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In this paper, we propose an algorithm to improve Bokhari’s method for allocation of chain-like task on chain-like network 

computers. The time complexity of our algorithm is reduced from the time complexity O(m’n) of Bokhari’s to O(min( m, n)m*). 

where m is the number of modules and n is the number of processors. In addition, our algorithm relaxes Bokhari’s constraints 

of all processors to be utilized and n < m. 
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1. Introduction 

A distributed computing system has been de- 
fined as an interconnected collection of autono- 
mous processors and integrated by a system-wide 

operating system. The often cited advantages of 
distributed computing systems include modularity, 
flexibility, extensibility, availability and integrity 
which make these systems attractive to many types 
of applications. But there exist some problems 
that prevent the system performance from increas- 
ing linearly as the number of processors increases. 
One of the major problems is to allocate several 
tasks over the processors optimally. A number of 
studies have been reported in the literature. They 
are basically the graph-theoretical method [1,2,8], 
the mathematical programming approach [4,5] and 
the heuristic method [3,6,7]. The problem we in- 
vestigate is allocation of a chain-like task on the 
chain-like network computers which is first pre- 
sented by Bokhari [l]. In this paper, we propose 

an algorithm which is more efficient than Bokhari’s 
for solving the task assignment problem. 

In the following, we examine the problem of 
optimally distributing a chain-like task over a 
chain-like network computer. It is assumed that 
the cost for computation of each module of the 
task on the processor is known. For any two 

adjacent modules, the communication cost be- 
tween them is also assumed to be known (if the 
adjacent modules are coresident, the cost of com- 
munication between them is assumed to be zero). 
The time required for a processor to finish the 
assigned work equals to the sum of the costs to 
compute all of the modules that reside on it plus 
the communication costs between its adjacent 
processors. The quantity ei represents the compu- 
tation cost for module i of the chain-like task. The 
cj, j+, represents the communication cost between 
modules i and i + 1 of the task. We assume these 
costs are known quantities. 

We also assume that there is little or no prece- 
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dence relationship among the modules of the task. 
We work under the constraint that each processor 
has a contiguous subchain modules assigned to it. 
That is, partitions of chains have to be such that 
modules J’ and i + 1 are assigned to the same or 
to adjacent processors. We call this the contiguity 
constraint [l]. 

The purpose of task allocation on distributed 
computing systems is to reduce the task 
turnaround time by increasing the system 
throughput [6]. Let r,(A) denote the execution 
cost of the processor p according to a certain task 
allocation A. We call t,(A) the processor 
turnaround time of processor p. Let 

be the task turnaround time of A. It is easy to see 
that t(A) is the total time required to complete 
the whole task according to allocation A. The 
optimal allocation cost function is to find an 
allocation Aop, such that t(Aop,) d t(A) for all 
possible allocations A. Then 

2. Task allocation on chain-like network computers 

In this section, we propose an algorithm for 
allocation of a chain-like task on the chain-like 
network computers. Bokhari has presented an al- 
gorithm to solve this problem with time complex- 
ity 0(m3n), where m is the number of modules 
and n is the number of processors. Our algorithm 
reduces the time complexity from 0(m3n) to 
O(min(m, n)m’). 

Given a task T with m modules connected in a 
chain-like fashion, and a chain-like network com- 
puter with n processors, find the allocation of task 
T to processors that minimizes the task turnaround 
time. This problem first presented in [l] assumes 
that n, the number of processors, is less than m, 
the number of modules, and all processors are to 
be utilized. But if all processors are utilized, the 
allocation is not necessarily optimal. The extra 
processing and waiting time due to inter-processor 
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Fig. 1. Allocation of a nine-module chain-like task on a four- 

processor chain-like network computer. 

communication grows rapidly and system perfor- 
mance quickly begins to degrade. We solve this 
problem without Bokhari’s processors constraint. 
The relation between the number of modules m 
and the number of processors n is arbitrary and 
permits some processors not to be utilized if such 
an allocation is more efficient. 

