING AND CACHE REPLACEMENT ALGORITHMS 23

Algorithm 2. Wildcard_Rules_Caching_Algorithm(Policy,
Avail_T C AM , k3)

Input: Policy: a set of wildcard rules; Avail_T C AM : TCAM
size;

k3: at most k3 un-cached rules are chosen to calculate their
accumulated contribution value separately in each round.

Output: Cached: a set of cached rules
1. Initially, set affected region (AR) as empty set and let each

rule’s rule_set be empty set.
2. f lag← true;
3. while (flag is true) do
4. We sort all un-cached rules in decreasing order by their

contribution values;
Choose the first k3 un-cached rules and store them in a
rules array (rules_arr [])

5. for each rule R in rules_arr [] do
6. if R.rule_set = φ or number of TCAM entries for

caching R.rule_set > Avail_T C AM or R.rule_set∩
AR �= φ then

7. Invoke calculate_ACV (R, Avail_T C AM, k1, k2)

and store the return value in R;
8. end if
9. end for
10. Among the rules which is in rules_arr [] and whose

valid bit is true, we choose the rule which has the
largest accumulate contribution value as Rmax;

11. if we can find the Rmax then
12. AR← Rmax .rule_set ∪ parents and children of

rules in Rmax .rule_set ;
13. Cached ← Cached + Rmax .rule_set ;
14. Avail_T C AM ← Avail_T C AM – number of

TCAM entries for caching Rmax .rule_set ;
15. else
16. f lag← f alse;
17. end else
18. end while

this value in Cand_arr [R9].ACV and insert the rule R9 in the
Cand_arr [R9].rule_set .

Second, we choose the maximum ACV in the candidate array
and whose number of required TCAM entries is smaller than
the available TCAM size as the current maximum accumulated
contribution value (CMACV). The candidates which have a
contribution in C M ACV are contributive candidates. Initially,
the value of CMACV is −∞. In Fig. 4(a), the CMACV of
layer_0 is 9/4 and R9 is the contributive candidate. Third,
un-cached parents of the contributive candidates are new candi-
dates for the next layer (upper layer). In Fig. 4(a), un-cached
parents of R9 are rules R6, R7 and R8. For R6.�cost , we
need one TCAM entry for R6 and another one for the cover-
set of R6, but the cover-set of R9 on edge < R6, R9 > which
becomes redundant and can be removed. Thus, R6.�cost = 1.
Since R6.�weight = 6, the contribution value of R6 is 6/1.
Similarly, the contribution values of R7 and R8 are 7/2 and 8/1,
respectively. We sort these new candidates in decreasing order
according to their contribution values. Therefore, the order of
new candidates are R8, R6, and R7. Fourth, we combine the

Fig. 4. Layer-by-layer calculating the accumulated contribution value of the
rule R9. Available TCAM size is 8.

new candidates in order and accumulate their contribution val-
ues if the TCAM size is enough to store the candidate rules. We
continue above steps for the next layer (upper layer) until the
CMACV does not increase.

Fig. 4(b) demonstrates the procedure of calculating accumu-
lated contribution value of R9 for its second layer (Layer_1).
The accumulated contribution value by combining candidate R8
is the ratio of (9+ 8) to (4+ 1) = 17/5 since R8.�weight
and R8.�cost are 8 and 1, respectively. Then, we calculate the
accumulated contribution value by further combining candidate
R6. The accumulated contribution value is the ratio of (17+ 6)

to (5+ 1) = 23/6 because R6.�weight is 6 and R6.�cost is
1. Then, we combine candidate R7 and get the accumulated
contribution value is the ratio of (23+ 7) to (6+ 0) = 30/6.
Note that, since the cover-sets of R6 and R8 are shared by R7,
we only require one TCAM entry for rule R7. Besides, the
cover-set on edge < R7, R9 > can be removed. Thus, there is
no entry cost to combine R7. After processing all candidates in
Layer_1, the CMACV becomes 30/6. And, rules R7, R6, and
R8 are the new contributive candidates. Then the un-cached par-
ents of these contributive rules are new candidates for the next
layer (R4 and R5). Since the contribution values of R4 and R5
are 4/2 and 5/2, respectively, the order of next layer candidates
are R5 and R4.



