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Abstract: In this paper, a navigation system for autonomous mobile robots is proposed.  
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1 Introduction 
Nowadays, robotics has been growing vigorously, and it is 
the science of robots that covers many subjects, such as 
electronics, mechanics and software. Most robots are mobile 
that can be operated in the real-world environment without 
any form of external control. Hence, they are called 
“autonomous mobile robots”. One of the most fundamental 
and important issues is to let these robots be able to reach 
the scheduled position. The movement of robots is 
controlled by their own navigation system, which is the  
key to the right movement action. Thus, in this paper,  
we focus on design and implementation of a navigation 
system for autonomous mobile robots. We present an 
effective navigation system that permits robot to arrive in 
the correct position. 

Robot navigation systems can be classified into 
behaviour-based and model-based systems. Behaviour-
based navigation systems (Grush, 2004; Sheu et al., 2008; 
Simpson et al., 2006) are composed of a layered set of  
task-achieving modules. It implements a specific robotic 
behaviour in each module, which can only solve the portion 
of the required navigation problem. However, a set of 
modules can cooperate to mimic more complex behaviours. 
Behaviour-based navigation systems, which neither need 
precise locations nor miss their own positions, have better 
flexibility. Besides, they can be implemented quickly in a 
simple environment. They do not need a map of the 
environment and therefore they cannot do high-level path 
planning. In other words, they just simply and directly 
return action feedback with regard to their sensing 
environment, so they cannot handle complex situations or 
environments. 

Model-based navigation systems (Luke et al., 2005) 
consist of four phases, namely perception, localisation, 
planning and motion control. In the first phase, the 
navigation systems collect the environmental information 
such as the location of walls, doors, obstacles and people. In 
the second phase, they use the current and historical 
information to estimate their locations in the maps. In the 
third phase, they plan the path from their own robot  
location to their own destination. Furthermore, they guide 
their robots along that path to destination. Thus, the  
robots are able to accomplish their navigation missions. 
Because of using map-based concept of position explicitly, 
model-based navigation systems are suitable for any simple 
or complex environment with its correct and precise map. 
Navigation systems can do more highly intelligent path 
planning to let the robot move more efficiently by utilising 
the maps. Furthermore, people can also utilise the maps 
conveniently to command the robot to move. However, 

model-based navigation systems depend on the internal 
stored map and historical information of the environment.  
If there is great difference between the map and the stored 
information of the environment, the robot will get lost 
owing to being incapable of estimating its own position.  
If we got the more precise map and information that sensors  
get, the model-based navigation systems operate constantly 
without fail. However, higher costs for implementing the 
map and sensors required are the disadvantages of the 
model-based navigation systems. 

The goal of this paper is to design and implement a 
navigation system for an autonomous mobile robot. Our 
navigation system is capable of navigating the autonomous 
robot to the target position correctly. It is also a hybrid of 
behaviour-based and model-based systems and therefore it 
has both of their advantages. The research of WSNs  
(Karl and Willing, 2007; Sheu et al., 2008) is becoming 
popular recently. A WSN is a network consisting of 
spatially distributed autonomous devices using sensors to 
cooperatively monitor/sense environmental conditions. 
There are some papers that discuss the localisation in WSNs 
(Sheu et al., 2006) and robots in WSNs (Batalin et al., 2004; 
Terwilliger et al., 2004). In our scheme, the system stores 
the map of the environment, which can utilise the  
model-based algorithm to estimate the position of the robot. 
In addition, we use the localisation algorithm of WSNs 
(Sheu et al., 2006) to help our system to localise the robot 
robustly. The path from mobile robot to the destination is 
divided into many virtual points to let the behaviour-based 
algorithm be able to use them. Then, we use the  
behaviour-based algorithm to approach each virtual point.  
If there are some obstacles in the way, we can use our 
algorithm to avoid obstacles and keep the robot moving 
towards the destination. We use multithread technology to 
implement our navigation system. Hence, important 
modules of our navigation system can run concurrently and 
our system can utilise the multi-core processor efficiently. 
On the basis of our experimental results, we observe that 
our navigation system can succeed in navigating the robot to 
the destination, and the robot with our navigation system 
can patrol a variety of the indoor passages correctly. Thus, 
these experimental results make it clear that we present a 
navigation system for an autonomous robot that would be 
able to navigate the robot to the correct place. 