The contiguity constraint ensures that two 
modules that communicate with each other lie on 
directly connected processors. For example, Fig. 1 
shows an allocation of a nine-module chain-like 
task on a four-processor chain-like network com- 
puter. Thus, the turnaround time of processor 2 
for task allocation as shown in Fig. 1 is equal to 

Based on our objective function, the solution of 
this problem is to find an allocation which mini- 
mizes the maximum processor turnaround time. 

In the following, we first present Bokhari’s 
algorithm [l]. In Fig. 2, we show a task allocation 
graph by using Bokhari’s method. Each layer cor- 
responds to a processor and the label on each 
node corresponds to a subchain of modules. Each 
layer contains all pairs (h, i) such that 1 < h d i 
<m. A node labeled (h, i) is connected to all 
nodes (i + 1, i) in the layer below it. Ail nodes in 
the first (last) layer are connected to node s (d). 
Any path connecting node s to node d corre- 
sponds to an allocation of modules to processors. 
If a path contains the node (h, i) of layer k, this 
represents the assignment of modules h through i 
to processor k. For example, the thick edges of 
Fig. 2 correspond to the allocation of Fig. 1. To 
avoid a congested diagram, many nodes and edges 
have been omitted from Fig. 2. 
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Fig. 2. Bokhari’s task allocation graph for Fig. 1. 
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Our solution is also to draw up a task alloca- 
tion graph which is less complex than Bokhari’s 
method. We generate the task allocation graph for 
this problem as follows. The k th layer (except the 
last layer) contains m - k + 1 nodes and a se- 
quence numbers k, k + 1,. . . , m is labeled at each 
node from left to right. The last layer consists of 
only one node labeled m. All nodes in the first 
layer are connected to node S. A node i is con- 
nected to all nodes, whose labels are greater than 
i, in the layer below it. The edge that connects 
source node s and node i of the first layer repre- 
sents the assignment of modules 1 through i to 
processor 1. The edge that connects node a in 
layer k - 1 and node b in layer k represents the 
assignment of modules a + 1 through b to 
processor k. According to our method, the task 
allocation graph corresponding to Fig. 2 is shown 
in Fig. 3. Note that there are only min(m, n) 
layers in the task allocation graph. 

After constructing such a graph, we can add the 
weights to the edges of this task allocation graph 
as follows. The weight of edge joining source node 
s to node i of the first layer is equal to the sum of 
all computation costs of modules 1 through i and 
communication cost between modules i and i + 1. 

The weight of edge joining node a in layer k - 1 
and b in layer k equals the sum of all computa- 
tion costs of modules a + 1 through b and com- 
munication costs between modules a and a + 1, 
and between modules b and b + 1. 

Finally, we apply Bokhari’s labeling procedure 
to construct a table, which lists the minimum task 
turnaround time versus variety number of utilized 
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Fig. 3. The improved task allocation graph of Fig. 2. 
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processors, called a task turnaround time table. 
With this table, the optimal allocation can be 
found. Now, we present the formal algorithm as 
follows. 

Algorithm. Find the optimal allocation of a chain- 
like task on a chain-like network computer. 

Srep 1. Apply the following rules to construct 
the task allocation graph. 

(1) There is one distinguished node called the 
source node, denoted s. 

(2) In addition to the source node, there are 
min(m, n) layers in the task allocation graph. 

(3) The k th layer consists of tn - k + 1 nodes 
and a sequence numbers k, k + 1,. . . , m is labeled 
at each node from left to right. 

(4) A node labeled h in layer k - 1 is con- 
nected to all nodes, in layer k, labeled number 
greater than h. All nodes in the first layer are 
connected to node s. 

(5) Each edge joining source node s to node j, 
for 1 <j Q m, has weight 

cj,j+l + c ehe 

/ * The first item represents the communication 
cost between modules j and j + 1 and the second 
item represents the computation cost sum of mod- 
ules 1 through j. * / 

(6) Each edge joining node a in layer k - 1 to 
node b in layer k has weight 

c,,,+l + cb.b+l + c eh- 
a+l<hdb 

/ * The first item represents the communication 
cost between modules a and a + 1, the second 
represents the communication cost between mod- 
ules b and b f 1 and the third represents the 
computation cost sum of modules 4 + 1 through 

6. * / 
Step 2. Initially all nodes are given infinite 

labels except the source node, where it is labeled 
zero. 