24 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 1, MARCH 2016

For the third layer (layer_2), as shown in Fig. 4(c), we
get that the accumulated contribution value by combining R5
is 35/8. When we further combine candidate R4, it overflows
the available TCAM si ze = 8. We cannot combine the can-
didate R4. However, the accumulated contribution value by
combining R5 is smaller than the CMACV . We cannot get a
larger accumulated contribution value in this layer. Our algo-
rithm of calculating the accumulated contribution value of
R9 would terminate at layer_2. Therefore, for the un-cached
rule R9, when it combines with its neighboring rules R6, R7,
and R8, we get an accumulated contribution value = 30/6
which is larger than the contribution value of individual rule
R9 = 9/4.

Algorithm 1 shows the overall algorithm which calculates the
accumulated contribution value of an un-cached rule R and the
corresponding rule set. Avail_T C AM denotes the number of
available TCAM entries for rules caching. However, the run-
ning time for calculating the accumulated contribution value of
an un-cached rule could be high if we traverse an entire depen-
dency graph. We use constant k1 to limit the maximum number
of candidates in each layer and constant k2 to limit the maxi-
mum number of layers we traverse. If the number of available
TCAM entries is enough for caching an individual rule R, the
contribution value of R is the CMACV in the first layer. Then,
the next layer’s candidates are in the decreasing order of their
contribution values (Lines 1-3). Otherwise, mark the valid bit of
R (R.isValid) as false and return (Lines 4-6). For each layer, we
calculate ACVs by combining candidates iteratively if it does
not overflow the available TCAM size (Lines 9-13). After pro-
cessing all candidates, let h be a candidate whose ACV stored
in Cand_arr [h].ACV is maximum in the candidate array
(Line 14). If the candidate h exists and its ACV is larger than
the CMACV , algorithm 1 would update the CMACV and its cor-
responding rule set. The candidates which have contribution in
Cand_arr [h].ACV become the contributive candidates. The
un-cached parents of the contributive candidates are new candi-
dates for the next layer (Lines 15-17). Otherwise, the algorithm
breaks the while loop and lets CMACV be the accumulated
contribution value of R (Lines 19-22).

Assume there are N rules in a packet classification pol-
icy. To calculate an individual rule’s contribution value (or
�cost), we need to check the rule’s one-hop neighboring
rules whether are cached or not. There are O (N ) one-hop
neighbors for a rule. The time complexity of calculating an
individual rule’s contribution value (or �cost) is O (N ). In
Algorithm 1, in a layer, every time we combine one candi-
date and calculate an ACV . In other words, we calculate ACVs
by adding candidates’ contribution value iteratively. There are
at most k1 candidates in a layer. The time complexity of
combining candidates in a layer is O (k1 ∗ N ). Then, we cal-
culate O (N ) un-cached parents’ contribution values and do
heap sort for them in decreasing order. And we choose the
first k1 parents as new candidates for the next layer. The
time complexity of finding new candidates for the next layer
is O (N ∗ N + N log N + k1). Therefore, the total time com-
plexity of each layer is O (k1 ∗ N + N ∗ N + N log N + k1) =
O

(
N 2

)
. There are at most k2 layers in Algorithm 1. The time

complexity of Algorithm 1 is O(k2 ∗ N 2) = O
(
N 2

)
.

TABLE I
THE ACCUMULATED CONTRIBUTION VALUE OF EACH UNCACHED RULE

IN FIG. 4 ACROSS DIFFERENT ROUNDS OF OUR WILDCARD RULES

CACHING ALGORITHM

Fig. 5. The result of our wildcard rules caching algorithm in the example Fig. 4.