The remainder of this paper is organised as follows.  
In Section 2, we review the navigation systems of the robot. 
In Section 3, we present our navigation system and 
algorithms. The system implementation and experimental 
results are shown in Section 4. Finally, the paper is 
concluded in Section 5. 
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2 Preliminary 
Generally, the navigation of the robots can fall simply into 
three steps: 

1 utilising the robot own sensors to collect the 
environmental information such as the location  
of walls, doors, obstacles and people 

2 using the information to make a strategic decision 

3 controlling motors to move in accordance with the 
decision. 

Therefore, robot depends on its own architecture to achieve 
its navigation; thus, we have to design a navigation system 
of the robot according to its own mechanism, hardware 
architecture and software platform. Various robots have 
different kinds of shapes, mechanisms and architectures,  
so their navigation systems must be adjusted in accordance 
with those differences; besides, the components that are the 
most related to the navigation system are sensors, motion 
mechanisms, software platforms and Software Development 
Kits (SDKs). 

Robots depend on their sensors to obtain the information 
from the environment, and provide their own navigation 
systems with this information. There are many common 
sensors, such as infrared, ultrasound, laser and camera; 
besides, these sensors have their respective distinguishing 
characteristics and properties. Software platforms and SDKs 
of the robots are used to implement the robot navigation 
system. However, neither software platforms nor SDKs 
have a product that has a very high market share; therefore, 
many companies have been investing a lot of resources in 
developing their products to increase their market share 
(Kramer and Scheutz, 2007). There are some famous 
products, such as Microsoft Robotics Studio (MSRS) 
(Jackson, 2007) and Evolution Robotics Software Platform 
(ERSP) (Munich et al., 2005). 

2.1 Behaviour-based system 

In Figure 1, the behaviour-based navigation systems consist 
of a layered set of task-achieving modules. Each module 
implements one specific behaviour that achieves or 
maintains goals, such as wall following (Tarokh and Kuo, 
2007), goal detection, obstacle avoidance (Ma and Yang, 
2007) and new area discovering. Therefore, each module 
has to solve only the part of the navigation problem that it 
requires; in addition, each module can take inputs from the 
sensors of the robot (e.g., ultrasound, infrared or camera) or 
from other modules in the system and send outputs to the 
actuators of the robot (e.g., wheels, arms or legs) or to other 
behaviours. Thus, a behaviour-based system is a structured 
network of such interacting modules (i.e., behaviours), and a 
set of modules can work together in various combinations to 
display behaviours that mimic more complex actions, such 
as robot navigation. 

Behaviour-based navigation systems are based on a 
belief that sensors and actuators are noisy and  
information-limited, so they avoid creating a geometric 

map. Hence, behaviour-based navigation systems avoid 
explicit reasoning about localisation and position; instead, it 
designs sets of behaviours that work together to achieve the 
desired robot motion. Accordingly, behaviour-based 
navigation systems have better flexibility because they do 
not need precise localisations and they would not have the 
problems of missing their own positions, therefore they can 
handle more uncertain factors. Furthermore, behaviour-
based navigation systems can be implemented quickly in a 
simple environment, but they may not handle complex 
situation or environment. The reason for the above is that it 
is too hard to design sets of behaviours in a complex 
situation and it may cost the robot too much time to 
accomplish its navigation in the complex environment. 

Figure 1 Architecture for behaviour-based navigation system 

2.2 Model-based system 

In contrast to the behaviour-based approach, the  
model-based (also called map-based) approach includes 
both localisation and planning modules; besides, it is 
organised in a hierarchical fashion. In Figure 2,  
the model-based navigation systems consist of four phases, 
namely perception, localisation, planning and motion 
control. First, the navigation system uses the sensors of the 
robot to take inputs, for example, using ultrasound to get 
range data and using camera to get an image data, then, 
system uses algorithms to transform data to information that 
indicates the environment around the robot, such as the 
location of walls, doors, obstacles and people (perception). 
Second, because system owns the current and historical 
information with the environmental map, it can utilise the 
localisation algorithms (e.g., Odometry (Go et al., 2006), 
Markov localisation (Fox et al., 1999) or Kalman filter 
localisation (Roumeliotis and Bekey, 2000)) to estimate 
their positions in the map (localisation). Third, for an 
efficient movement, the navigation systems utilise the  
path-planning algorithms (Karl and Willing, 2007) to plan 
the path from the location of the robot to the destination. 
Finally, it sends outputs to the actuators of the robot to 
guide the robot along that path. Thus, the robot is going to 
reach the destination and accomplish the navigation in the 
end of motion control. In addition, there is an extended 
technique called Simultaneous Localisation and Mapping 
(SLAM) (Dissanayake et al., 2001). It is used by an 
autonomous robot/vehicle to start in an unknown location in 
an unknown environment, and then to incrementally  
build up the map of this unknown environment while 
simultaneously using this map to compute the current 
position of the robot/vehicle. However, SLAM of the 
mobile robots generally refers to the process of creating 
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geometrically accurate maps of the environment. So, the 
sensors of the robot should be accurate enough to create a 
precise map such as laser. However, it is costly to build a 
robot with SLAM. 

