
Information Processing Letters 36 (1990) 241-245

North-Holland

1 December 1990

EFFICIENT ALLOCATION OF CHAIN-LIKE TASK ON CHAIN-LIKE
NETWORK COMPUTERS

Jang-Ping SHEU

Department of Elecwical Engineering, Narionai Cenrral Universrry. Chungli 3-7954, Tawan

Zen-Fu CHIANG

Department o/Information Engineering, Tatung Insriture of Technoloa. Taipei, Taiwan

Communicated by K. Ikeda

Received 4 July 1990

In this paper, we propose an algorithm to improve Bokhari’s method for allocation of chain-like task on chain-like network

computers. The time complexity of our algorithm is reduced from the time complexity O(m’n) of Bokhari’s to O(min(m, n)m*).

where m is the number of modules and n is the number of processors. In addition, our algorithm relaxes Bokhari’s constraints

of all processors to be utilized and n < m.

Keywords: Distributed computing systems, task allocation, chain-like task, task turnaround time

1. Introduction

A distributed computing system has been de-
fined as an interconnected collection of autono-
mous processors and integrated by a system-wide

operating system. The often cited advantages of
distributed computing systems include modularity,
flexibility, extensibility, availability and integrity
which make these systems attractive to many types
of applications. But there exist some problems
that prevent the system performance from increas-
ing linearly as the number of processors increases.
One of the major problems is to allocate several
tasks over the processors optimally. A number of
studies have been reported in the literature. They
are basically the graph-theoretical method [1,2,8],
the mathematical programming approach [4,5] and
the heuristic method [3,6,7]. The problem we in-
vestigate is allocation of a chain-like task on the
chain-like network computers which is first pre-
sented by Bokhari [l]. In this paper, we propose

an algorithm which is more efficient than Bokhari’s
for solving the task assignment problem.

In the following, we examine the problem of
optimally distributing a chain-like task over a
chain-like network computer. It is assumed that
the cost for computation of each module of the
task on the processor is known. For any two

adjacent modules, the communication cost be-
tween them is also assumed to be known (if the
adjacent modules are coresident, the cost of com-
munication between them is assumed to be zero).
The time required for a processor to finish the
assigned work equals to the sum of the costs to
compute all of the modules that reside on it plus
the communication costs between its adjacent
processors. The quantity ei represents the compu-
tation cost for module i of the chain-like task. The
cj, j+, represents the communication cost between
modules i and i + 1 of the task. We assume these
costs are known quantities.

We also assume that there is little or no prece-

0020-0190/90/$03.50 0 1990 - Elsevier Science Publishers B.V. (North-Holland) 241

Volume 36, Number 5 INFORMATION PROCESSING LETTERS 1 December 1990

dence relationship among the modules of the task.
We work under the constraint that each processor
has a contiguous subchain modules assigned to it.
That is, partitions of chains have to be such that
modules J’ and i + 1 are assigned to the same or
to adjacent processors. We call this the contiguity
constraint [l].

The purpose of task allocation on distributed
computing systems is to reduce the task
turnaround time by increasing the system
throughput [6]. Let r,(A) denote the execution
cost of the processor p according to a certain task
allocation A. We call t,(A) the processor
turnaround time of processor p. Let

be the task turnaround time of A. It is easy to see
that t(A) is the total time required to complete
the whole task according to allocation A. The
optimal allocation cost function is to find an
allocation Aop, such that t(Aop,) d t(A) for all
possible allocations A. Then

2. Task allocation on chain-like network computers

In this section, we propose an algorithm for
allocation of a chain-like task on the chain-like
network computers. Bokhari has presented an al-
gorithm to solve this problem with time complex-
ity 0(m3n), where m is the number of modules
and n is the number of processors. Our algorithm
reduces the time complexity from 0(m3n) to
O(min(m, n)m’).

Given a task T with m modules connected in a
chain-like fashion, and a chain-like network com-
puter with n processors, find the allocation of task
T to processors that minimizes the task turnaround
time. This problem first presented in [l] assumes
that n, the number of processors, is less than m,
the number of modules, and all processors are to
be utilized. But if all processors are utilized, the
allocation is not necessarily optimal. The extra
processing and waiting time due to inter-processor

242

Modules

Processors

Fig. 1. Allocation of a nine-module chain-like task on a four-

processor chain-like network computer.

communication grows rapidly and system perfor-
mance quickly begins to degrade. We solve this
problem without Bokhari’s processors constraint.
The relation between the number of modules m
and the number of processors n is arbitrary and
permits some processors not to be utilized if such
an allocation is more efficient.