Our wildcard rules caching algorithm calculates accumu-
lated contribution value of each un-cached rule by Algorithm 1.
Then, we cache a set of rules which has the maximum accu-
mulated contribution value. The above steps are called a round
in our wildcard rules caching algorithm. We repeat rounds until
there is no remaining TCAM entry. For example, in Fig. 4, we
not only layer-by-layer calculate the accumulated contribution
value of R9, but also layer-by-layer calculate the other un-
cached rules’ accumulated contribution values separately with
Algorithm 1. Table I(a) lists the nine un-cached rules in Fig. 4
along with their ACV and rule_set . Since R9 has the maximum
accumulated contribution value, we cache rules R6, R7, R8 and
R9 in the first round of our wildcard rules caching algorithm. In
the next round, the accumulated contribution value of each un-
cached rule is recalculated and shown in Table I(b). We cache
rules R2, R3 and R5 to TCAM and then there is no remain-
ing TCAM entry for further rules caching. The result of our
wildcard rules caching algorithm is shown in Fig. 5.

The second part of our wildcard rules caching algorithm
is presented in Algorithm 2. The Policy is a set of wild-
card rules for rules caching and Avail_T C AM is the TCAM
size. If we calculate the accumulated contribution values of all
un-cached rules in each round, the running time of our algo-
rithm could be high. Thus, we choose at most k3 un-cached
rules and calculate their accumulated contribution values in
each round. The term Cached denotes the final set of cached
rules. We use affected region (AR) to represent a set of rules
which are dirty. A rule d which is cached in the previous



SHEU AND CHUO: WILDCARD RULES CACHING AND CACHE REPLACEMENT ALGORITHMS 25

round or whose contribution value (d.�cost) would change
is the dirty rule. In other words, if an un-cached rule whose
rule_set intersects with AR, we need to recalculate its accu-
mulated contribution value. In each round of Algorithm 2, first,
we sort all un-cached rules in decreasing order according to
their contribution value and choose the first k3 un-cached rules
(Lines 3-4). Second, for the k3 un-cached rules, we invoke
Algorithm 1 to calculate their accumulated contribution val-
ues separately (Lines 5-9). Then, among the rules which are
the first k3 un-cached rules and whose valid bit is true, we
choose the rule which has the maximum accumulated contri-
bution value as Rmax (Line 10). If more than one rule has
the same and maximum accumulated contribution value, we
choose the rule which has the least �cost as Rmax. If we can-
not find the Rmax rule, Algorithm 2 would stop caching rules
(Lines 15-18). Otherwise, we cache rules in Rmax .rule_set
to TCAM and update residual Avail_T C AM and AR (Lines
11-14). Because we cache the rules in Rmax .rule_set to
TCAM, only parents and children of rules in Rmax .rule_set
can change their contribution value (�cost). We include them
in AR (Line 12). Therefore, in the next round, not all the k3
un-cached rules need to invoke the Algorithm 1. Only those un-
cached rules whose rule_set intersects with AR need to invoke
Algorithm 1 for calculating a new accumulated contribution
value. In other words, AR technique can help us to speed up our
algorithm.

In Algorithm 2, in the beginning of each round, we need to
calculate O (N ) un-cached rules’ contribution value and sort
them in the decreasing order. We store the first k3 un-cached
rules in a rules array. The time complexity of choosing the
first k3 un-cached rules is O (N∗N + N log N + k3). Then,
we invoke Algorithm 1 at most k3 times for calculating their
accumulated contribution values separately. So, the time com-
plexity of each round is O

(
N∗N + N log N + k3 + k3∗N 2

) =
O

(
N 2

)
. If the total TCAM size is T , there are at most T rounds.

The time complexity of our wildcard rules caching algorithm
is O

(
N 2T

)
. In the cover-set caching algorithm [19], in each

round, they calculate O (N ) un-cached rules’ contribution value
and cache the rule with the maximum contribution value. There
are at most O (T ) rounds. The time complexity of the cover-set
caching algorithm is O

(
N 2T

)
which is same as our wildcard

rules caching algorithm.

C. Rule Cache Replacement (RCR) Algorithm

After caching wildcard rules according to their weights, the
input packets can match rules either in the TCAM (cache)
or software switch. Once cache miss occurs, RCR algorithm
would replace victim cached rules with the cache miss rule. If
the cache hit ratio is high, we can avoid miss penalties. So,
the hit ratio is one of the most important metrics for measur-
ing the speed of processing incoming packets of a switch. The
goal of the RCR algorithm is to increase the cache hit ratio. We
assign a counter for each rule to represent its temporal traffic
locality. Each rule R contains a 2-bit saturating counter value

Algorithm 3. RCR Algorithm(Packets, Cached)

Input: Packets: a set of packets; Cached: a set of cached rules;
1. for each packet p in Packets do
2. if the rule R matched by p is in the TCAM (Cached) do
3. R.value← R.value + 1;
4. else
5. Among all cached rules and whose R.value is 0, find

a victim rule V which can release the largest TCAM
entries. If we cannot find V , R.value← R.value − 1
for all cached rules and repeat Line 5.