Figure 2 Architecture for model-based navigation system 

Model-based navigation systems use map-based concept of 
position explicitly. They are suitable for any environment 
no matter how complex it is, as long as they have the correct 
and precise maps of the environments. Therefore, when we 
want to deploy model-based robot to a new environment,  
we only have to simply give the robot a new map; then,  
the robot will operate correctly in the new environment as 
usual. In addition, navigation systems can utilise the maps 
to do more highly intelligent path planning, and can let 
robot move to the target position more efficiently. 
Furthermore, the map can represent a medium for 
communication between human and robot; it can show a lot 
of information about the robot and environment with using 
maps; it lets people be able to understand the state of the 
robot more clearly and to command the robot more 
conveniently. 

We see that model-based navigation systems are based 
on the internal stored map and historical information of  
the environment. However, for a robot, to be able to use an 
internal representation of the spatial layout of its 
environment to position is a very complex task. First, 
sensors are the fundamental robot input for the process of 
perception, but there are sensor noise problems. Second, the 
map usually only records the permanent objects (e.g., walls, 
doorways) and movable static objects (e.g., boxes, chairs or 
doors), but there are many dynamic objects (e.g., people, 
dogs, cats or other robots) in the real world. Thus,  
if there are too many dynamic objects or static objects 
moved to other positions different from original map, it will 
cause great difference between the map and the information 
of the real environment, and robot will get lost because of 
being incapable of estimating its own position; then, whole 
navigation system will be invalid, and robot will not be able 
to accomplish its navigation mission. Therefore, using  
good sensors and good geometric maps that can indicate the 
real environment correctly and precisely is important for the 
model-based navigation. Certainly, it costs higher.  
In addition, there are still some navigation systems, which 
are designed to combine behaviour-based and model-based 
navigation systems (Na and Oh, 2003; Qureshi et al., 2004). 

To sum up, both behaviour-based and model-based 
navigation systems have their distinguishing advantages and 
disadvantages, and we want our navigation system to have 
both of their advantages. Besides, we expect that our system 
can be implemented rapidly and cost less. Thus, we design 

our navigation system to be a hybrid of behaviour-based and 
model-based to make it happen. Furthermore, to conquer 
localisation problem from model-based systems, we use the 
localisation technology of WSNs to help us. Thus, our 
system is simple, but effective. It will be not only applied 
extensively but also robust. 

3 System architecture and algorithms 
In this section, we present our system including the 
architecture and algorithms. The purpose of our navigation 
system is to guide the robot to the desired destination, and it 
can avoid those obstacles on its navigation way and reach 
the destination safely and correctly. There are a lot of issues 
of navigation. The real environment has a lot of kinds of 
objects such as doors, walls or tables; it is not easy to make 
a map record of all objects precisely. There are too many 
uncertain factors in the real world, and too many uncertain 
factors cause that the navigation would become very hard, 
and the navigation system is easy to be invalid. The 
localisation of a robot is a big problem because a robot may 
have limited sensors (often has its own noise problem) and 
the stored map may not be precise enough, therefore it is 
difficult to localise the robot exactly. In addition, the system 
must be fast enough to react to an emergent accident,  
and so on. Thus, we need both of the advantages of 
behaviour-based and model-based navigation systems to 
overcome those navigation problems. 

The architecture of our system is shown in Figure 3.  
Our system consists of many modules, such as wall 
following, obstacle avoidance, heading towards the 
destination, localisation and planner. Among these modules, 
wall following, obstacle avoidance, heading towards the 
destination and fusion form the behaviour-based subsystem, 
and localisation and planner form the model-based 
subsystem. In our scheme, the behaviour-based subsystem is 
in charge of low-level reactive actions and the model-based 
subsystem is in charge of high-level planned actions.  
In other words, behaviour-based subsystem is responsible 
for the execution and for reacting to unforeseen situations, 
and model-based subsystem models the environment and 
plans actions. Our system use model-based algorithms to 
localise our robot with the map of the environment and to 
plan an efficient path to the destination. Then, it divides  
the path into several virtual points as sections of the path for 
behaviour-based algorithms, because behaviour-based 
algorithms are suitable for short distance moving; 
accordingly, our system can utilise the behaviour-based 
algorithms to approach each virtual point, and finally reach 
the destination; in this way, we can conquer the uncertain 
factors and handle emergent tasks (e.g., obstacle avoidance) 
more effectively. 