Step 3. For k = 1 to rnin(m, n) do 
/ * Bokhari’s labeling procedure * / 

Examine each edge e emanating downwards 
from layer k - 1. Suppose it connects node a in 
layer k - 1 to node b in layer k. Let the weights 
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on this edge be W(e). Then replace L(b) by 
min(L(b>, max(W(e). L(a))}. 

Record the value of L(m) in layer k to the task 

turnaround time table for k processors utilized. 
Step 4. (1) Search the task turnaround time 

table to find the minimum task turnaround time. 
(2) If k processors are utilized then we trace 

backwards from node rn in layer k to source node 
s to find an optimal allocation. 

Each feasible path from source node s to node 
m in each layer of the task allocation graph corre- 
sponds to a partition of the sequence numbers 
1, 2,..., m. Each subsequence corresponds to an 
assignment of modules on a processor. For ex- 
ample, a feasible path l-3-6-9 in Fig. 3 associ- 
ates module 1 with processor 1, modules 2 and 3 
with processor 2, modules 4, 5, and 6 with 
processor 3 and modules 7, 8, and 9 with processor 
4. It is obvious that each feasible path of the task 
allocation graph corresponds to an allocation. Un- 
der the contiguity constraint, each allocation cor- 
responds to a partition of the sequence 1, 2,. . . , m. 
In the task allocation graph exactly one feasible 
path corresponds to each partition. Thus, all al- 
locations are in the task allocation graph. The 
labeling procedure examines each path emanating 
downwards from each layer, so all feasible paths 
are inspected. As a result, the proposed algorithm 
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Fig. 4. The task allocation graph of Example 2.1. 
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Table 1 
Task turnaround time table of F 

Number of processors used Turnaround time 

1 12 
2 10 

3 9 
4 9 

can correctly find one optimal allocation of single 
chain-like task on a chain-like network computer. 

The total number of nodes is O(min(m, n)m). 
Since each node has at most m edges connected to 
it, there are O(min(m, n)m*) edges in all. The 
algorithm looks at each edge in the assignment 
graph exactly once. Thus, the complexity of this 
algorithm is O(min(m, n)m*). We now give an 
example to show how this algorithm works. 

Example 2.1. A chain-Like task T, which consists 
of four modules, has computation costs e, = 5, 
e2 = 2, e3 = 2, and e4 = 3 and communication costs 
ci.* = 3, c*,~ = 4 and cJ+, = 2. The chain-like net- 
work computer consists of four processors. 

Figure 4 shows the constructed task allocation 
graph. Our algorithm is used to construct the task 
turnaround time table as shown in Table 1. 
Searching the task turnaround time table of T, we 
find that three or four processors utilized is the 
optimal allocation. Let [j, k] + h represent mod- 
ules j through k of task T assigned to processor 
h. In Fig. 4 there exist two feasible paths that have 

the same minimum task turnaround time 9. One 
path is [l, l] + 1, [2, 31 + 2, and [4, 41 --f 3. The 

other path is [l, l] + 1, [2, 2]+ 2, [3, 31 + 3, and 
[4, 41 + 4. Here, we choose the first path as our 
solution. The thick edges corresponding to this 
optimal allocation is shown in Fig. 4. 

3. Conclusions 

In this paper, we consider the problem of find- 
ing efficient algorithm for allocation of a chain-like 
task on the chain-like network computers. Bokhari 
first presents a solution to this problem with time 
complexity 0(m3n). Our algorithm can improve 
Bokhari’s method. The time comple.xity of the 

proposed algorithm is O(min( m, n)m’). In ad- 
dition, the constraints of all processors to be 
utilized and n < m are relaxed. In some cases, if 
all processors are utilized, the allocation is not 
necessarily optimal. The extra processing and 
waiting time due to interprocessor communica- 
tions will increase the task turnaround time. 
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