6. Repeat the step in Line 5 until the number of released
TCAM entries is enough for the number of consumed
TCAM entries for caching R.

7. Calculate locality(R) according to equation (1).
R.value← rounding of locality(R) and then cache R to
the TCAM;

8. end else
9. end for
10. return

(R.value). Once cache miss occurs, the RCR algorithm replaces
the victim cached rule which has the lowest value with the
cache miss rule. Then, set the cache miss rule’s value accord-
ing to its neighboring rules’ values (considering spatial traffic
locality).

We present the RCR algorithm in Algorithm 3. The Packets
denote the input packet. We use Algorithm 2 to cache a set of
rules (Cached) to TCAM and set their values as zero before
feeding Packets. Once an input packet matches on the rule
which has been in the TCAM already, the rule’s value is
increased by one due to the cache hit (Lines 1-4). So, frequently
matched rules have a higher value than infrequent ones. If the
rule matched by the input packet is not in the TCAM, we call
the rule as the cache miss rule. We would find victim rules and
replace victim rules with the cached miss rule (Lines 5-6).

However, the number of released TCAM entries of a victim
rule may less than the number of consumed TCAM entries for
caching the cache miss rule. So, in Line 6, we would repeat
the step in Line 5 to find the other victim rules for further
releasing TCAM space. Then, we set the cache miss rule’s
value and cache it to the TCAM (Line 7). We use locality
computed by equation (1), shown at the bottom of the page,
to represent the cache miss rule’s spatial traffic locality. In
equation (1), if the cache miss rule R has neighboring rules,
its locality is computed as the ratio of its cached neighbor-
ing rules’ total value to the number of its neighboring rules.
Otherwise, its locality is one. Then, we set the cache miss
rule’s value as the rounding of equation (1). In other words,
a cache miss rule with high locality means that the current traf-
fic locality may be close to the cache miss rule’s field space.
So, we assign a high value to the cache miss rule to keep it in
the TCAM.

locali t y (R) =
{ ∑allR′s cached neighbors

i=0 Ri .value
number ofR′s neighbors , if number of R′ s neighbors ! = 0

1, else
(1)



26 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 1, MARCH 2016

Fig. 6. Example of cache replacement algorithm.

For example, Fig. 6 illustrates our RCR algorithm when an
input packet matches on the cache miss rule R4. Assume the
TCAM size is 8. Therefore, we must find victim cached rules
and replace them with the cache miss rule. In Fig. 6(a), we
would find rule R9 as the victim rule since its value is zero.
The TCAM space released by R9 is enough for caching the rule
R4 and its cover-set. So, we replace the victim rule with the
cache miss rule and set the cache miss rule’s value. The rule
R4’s cached neighbors are rules R2, R6, and R7. And, the rule
R4’s neighbors are rules R1, R2, R6, and R7. So, locality(R4) is
the ratio of (3+ 1+ 2) to (4) = 1.5 according to equation (1).
Then, the cache miss rule R4’s value is set as the rounding of
1.5 = 2. We show the result of the RCR algorithm in Fig. 6(b).

IV. SIMULATIONS

In this section, we present the simulations of our proposed
algorithms. First, we compare the experimental results of our
wildcard rules caching algorithm with the cover-set caching
algorithm in [19]. We evaluate the performance of each caching
algorithm in the cache hit ratio. Second, we compare our
RCR algorithm with LRU and RR algorithms which are typi-
cal cache replacement algorithms in memory management. We
also compare the RCR algorithm with ARC algorithm which
maintains two LRU lists that keep tracking of recently used ele-
ments and frequently used elements. Here, the cache hit ratio is
also used as the performance metric for the cache replacement
algorithms.