After introducing the whole navigation system, the 
details of modules of our system are given here. The 
responsibility of User Interface is simple. User Interface is 
designed to communicate with users and to receive 
commands from users. Command System is responsible for 
transforming user command into a series of system 
commands that drive the navigation system. 
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Figure 3 The architecture of our navigation system (see online 
version for colours) 

3.1 Behaviour-based algorithms 

Our behaviour-based subsystem is composed of wall 
following, obstacle avoidance, heading towards the 
destination and fusion. First, we introduce heading towards 
the destination. The purpose of heading towards the 
destination is to let the robot rotate and head to the target 
position. In Figure 4, the first step of it is to use  
the positions of the robot and target to compute the direction 
of the target (θt) relative to the robot by using equation (1). 

1tant
y
x

θ − ∆=
∆

 (1) 

where θt is the direction of the target, ∆x and ∆y are the 
difference between the x coordinate and y coordinate of the 
target and robot, respectively. After we get the direction of 
the target (θt), we can utilise it and the heading of the robot 
(θr) got from the system to compute the included angle (θ)
of the direction of the target and the heading of the robot. 
Accordingly, the robot rotates by the degree of this angle, 
and then goes straight towards the target. 

Figure 4 An included angle between the target and the heading 
of the robot (see online version for colours) 

Second, we describe the module of wall following. Wall 
following is a typical behaviour of navigation. If the 
environment is only partially known with lacking position 
information, the robot can use a wall following strategy  
to fulfil some navigation missions quickly without having to 
learn an unknown environment. Certainly, if the 
environment is known clearly, the robot may not need to 
sense along a wall and could move along a planned path.  
In this case, wall following can still help the robot to avoid 
unforeseen obstacles and to move more smoothly. In our 
scheme, if a robot has a short distance moving as shown in 
Figure 5, we utilise the displacement of the robot from a 
short time before to current moment (as the length of line 1), 
the current distance sensed by ultrasonic sensor to the wall 
(as the length of line 2) and the previous distance sensed  

by ultrasonic sensor to the wall (as the length of line 3) to 
estimate the included angle (θ) between the heading of the 
robot and the wall. 

Figure 5 Computing the included angle of the heading of the 
robot and the wall (see online version for colours) 

There is the problem of sensor noise that induces a 
limitation on the consistency of sensor readings in the same 
environmental state. For reducing the effect of sensor noise, 
we do not directly use the distance sensed by ultrasonic 
sensor to the wall (i.e., the present ultrasonic sensor 
reading), but use equation (2) to estimate the current 
distance to the wall. In equation (2), we use the last two 
estimative distances to adjust the current distance sensed  
by ultrasonic sensor to the wall that can reduce the effect of 
sensor reading error owing to sensor noise. 

now 1 2t t td d d dα β γ− −= × + × + ×  (2) 

where dt is the estimative distance to the wall on the current 
time, dt–1 is the estimative distance to the wall at last time, 
dt–2 is the estimative distance to the wall at the time before 
last time, dnow is the present distance that sensor is reading, 
α, β, γ are parameters and α + β + γ = 1 (We set α = 0.6, 
β = 0.3 and γ = 0.1 in our experiments). After estimating the 
included angle between the robot and the wall, the robot 
knows how to rotate to follow the wall in accordance with 
this included angle (i.e., try to let the included angle be 
zero).

Third, we present the algorithm used in obstacle 
avoidance module. Our obstacle avoidance algorithm is an 
extended Bug algorithm (Broadhurst et al., 2005). The Bug 
algorithm is a simple but effective obstacle avoidance 
algorithm. The behaviours of the Bug algorithm are: 

1 following the contour of each obstacle 

2 moving in a straight line towards goal. 

The typical Bug algorithms are Bug 1 and Bug 2; using  
Bug 1, the robot fully circles the obstacle, and then departs 
from the point with the shortest distance moving towards 
the goal, of course, this scheme is inefficient. With Bug 2,  
the robot heads towards the goal on the line that starts from 
the location of the robot to the goal. If an obstacle is in the 
way, the robot follows the contour of the obstacle until the 
robot encounters the above line again. In general, Bug 2 
algorithm will have significantly shorter travel than Bug 1. 