The contiguity constraint ensures that two
modules that communicate with each other lie on
directly connected processors. For example, Fig. 1
shows an allocation of a nine-module chain-like
task on a four-processor chain-like network com-
puter. Thus, the turnaround time of processor 2
for task allocation as shown in Fig. 1 is equal to

Based on our objective function, the solution of
this problem is to find an allocation which mini-
mizes the maximum processor turnaround time.

In the following, we first present Bokhari’s
algorithm [l]. In Fig. 2, we show a task allocation
graph by using Bokhari’s method. Each layer cor-
responds to a processor and the label on each
node corresponds to a subchain of modules. Each
layer contains all pairs (h, i) such that 1 < h d i
<m. A node labeled (h, i) is connected to all
nodes (i + 1, i) in the layer below it. Ail nodes in
the first (last) layer are connected to node s (d).
Any path connecting node s to node d corre-
sponds to an allocation of modules to processors.
If a path contains the node (h, i) of layer k, this
represents the assignment of modules h through i
to processor k. For example, the thick edges of
Fig. 2 correspond to the allocation of Fig. 1. To
avoid a congested diagram, many nodes and edges
have been omitted from Fig. 2.

Volume 36, Number 5 INFORMATION PROCESSING LETTERS 1 December 1990

Fig. 2. Bokhari’s task allocation graph for Fig. 1.

Layer 1

Layer 2

Layer 3

Layer 4

Our solution is also to draw up a task alloca-
tion graph which is less complex than Bokhari’s
method. We generate the task allocation graph for
this problem as follows. The k th layer (except the
last layer) contains m - k + 1 nodes and a se-
quence numbers k, k + 1,. . . , m is labeled at each
node from left to right. The last layer consists of
only one node labeled m. All nodes in the first
layer are connected to node S. A node i is con-
nected to all nodes, whose labels are greater than
i, in the layer below it. The edge that connects
source node s and node i of the first layer repre-
sents the assignment of modules 1 through i to
processor 1. The edge that connects node a in
layer k - 1 and node b in layer k represents the
assignment of modules a + 1 through b to
processor k. According to our method, the task
allocation graph corresponding to Fig. 2 is shown
in Fig. 3. Note that there are only min(m, n)
layers in the task allocation graph.

After constructing such a graph, we can add the
weights to the edges of this task allocation graph
as follows. The weight of edge joining source node
s to node i of the first layer is equal to the sum of
all computation costs of modules 1 through i and
communication cost between modules i and i + 1.

The weight of edge joining node a in layer k - 1
and b in layer k equals the sum of all computa-
tion costs of modules a + 1 through b and com-
munication costs between modules a and a + 1,
and between modules b and b + 1.

Finally, we apply Bokhari’s labeling procedure
to construct a table, which lists the minimum task
turnaround time versus variety number of utilized

Layer 1

layer 2

Layer 3

Layer 4

Fig. 3. The improved task allocation graph of Fig. 2.

243

Volume 36, Number 5 INFORMATION PROCESSING LETTERS 1 December 1990

processors, called a task turnaround time table.
With this table, the optimal allocation can be
found. Now, we present the formal algorithm as
follows.

Algorithm. Find the optimal allocation of a chain-
like task on a chain-like network computer.

Srep 1. Apply the following rules to construct
the task allocation graph.

(1) There is one distinguished node called the
source node, denoted s.

(2) In addition to the source node, there are
min(m, n) layers in the task allocation graph.

(3) The k th layer consists of tn - k + 1 nodes
and a sequence numbers k, k + 1,. . . , m is labeled
at each node from left to right.

(4) A node labeled h in layer k - 1 is con-
nected to all nodes, in layer k, labeled number
greater than h. All nodes in the first layer are
connected to node s.

(5) Each edge joining source node s to node j,
for 1 <j Q m, has weight

cj,j+l + c ehe

/ * The first item represents the communication
cost between modules j and j + 1 and the second
item represents the computation cost sum of mod-
ules 1 through j. * /

(6) Each edge joining node a in layer k - 1 to
node b in layer k has weight

c,,,+l + cb.b+l + c eh-
a+l<hdb

/ * The first item represents the communication
cost between modules a and a + 1, the second
represents the communication cost between mod-
ules b and b f 1 and the third represents the
computation cost sum of modules 4 + 1 through

6. * /
Step 2. Initially all nodes are given infinite

labels except the source node, where it is labeled
zero.

Step 3. For k = 1 to rnin(m, n) do
/ * Bokhari’s labeling procedure * /

Examine each edge e emanating downwards
from layer k - 1. Suppose it connects node a in
layer k - 1 to node b in layer k. Let the weights

244

on this edge be W(e). Then replace L(b) by
min(L(b>, max(W(e). L(a))}.