A. Simulation Environment

Since we cannot get a real data center traffic, we use
ClassBench [24] to generate synthetic rule policy with a differ-
ent type of packet classification and implement it in C language.
ClassBench uses the real data center database to generate syn-
thetic rule policy with the desired rule number and dependency.
To simulate a near real data center environment, ClassBench is a
good choice in simulations. In this simulation, we take the stan-
dard policy Access Control List, IP Chain and Firewall from the
seed files provided by ClassBench.

In our simulations, we use ClassBench’s filter set gener-
ator to generate six policies with different parameter files.
Each policy contains 10K rules that match on five space fields

TABLE II
THE POLICIES USED IN OUR SIMULATION WITH DIFFERENT NUMBER OF

EDGES AND MAXIMUM DEPTHS

(source/destination IP address, source/destination port and pro-
tocol number). Three of them are synthetic Access Control Lists
(ACLs) generated by acl2_seed and acl3_seed parameter files
in ClassBench. The other three policies are synthetic Fire Walls
(FWs) generated by fw1_seed, fw2_seed and fw3_seed
parameter files. Table II lists the six policies along with their
number of edges and maximum depth in the dependency
graph.

We generate input packets according to the wildcard rules’
field space sizes to analyze the cache hit ratios of our wildcard
rules caching algorithm and the cover-set caching algorithm.
The number of packets matching a rule is proportional to each
rule’s field space size. And, we let each rule’s traffic volume
is in a range (e.g. [1, 1,000]). That is, a rule with larger field
space size has a higher probability to be matched by more
packets than a rule with smaller field space size. In our sim-
ulations of wildcard rules caching algorithms, the maximum
TCAM capacity is 3K entries. And, the constants k1, k2, and
k3 for our wildcard rules caching algorithm are 60, 5 and 100,
respectively. On the other hand, in the simulations of cache
replacement algorithms, the TCAM capacity is 2K entries. We
first use our wildcard rules caching algorithm to cache rules to
TCAM. Then, we evaluate the RCR algorithm with LRU, RR,
and ARC algorithms by feeding input packets with different
traffic localities.

In the hardware-software hybrid switch system, the cover-
set algorithm is used before the traffic flow into the switches.
The cover-set algorithm fills the hardware TCAM (cache) with
the important wildcard rules which have higher weight values.
Thus, both of our algorithms 1 and 2 are invoked to cache
important wildcard rules to the TCAM before the traffic pass
through the switches. For 10,000 rules, algorithms 1 and 2
take less than 0.15 and 0.16 seconds to select 2,000 important
rules to a TCAM, respectively. When the traffic flow into the
switches, there may exist rule cache miss. Once the rule cache
miss occurs, our proposed cache replacement algorithm would
replace hardware rules with the software rules. Note that, the
rules exchange only occurs in the switches and the replacement
time is small.

B. Simulation Results

We first generate each rule’s traffic volume according to
its field space size to analyze the cache hit ratios of our
wildcard rules caching algorithm and the cover-set caching
algorithm. Let Ha and Hb denote the average cache hit ratio



SHEU AND CHUO: WILDCARD RULES CACHING AND CACHE REPLACEMENT ALGORITHMS 27

Fig. 7. Improvement ratio IR for various traffic volume ranges.

Fig. 8. Average cache hit ratio of six policies for different TCAM sizes.

of six policies performed by our caching algorithm and cover-
set caching algorithm, respectively. Let IR = (Ha − Hb) / (Hb)

be improvement ratio of our algorithm to the cover-set algo-
rithm. Fig. 7 shows the improvement ratio IR for various traffic
volume ranges. We found that our caching algorithm always
performs better than the cover-set caching algorithm for var-
ious traffic volume ranges. The average improvement ratio is
10%. The reason is that for each rule R, we calculate its accu-
mulated contribution value by combining its neighboring rules
rather than the contribution value of individual R. While com-
paring with the cover-set caching algorithm, we take more rules
into consideration and reduce the cover-set overhead.