We modify the typical Bug algorithms to be our obstacle 
avoidance algorithm. In our scheme, if an obstacle is in the 
way, first, we use ultrasonic sensors to find which side of 
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the robot is nearest obstacles; if the right (left) side of the 
robot is nearest obstacles, the robot turns left (right) and 
then using right (left) wall (obstacle) following follows the 
contour of the obstacle. The robot departs immediately 
when its heading is equal to the direction of the goal and 
there is no obstacle in the way, and then it moves directly 
towards the goal. In general, our algorithm will have shorter 
total robot travel distance than Bug 2 as shown in  
Figure 6. 

Figure 6 Examples of obstacle avoidance with H, hit point,
and L, leave point (a) Bug 2 algorithm and (b) our
obstacle avoidance algorithm 

 (a) (b)

Finally, we present the design of the fusion module.  
The purpose of the fusion is to combine behaviour modules 
(wall following, obstacle avoidance, heading towards the 
destination) to display the short-distance navigation.  
In Figure 7, the structure of the fusion is layered, and each 
layer is a behaviour module. Besides, layers of the fusion 
have different levels; a higher layer has a higher level. 
When one layer (module) has to be active, the layer can 
send a ‘suppressive signal’ to suppress other lower-level 
layers. Therefore, if there are several behaviours operating 
at the same time, only a behaviour module can drive the 
actuators.

Figure 7 The layer structure of the fusion (see online version  
for colours) 

In our design, we assign the highest level to the layer 
(module) of obstacle avoidance, because avoiding obstacles 
has top priority to prevent the robot from being damaged. 
The layer (module) of wall following is assigned the normal 
level; when the robot is near the wall and wall following 
benefits approaching the target, the robot will follow the 
wall to approach the target. Finally, we assign the lowest 
level to the layer (module) of heading towards the 
destination; the fundamental purpose of the navigation is to 

let the robot reach the destination, so the robot should be 
heading towards the destination all the time in an ordinary 
situation. 

The behaviour-based subsystem that consists of wall 
following, obstacle avoidance, heading towards the 
destination and fusion can achieve the short-distance 
navigation. The operating process of the behaviour-based 
subsystem is as follows. At the beginning of the process,  
the behaviour-based subsystem receives the information of 
the target including its position. Then, it uses the module  
of heading towards the destination to approach the target 
constantly in an ordinary situation. If there is a wall near the 
robot, the subsystem let the robot follow the wall by using 
the module of wall following as long as the robot following 
this wall profits approaching the target. When an obstacle is 
in the way, the subsystem utilises the module of obstacle 
avoidance to avoid it. After repeating these steps, the 
subsystem will guide the robot to the target, and will have 
accomplished its short-distance navigation task in the end. 

3.2 Model-based algorithms 
Model-based subsystem is composed of localisation and 
planner. First, we introduce localisation. The purpose of 
localisation is to estimate the robot position. Our module of 
the localisation consists of three techniques. The first 
technique is odometry that is the most widely used method 
for estimating the position of a mobile robot. Besides, 
relative positioning is usually based on odometry that is 
monitoring the wheel revolutions to compute the offset from 
a known starting position. Odometry is simple, inexpensive, 
and easy to accomplish in real time. But, the drawback of 
odometry is unbounded accumulation of errors. 

Furthermore, when the robot is operating, the  
robotic coordinates system may be different with the global 
coordinates system as shown in Figure 8. So, we have to 
transform the position in the robotic coordinates system into 
the position in the global coordinates system. By using 
equation (3). 

cos sin
sin cosG Rp p

θ θ
θ θ

è ø
= ×é ù
ê ú

 (3) 

where pR is the position of the robot in its own robotic 
coordinates system, and pG is the position of the robot in the 
global coordinates system. Both pR and pG are vectors with x
coordinate and y coordinate, and θ is the angular difference 
between the global and the robotic coordinates system.  
In Figure 8, by applying θ = 90° to equation (3), we can get 
that the x coordinate of the global coordinates system (XG) is 
equal to the negative of the y coordinate of the robotic 
coordinates system (–YR), and that the y coordinate of the 
global coordinates system (YG) is equal to the x coordinate 
of the robotic coordinates system (XR).