Record the value of L(m) in layer k to the task

turnaround time table for k processors utilized.
Step 4. (1) Search the task turnaround time

table to find the minimum task turnaround time.
(2) If k processors are utilized then we trace

backwards from node rn in layer k to source node
s to find an optimal allocation.

Each feasible path from source node s to node
m in each layer of the task allocation graph corre-
sponds to a partition of the sequence numbers
1, 2,..., m. Each subsequence corresponds to an
assignment of modules on a processor. For ex-
ample, a feasible path l-3-6-9 in Fig. 3 associ-
ates module 1 with processor 1, modules 2 and 3
with processor 2, modules 4, 5, and 6 with
processor 3 and modules 7, 8, and 9 with processor
4. It is obvious that each feasible path of the task
allocation graph corresponds to an allocation. Un-
der the contiguity constraint, each allocation cor-
responds to a partition of the sequence 1, 2,. . . , m.
In the task allocation graph exactly one feasible
path corresponds to each partition. Thus, all al-
locations are in the task allocation graph. The
labeling procedure examines each path emanating
downwards from each layer, so all feasible paths
are inspected. As a result, the proposed algorithm

Layer 1

Layer 2

Layer 3

Layer 4

Fig. 4. The task allocation graph of Example 2.1.

Volume 36. Number 5 INFORMATION PROCESSING LETTERS 1 December 1990

Table 1
Task turnaround time table of F

Number of processors used Turnaround time

1 12
2 10

3 9
4 9

can correctly find one optimal allocation of single
chain-like task on a chain-like network computer.

The total number of nodes is O(min(m, n)m).
Since each node has at most m edges connected to
it, there are O(min(m, n)m*) edges in all. The
algorithm looks at each edge in the assignment
graph exactly once. Thus, the complexity of this
algorithm is O(min(m, n)m*). We now give an
example to show how this algorithm works.

Example 2.1. A chain-Like task T, which consists
of four modules, has computation costs e, = 5,
e2 = 2, e3 = 2, and e4 = 3 and communication costs
ci.* = 3, c*,~ = 4 and cJ+, = 2. The chain-like net-
work computer consists of four processors.

Figure 4 shows the constructed task allocation
graph. Our algorithm is used to construct the task
turnaround time table as shown in Table 1.
Searching the task turnaround time table of T, we
find that three or four processors utilized is the
optimal allocation. Let [j, k] + h represent mod-
ules j through k of task T assigned to processor
h. In Fig. 4 there exist two feasible paths that have

the same minimum task turnaround time 9. One
path is [l, l] + 1, [2, 31 + 2, and [4, 41 --f 3. The

other path is [l, l] + 1, [2, 2]+ 2, [3, 31 + 3, and
[4, 41 + 4. Here, we choose the first path as our
solution. The thick edges corresponding to this
optimal allocation is shown in Fig. 4.

3. Conclusions

In this paper, we consider the problem of find-
ing efficient algorithm for allocation of a chain-like
task on the chain-like network computers. Bokhari
first presents a solution to this problem with time
complexity 0(m3n). Our algorithm can improve
Bokhari’s method. The time comple.xity of the

proposed algorithm is O(min(m, n)m’). In ad-
dition, the constraints of all processors to be
utilized and n < m are relaxed. In some cases, if
all processors are utilized, the allocation is not
necessarily optimal. The extra processing and
waiting time due to interprocessor communica-
tions will increase the task turnaround time.

References

[l] S.H. Bokhari, Partitioning problems in parallel, pipelined.

and distributed computing, IEEE Trans. Compur. 37 (1988)
48-57.

[2] W.T. Chen and J.P. Sheu, Task assignment in loosely

coupled multiprocessor systems, J. Chinese Insr. Eng. 10
(1987) 721-726.

[3] K. Efe, Heuristic models of task assignment scheduling in

distributed systems, IEEE Compur. 15 (198’) 50-56.

[4] V.M. Lo, Heuristic algorithms for task assioment in dis-

tributed systems, IEEE Trans. Compur. 37 (1988) 1384-
1397.

(51 P.Y. Ma, E.Y.S. Lee and M. Tsuchiya, A task allocation

model for distributed computing system. IEEE Trans.
Comput. 31 (1982) 41-47.

[6] C.C. Shen and W.H. Tsai, A graph matching approach to

optimal task assignment in distributed computing system

using a minimax criterion, IEEE Trans. Compur. 34 (1985)
197-203.

[7] J.B. Sinclair, Efficient computation of optimal assignments

for distributed tasks, J. Parallel and Dislribured Comput. 4
(1987) 342-362.

[8] H.S. Stone, Multiprocessor scheduling with the aid of net-

work flow algorithms, IEEE Trans. Sofrwnre Engrg. 3
(1977) 85-93.

245