Fig. 8 shows the impact of different TCAM sizes to wildcard
rules caching algorithms where each rule’s traffic volume is in
the range [1, 10,000]. We average the cache hit ratios of six
policies and show in Fig. 8. We observe that when the number
of TCAM entries is less than 1K, there is no difference in the
performances of our proposed wildcard rules caching algorithm
and the cover-set caching algorithm. This is because both algo-
rithms can cache default rules first due to these default rules
having much larger weight than general rules. When TCAM
size is larger than 1K, our caching algorithm performs much
better than the cover-set caching algorithm. Our wildcard rules
caching algorithm is suitable for rules caching when the TCAM
size is larger than 1,000.

In our wildcard rules caching algorithm, we use three con-
stants: k1, k2 and k3 to reduce the time complexity. We first
show the impact of k3 to the performance of our wildcard rules
caching algorithm in Fig. 9 where each rule’s traffic volume
is in the range [1, 10,000]. In each caching round, at most k3
un-cached rules are selected to calculate their ACVs. It is obvi-
ous that when k3 is larger, our caching algorithm consumes
more time complexity to get higher IR. The performance with

Fig. 9. The impact of k3 to our wildcard rules caching algorithm.

k3 = 100 is only 3% lower than the performance with k3 =
2,000. The constants k1 and k2 limit the Algorithm one travers-
ing range in a dependency graph. We also evaluate our caching
algorithm for different k1 and k2. The impact of k1 and k2 to
our caching algorithm is similar to k3’s. If we set k1 = 60 and
k3 = 100, the IR would increase until k2 is larger than 5. If we
set k2 = 5 and k3 = 100, the IR would increase until k1 is larger
than 60.

In the real network communications, there are temporal and
spatial traffic localities. However, the input packets generated
by the ClassBench trace generator only represents temporal
traffic locality and do not represent spatial traffic locality. So,
we generate extra spatial locality packets in the input packets to
evaluate the performances of different cache replacement algo-
rithms. We use a spatial locality variable SL to limit the number
of extra generated spatial locality packets. First, we utilize the
ClassBench trace generator to generate 10K input packets for
a policy. Then, for each input packet p, we choose a random
number r which is computed as random() modulo SL. If the
input packet p matches on the rule R, we generate the r extra
packets which randomly match R or the neighboring rules of R.
And, we insert these r extra packets right behind the sequence
of the input packet p. Finally, we reform the sequence of p and
its extra packets by randomly arranging packets sequence for
every 4,000 packets. Since the performances of cache replace-
ment algorithms in our six policies are similar, we take ACL3 as
an example for the following evaluations of cache replacement
algorithms. We feed our new input packets to ACL3 and show
the cache hit ratios of RCR algorithm with LRU, RR, and ARC
schemes in Fig. 10. RCR algorithm has higher cache hit ration
than LRU, RR, and ARC schemes. Since we randomly arrange
packets sequence for every 4,000 packets which is larger than
the TCAM si ze = 2, 000, the time interval of repetitive packets
may be larger than the TCAM size. LRU cannot keep temporal
traffic locality in the TCAM well. Thus, the cache hit ratio of
LRU is similar to RR. On the contrary, our algorithm and ARC
can keep track of temporal traffic locality, so they have better
performance than LRU.

Fig. 11 shows cache hit ratios of cache replacement algo-
rithms for different TCAM sizes with SL = 20. When the
TCAM size is small, RCR algorithm performs much better than
LRU, RR, and ARC schemes because RCR algorithm consid-
ers not only temporal but also spatial traffic locality. The reason



28 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 1, MARCH 2016

Fig. 10. Cache hit ratios of different cache replacement algorithms.

Fig. 11. Cache hit ratios of cache replacement algorithms for different TCAM
sizes.

Fig. 12. Cache hit ratios of cache replacement algorithms.

is that in the previous extra spatial packets generation, we ran-
domly arrange the sequence of input packets for every 4,000
packets. The time interval of repetitive packets may be larger
than the TCAM size, so LRU cannot get high cache hit ratio
according to temporal traffic locality. ARC maintains an LRU
list containing frequently used elements, therefore it has higher
cache hit ratio than LRU. On the other hand, when the TCAM
size is large, the time interval of repetitive packets can be less
than the TCAM size. RCR algorithm and ARC have similar
cache hit ratios.