Accordingly, we design a simple and effective 
localisation algorithm for our system to reduce 
accumulative errors of odometry. The main idea of this 
localisation is shown in Figure 9. First, the robot uses wall 
following algorithm to follow the wall, the state of the robot 
(i.e., the position and the heading of the robot) in reality 
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would be Figure 9(a). Besides, because of accumulative 
errors of odometry, the internal state of the robot estimated 
by odometry with the stored map would be inaccuracy like 
Figure 9(b). Therefore, we have to calibrate the internal 
state of the robot close to the state of the robot in reality 
(i.e., reduce errors of odometry). We use the ultrasonic 
sensor readings to calculate the heading of the robot in 
reality, and then use it to calibrate the internal heading of 
the robot as shown in Figure 9(c). Afterward, using the 
distance sensed by ultrasonic sensor to the wall calibrates 
the internal position of the robot as shown in Figure 9(d). 
Thus, we have accomplished the calibration of the internal 
position and heading of robot estimated by odometry with 
the stored map (localisation), and have reduced the errors of 
odometry to let the robot have a more accuracy estimated 
state. Furthermore, when the robot follows a wall every 
time, the robot will check the difference between the 
position and heading of robot calculated by using ultrasonic 
sensor readings and the internal position and heading  
of the robot estimated by the odometry with stored map.  
If the difference is bigger than a threshold (the threshold of 
the positional difference is 66 cm and the threshold of the 
heading difference is 5° in our experiments), we calibrate 
the internal position and heading of the robot with this 
algorithm. 

However, even we use the above-mentioned localisation 
techniques; the robot may be still lost sometimes, because 
there is the accumulation of odometry errors, and not every 
environment can use our localisation algorithm. Therefore, 
we use the localisation technology of the WSNs to help us 
localise our robot more robustly. The location algorithm of 
WSN we used is based on Received Signal Strength 
Indicator (RSSI) values that will decrease when the distance 
increases. Reference nodes are static nodes placed at known 
positions. A Blind node is a node that will collect signals 
from all reference nodes responding to a request. Then,  
it reads out the respective RSSI values and feeds the 
collected values into the hardware engine. Afterward,  
it reads out the calculated position and sends the position 
information to our navigation system. Thus, we deploy the 
reference nodes in some complex environment such as 
around intersection, corners, or some environments without 
walls, and put the blind node on our robot to let it operate 
with our navigation system. In this way, we could utilise the 
localisation of the WSNs to help us localise our robot and 
check the estimated position in our system. 

However, RSSI that can be affected by multi-path and 
noise is unstable. Therefore, the localisation of the WSNs 
based on RSSI sometimes would be unstable, and we would 
get a big positional difference between the current and 
previous calculated positions. If we detect that the 
difference between the current and previous calculated 
positions is bigger than a threshold, we use the last 
calculated position plus the last displacement of the robot  
to be the new calculated position instead. Since the average 
speed of our robot is 0.5 m/s, and we receive an estimated 
location of the robot from sensor node per second, we set 
the threshold as 2 m in our experiments. 

Figure 8 The robotic coordinates system and the global 
coordinates system (see online version for colours) 

Figure 9 The calibration of the position and heading  
of the robot: (a) the state of the robot in reality;  
(b) the internal state of the robot; (c) calibrate the 
heading of the robot and (d) calibrate the position
of the robot (see online version for colours) 

 (a) (b)

 (c) (d)

Finally, we present the module of the planner. The main 
purpose of planner is that it plans an efficient path from the 
location of the robot to the destination, and divides that path 
into many segments for behaviour-based subsystem.  
In Figure 10, we use the A* algorithm (Dalmau, 2003) to be 
our path-planning algorithm. A* is a well-known and 
effective algorithm, and is a best-first, graph search 
algorithm that finds the least-cost path from a given initial 
node/position to the goal node/position. After A* have 
planned the path, the path would be divided into many 
segments, because the behaviour-based subsystem is 
capable of accomplishing a short-distance navigation task 
very well, but it is not good at long-distance navigation task 
or complex situation (e.g., the robot should turn many times 
in the navigation task). Therefore, we assign many virtual 
points to the path, and these virtual points divide the path 
into segments. The method of assigning virtual points is that 
every short distance (we used 10 m in our experiments),  
we assign a virtual point to the straight-line region of the 
path, and we assign a virtual point to each turning point  
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of the path. Afterward, the behaviour-based subsystem can 
approach each virtual point and reach the destination finally. 

Figure 10 A path from start to goal with virtual points (see online 
version for colours) 

To sum up, the process of our navigation system is as 
follows. First, the system gets the destination required from 
the user; it uses the model-based algorithm to plan the path 
to the destination with the stored map and gets many virtual 
points that divide this path into segments. Then, it uses the 
behaviour-based algorithm to approach each virtual point. 
During the period of the approaching, each virtual  
point, if there is an obstacle in the way, can use the  
behaviour-based algorithm to avoid it; besides, it uses the 
model-based algorithm with WSN to localise the robot 
continuously. Finally, the robot reaches the destination 
without fail, and our navigation system has accomplished a 
successful navigation mission. 

4 System implementation and experiments 
In this section, we present how to implement our navigation 
system and show the results of our experiments. We chose 
Pioneer 3-DX as our robot platform. The P3-DX is a  
two-wheel-drive robot. It is 44 × 38 × 22 cm3 aluminium 
body and its weight is 9 kg. The P3-DX can move at speeds 
of 1.6 m/s on the flat floor. In addition, the P3-DX base 
includes eight ultrasonic sensors that read ranges from 
10 cm to 5 m basically. The P3-DX can contain up to three 
12 volts direct-current batteries for long missions. Besides, 
it includes a 32-bit RISC-based controller; the robotic 
software running on a computer can be connected with  
its microcontroller via the host serial link to provide the 
high-level intelligent robot controls. 

Furthermore, we use a notebook computer for running 
our robotic software. We put this notebook computer on our 
robot (P3-DX), and connect it with the robot for providing 
intelligent controls. In addition, we deployed a WSN using 
CC2431 (Texas Instruments Inc., 2007) nodes 0 in the 
portion of the experimental environment, and put a CC2431 
node communicating with the notebook computer on the 
robot. The CC2431 is a true system-on-chip for wireless 
sensor networking ZigBee/IEEE 802.15.4 solutions.  
The chip includes a location engine that can be used in 
nodes with unknown location (i.e., blind node) to receive 
signals from nodes knowing their locations (i.e., reference 
nodes). On the basis of the location engine, it can calculate 
an estimate of position of the blind node. 

The operating system we used on our notebook 
computer is Microsoft Windows XP Service Pack 2.  
We chose the programming language C++/CLI and 

Microsoft Visual Studio 2008 to develop our navigation 
system in the .NET 2.0 platform. For controlling our robot, 
we utilised Advanced Robotics Interface for Applications 
(ARIA) to achieve it. The ARIA written in C++ language is 
an object-oriented robot control application, programming 
interface for P3-DX, and is a programming library for 
programmers to access/control their robots. 

Moreover, we used multithread technology to establish 
our navigation system. A multithreaded application allows 
us to run several threads, and each thread is running in its 
own process. Therefore, we are able to run important 
subprogrammes (modules) of our navigation concurrently. 
Obviously, it is the advantage of our navigation system. 
When our robot is heading towards the destination, our 
robot can detect constantly if there are obstacles in its way 
concurrently. Hence, if there are some obstacles in the way, 
our robot can react to those obstacles more rapidly and 
would prevent itself from the collision more effectively.  
In addition, there are more and more multi-core computers 
in the future and we see that the benefit of having multi-core 
processor is that the system can handle more than one 
thread. Our navigation system designed with multithread 
can utilise the multi-core processor more efficiently than 
any single-threaded robotic programme. 

The following is the results of our experiments. In our 
experiments, the moving speed of the robot is set to  
0.5 m/s. In the first experiment, we wanted to test if our 
navigation system is able to guide the robot to the 
destination correctly in an ordinary environment. We chose 
an indoor passage of the building as our navigation 
environment. The rough environmental map of the first 
experiment is shown in Figure 11. The robot with our 
navigation system was going to patrol this section of the 
passage. The result of the first experiment is shown in 
Figure 12. 

Figure 11 The rough environmental map of the first experiment 
(see online version for colours) 

Figure 12 The robot with our navigation system is patrolling the 
passage (see online version for colours) 

 (a) (b) (c) 

 (d) (e) (f) 
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Figure 12 The robot with our navigation system is patrolling the 
passage (see online version for colours) (continued) 

 (g) (h) (i)

The position of the robot in Figure 12(a)–(i) is equal to the 
position (a)–(i) in Figure 11. In Figure 12(a)–(d), the robot 
is moving forward in a straight line with wall following. 
Figure 12(d)–(f) shows the turnaround of the robot. We can 
see that the robot is following wall to move in a straight line 
again in Figure 12(f)–(i). On the basis of the result, we can 
see that our robot can move in a straight line by using wall 
following and the included angle of the heading of the robot 
and the wall is smaller than 3°; while our robot is following 
the wall, it keeps a distance to the wall that is bigger than 
90 cm for safe; our navigation system can operate correctly 
and control the robot to achieve a successful patrol. 
Furthermore, the length of this patrol is 26 m. The total time 
of the patrol is 54 s, and the average speed is 0.4815 m/s.  
It is clear that the average speed is close to the speed we set 
and the movement of our robot is very fluent. 