In Fig. 12, we randomly arrange packets sequence for var-
ious sizes of random arrangement and measure the cache hit
ratios. Since ARC can keep track of recently used rules and

frequently used rules, its performance is close to RCR algo-
rithm. When the size of random arrangement is small, the input
packets have high temporal traffic locality. The time interval of
repetitive packets would be small. The cache hit ratio of LRU
with small time interval of repetitive packets is better than the
large time interval of repetitive packets.

V. CONCLUSION

In wildcard rules caching, the cover-set is an efficient skill to
solve rule dependency problem. Compared with the cover-set
caching algorithm, we calculate the accumulated contribution
value of a set of rules instead of the individual contribution
value of a rule. Therefore, the performance of our rules caching
algorithm is better than the cover-set caching one. Besides, we
propose an RCR algorithm to consider the traffic temporal and
spatial localities. If the cache miss occurs and the current traffic
locality is close to the missed rule, we replace a victim rule
with the cache miss rule and set a high value to the missed
rule to keep the rule in the TCAM. Otherwise, the value of
cache miss rule is set to low and it can be replaced soon after.
Simulation results show that the RCR has higher cache hit ratio
than LRU, RR, and ARC schemes. Our future work includes:
(1) investigate other potential wildcard rules caching algorithm
to improve the cache hit ratio and (2) refine our cache replace-
ment algorithm to calculate the weight value of the cached rules
which is more conform to the traffic locality.

REFERENCES

[1] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proc. ACM SIGCOMM, Helsinki,
Finland, Aug. 2012, pp. 323–334.

[2] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in Proc. 2nd ACM SIGCOMM Workshop Hot Top. Softw. Def. Netw.,
Hong Kong, Aug. 2013, pp. 49–54.

[3] X. Jin et al., “Dynamic scheduling of network updates,” in Proc. ACM
SIGCOMM, Chicago, IL, USA, Aug. 2014, pp. 539–550.

[4] N. Gude et al., “NOX: Towards an operating system for networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, Jul.
2008.

[5] Floodlight [Online]. Available: http://www.projectfloodlight.org/floodlight/
[6] RYU [Online]. Available: http://osrg.github.io/ryu/
[7] N. McKeown et al., “Openflow: Enabling innovation in campus net-

works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[8] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, “Algorithms
for advanced packet classification with ternary CAMs,” in Pro. ACM
SIGCOMM, Philadelphia, PA, USA, Aug. 2005, pp. 193–204.

[9] K. Kogan, S. Nikolenko, O. Rottenstreich, W. Culhane, and P. Eugster,
“SAX-PAC (scalable and expressive packet classification),” in Proc. ACM
SIGCOMM, Chicago, IL, USA, Aug. 2014, pp. 15–26.

[10] M. Casado et al., “Rethinking enterprise network control,” IEEE/ACM
Trans. Netw., vol. 17, no. 4, pp. 1270–1283, Aug. 2009.

[11] C. R. Meiners, A. X. Liu, and E. Torng, “Bit weaving: A non-prefix
approach to compressing packet classifiers in TCAMs,” IEEE/ACM
Trans. Netw., vol. 20, no. 2, pp. 488–500, Apr. 2012.

[12] Y.-C. Cheng and P.-C. Wang, “Packet classification using dynamically
generated decision trees,” IEEE Trans. Comput., vol. 64, no. 2, pp. 582–
586, Feb. 2015.

[13] A. X. Liu, C. R. Meiners, and E. Torng, “TCAM razor: A systematic
approach towards minimizing packet classifiers in TCAMs,” IEEE/ACM
Trans. Netw., vol. 18, no. 2, pp. 490–500, Apr. 2010.

[14] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “Optimizing rules
placement in openflow networks: Trading routing for better efficiency,” in
Proc. 3rd Workshop Hot Top. Softw. Def. Netw., Chicago, IL, USA, Aug.
2014, pp. 127–132.



SHEU AND CHUO: WILDCARD RULES CACHING AND CACHE REPLACEMENT ALGORITHMS 29

[15] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in Proc. INFOCOM, Turin, Italy, Apr. 2013,
pp. 545–549.

[16] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the “one big
switch” abstraction in software-defined networks,” in Proc. 9th ACM
Conf. Emerg. Netw. Exp. Technol., Santa Barbara, CA, USA, Dec. 2013,
pp. 13–24.

[17] B. Yan, Y. Xu, H. Xing, K. Xi, and H. J. Chao, “CAB: A reactive wild-
card rule caching system for software-defined networks,” in Proc. 3rd
Workshop Hot Top. Softw. Def. Netw., Chicago, IL, USA, Aug. 2014,
pp. 163–168.

[18] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with DIFANE,” in Proc. ACM SIGCOMM, New Delhi, India,
Aug. 2010, pp. 351–362.

[19] N. Katta, O. Alipourfard, J. Rexford, and D. Walker. (2014). Rule-
Caching Algorithms for Software-Defined Networks [Online]. Available:
https://www.cs.princeton.edu/~jrex/papers/cacheflow-long14.pdf

[20] Y. Liu, V. Lehman, and L. Wang, “Efficient FIB caching using minimal
non-overlapping prefixes,” Comput. Netw., vol. 83, no. 4, pp. 85–99, Jun.
2015.

[21] N. Shelly, E. J. Jackson, T. Koponen, N. McKeown, and J. Rajahalme,
“Flow caching for high entropy packet fields,” in Proc. 3rd Workshop
Hot Top. Softw. Def. Netw., 2014, pp. 151–156.

[22] N. Megiddo and D. S. Modha, “Outperforming LRU with an adaptive
replacement cache algorithm caching,” IEEE Comput., vol. 37, no. 4,
pp. 58–65, Apr. 2004.

[23] H. Huang, S. Guo, P. Li, W. Liang, and A. Zomaya, “Cost minimization
for rule caching in software defined networking,” IEEE Trans. Parallel
Distrib. Syst., May 11, 2015, doi: 10.1109/TPDS.2015.2431684.

[24] D. E. Taylor and J. S. Turner, “Classbench: A packet classification
benchmark,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499–511, Jun.
2007.

[25] M. Kharbutli and R. Sheikh, “LACS: A locality-aware cost-sensitive
cache replacement algorithm,” IEEE Trans. Comput., vol. 63, no. 8,
pp. 1975–1987, Aug. 2014.

[26] G. Borradaile, B. Heeringa, and G. Wilfong, “The knapsack problem with
neighbour constraints,” J. Discr. Algorithms, vol. 16, pp. 224–235, Oct.
2012.

Jang-Ping Sheu (S’85–M’86–SM’98–F’09)
received the B.S. degree in computer science from
Tamkang University, Taiwan, in 1981, and the M.S.
and Ph.D. degrees in computer science from National
Tsing Hua University, Hsinchu, Taiwan, in 1983 and
1987, respectively.

He is currently a Chair Professor of the Department
of Computer Science and the Associate Dean of the
College of Electrical and Computer Science, National
Tsing Hua University. He was a Chair of Department
of Computer Science and Information Engineering,

National Central University, Taiwan, from 1997 to 1999. He was the Director
of Computer Center, National Central University, from 2003 to 2006. He
was the Director of Computer and Communication Research Center, National
Tsing Hua University from 2009 to 2015. His research interests include wire-
less communications, mobile computing, and software-defined networks. He
is a Member of Phi Tau Phi Society. He was an Associate Editor of the
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS and
International Journal of Sensor Networks. He is an Associate Editor of the
International Journal of Ad Hoc and Ubiquitous Computing.

Dr. Sheu was the recipient of the Distinguished Research Awards of the
National Science Council of the Republic of China in 1993–1994, 1995–1996,
and 1997–1998. He was also the recipient of the Distinguished Engineering
Professor Award of the Chinese Institute of Engineers in 2003, the K.-T. Li
Research Breakthrough Award of the Institute of Information and Computing
Machinery in 2007, the Y. Z. Hsu Scientific Chair Professor Award, and Pan
Wen Yuan Outstanding Research Award in 2009 and 2014, respectively.

Yen-Cheng Chuo received the master’s degree
in computer science from National Tsing-Hua
University, Hsinchu, Taiwan, in 2015. His research
interests include software-defined networks and wire-
less networks.