In the second experiment, we wanted to challenge the 
ability of our navigation system. For this reason, we added 
an opened umbrella and a big box in the environment of the 
above-mentioned experiment to build a much more complex 
environment. Our robot should go through these obstacles 
and accomplish its patrol mission to prove that it can 
operate very well in a much more complex environment. 
The experimental result of our robot patrolling this 
environment is shown in Figure 13. 

Figure 13 Our robot is patrolling the passage with a bonsai,  
an open umbrella and two boxes in its way (see online 
version for colours) 

 (a) (b) (c)

 (d) (e) (f) 

 (g) (h) (i) 

Figure 13 Our robot is patrolling the passage with a bonsai,  
an open umbrella and two boxes in its way (see online 
version for colours) (continued) 

 (j) (k) (l)

 (m) (n) (o)

In Figure 13(a)–(e), our robot finds the obstacles in its way; 
then, the robot follows continuously the contours of the 
bonsai and the opened umbrella to avoid them in an 
impressive manner. Figure 13(f)–(k) shows that our robot 
goes through between the two boxes efficiently twice. 
Finally, our robot avoids the bonsai again and returns to the 
start as shown in Figure 13(l)–(o). According to this 
experimental result, we see that our navigation system is 
also suitable for a much more complex environment, and 
that our navigation system can achieve its patrol task 
effectively as usual in the complex environment. 
Furthermore, the length of this patrol is 26 m. The total time 
of the patrol is 78 s, and the average speed is 0.3333 m/s. 
The average speed of the robot in this experiment decreases 
more than in the second experiment because of more 
obstacles in the way. 

In the last experiment, we chose a different form of 
environment for our test as shown in Figure 14. We would 
test if our system can patrol various forms of the 
surroundings. The result of our robot patrolling this area is 
shown in Figure 15. 

Figure 14 The rough environmental map of the fourth experiment 
(see online version for colours) 

Figure 15 The robot with our navigation system is patrolling the 
passage (see online version for colours) 

(a) (b) (c) 
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Figure 15 The robot with our navigation system is patrolling the 
passage (see online version for colours) (continued) 

 (d) (e) (f)

 (g) (h) (i)

 (j) (k) (l)

The position of the robot in Figure 15(a)–(l) is equal to the 
position (a)–(l) in Figure 14. In Figure 16(a)–(c), the robot 
is moving in a straight line with wall following as earlier. 
The robot turns right into another section of the passage for 
patrolling in Figure 15(d)–(e). To mention in passing,  
it would increase accumulative errors of odometry after the 
robot turned many times. Hence, the estimated position of 
the robot would become inaccurate. However, we could 
utilise our localisation algorithm and WSN to help us to 
calibrate the estimated position of the robot. So, our robot 
could have a reliable estimated position of itself. Therefore, 
after a sequence of actions in Figure 15(a)–(h), the 
estimated position of our robot has become a little 
inaccurate. Then, our system detects this inaccuracy and 
localises the robot for decreasing the inaccuracy of the 
estimated position of our robot, as shown in Figure 15(i). 
Afterward, robot can continue patrolling the area to 
accomplish its patrol mission, referring to Figure 15(i)–(l). 
On the basis of this experiment result, it is clear that  
our system can handle various forms of the indoor 
environments. Furthermore, the length of this patrol is 33 m. 
The total time of the patrol is 74 s, and the average speed is 
0.4459 m/s. The patrol path in this experiment is more 
complex than in the first experiment so the average speed in 
this experiment is slower than in the first experiment. 
However, there are no obstacles in the way; hence, the 
average speed in this experiment is faster than in the second 
experiments. 

5 Conclusion 

In this paper, a navigation system for autonomous mobile 
robots has been developed, which achieves safe and robust 
navigation in an arbitrary indoor environment. To be 
specific, we combine behaviour-based and model-based 
navigation systems to form our navigation system.  

We utilise the behaviour-based subsystem to achieve  
low-level reactive actions such as wall following or obstacle 
avoidance; the model-based subsystem is in charge of  
high-level planned actions such as planning or localisation. 
Furthermore, our system can communicate with WSN and 
use the localisation technology of WSN to calibrate the 
estimated position of our robot. Hence, our robot can 
localise itself more robustly. On the basis of our 
experimental results, the average speed of our robot closes 
to the speed we set, and the movement of our robot is fluent. 
Besides, the robot with our navigation system can use wall 
following to move in a straight line and can avoid obstacles 
in its way successfully. In conclusion, the robot with our 
navigation system can still patrol the passages correctly and 
efficiently even if there are many unforeseen obstacles in 
the way. 
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