
Int. J. Ad Hoc and Ubiquitous Computing, Vol. 6, No. 3, 2010 129

Copyright © 2010 Inderscience Enterprises Ltd.

Design and implementation of a navigation system
for autonomous mobile robots

Jang-Ping Sheu*
Department of Computer Science,
National Tsing Hua University,
Hsinchu, Taiwan 30013
Fax: +886-3-572-3694
E-mail: sheujp@cs.nthu.edu.tw
*Corresponding author

Chia-Chi Chang and Kai-Wen Lo
Department of Computer Science and Information Engineering,
National Central University,
Chung-Li, Taiwan 32001
E-mail: dyson0703@gmail.com
E-mail: kevinlo@axp1.csie.ncu.edu.tw

Chi-Wen Deng
Networks & Multimedia Institute,
Institute for Information Industry, Taiwan
E-mail: cwdeng@nmi.iii.org.tw

Abstract: In this paper, a navigation system for autonomous mobile robots is proposed.
Our navigation system is a hybrid of behaviour-based and model-based navigation systems.
In our system, a behaviour-based subsystem is in charge of low-level reactive actions, and a
model-based subsystem is responsible for high-level planned actions. If there are obstacles in the
way, the navigation system will use our obstacle avoidance algorithm to navigate around these
obstacles and keep the robot moving towards the destination. On the basis of our experimental
results, our navigation system can navigate the robot to the destination effectively.

Keywords: hybrid architecture; localisation; navigation system; obstacle avoidance; WSNs;
wireless sensor networks.

Reference to this paper should be made as follows: Sheu, J-P., Chang, C-C., Lo, K-W. and
Deng, C-W. (2010) ‘Design and implementation of a navigation system for autonomous mobile
robots’, Int. J. Ad Hoc and Ubiquitous Computing, Vol. 6, No. 3, pp.129–139.

Biographical notes: Jang-Ping Sheu received the BS in Computer Science from Tamkang
University, Taiwan, Republic of China, in 1981, and the MS and PhD in Computer Science from
National Tsing Hua University, Taiwan, in 1983 and 1987, respectively. Currently, he is a
Chair Professor of the Department of Computer Science, National Tsing Hua University.
His current research interests include wireless sensor networks, vehicular ad hoc networks
and mobile computing. He was an Associate Editor of the IEEE Transactions on Parallel and
Distributed Systems. He is an Associate Editor of International Journal of Ad Hoc and
Ubiquitous Computing and International Journal of Sensor Networks. He is an IEEE Fellow,
a member of the ACM and Phi Tau Phi Society.

Chia-Chi Chang received the BS in Mechanical Engineering from Chung Yuan Christian
University in 1999, the MS in Mechanical Engineering from National Yunlin University of
Science & Technology in 2001. Currently, he is a PhD student in the Department of Computer
Science and Information Engineering of National Central University. His current research
interests include wireless sensor networks and embedded system design.

Kai-Wen Lo received his BS in Electrical and Control Engineering from Chiao Tung University
in 2006, and his MS in Computer Science and Information Engineering from the National Central
University, Taiwan, in 2008. His current research interests include wireless sensor networks and
mobile computing.

130 J-P. Sheu et al.

Chi-Wen Deng received his MSEE from National Chung Cheng University, Chiayi County,
Taiwan, ROC, in 2003. Currently, he is a Project Manager at the Department of Networks &
Multimedia Institute in Taiwan Institute for Information Industry. His areas of interest are
wireless sensor networks, intelligent system applications, embedded system and power-line
communication protocol.

1 Introduction
Nowadays, robotics has been growing vigorously, and it is
the science of robots that covers many subjects, such as
electronics, mechanics and software. Most robots are mobile
that can be operated in the real-world environment without
any form of external control. Hence, they are called
“autonomous mobile robots”. One of the most fundamental
and important issues is to let these robots be able to reach
the scheduled position. The movement of robots is
controlled by their own navigation system, which is the
key to the right movement action. Thus, in this paper,
we focus on design and implementation of a navigation
system for autonomous mobile robots. We present an
effective navigation system that permits robot to arrive in
the correct position.

Robot navigation systems can be classified into
behaviour-based and model-based systems. Behaviour-
based navigation systems (Grush, 2004; Sheu et al., 2008;
Simpson et al., 2006) are composed of a layered set of
task-achieving modules. It implements a specific robotic
behaviour in each module, which can only solve the portion
of the required navigation problem. However, a set of
modules can cooperate to mimic more complex behaviours.
Behaviour-based navigation systems, which neither need
precise locations nor miss their own positions, have better
flexibility. Besides, they can be implemented quickly in a
simple environment. They do not need a map of the
environment and therefore they cannot do high-level path
planning. In other words, they just simply and directly
return action feedback with regard to their sensing
environment, so they cannot handle complex situations or
environments.

Model-based navigation systems (Luke et al., 2005)
consist of four phases, namely perception, localisation,
planning and motion control. In the first phase, the
navigation systems collect the environmental information
such as the location of walls, doors, obstacles and people. In
the second phase, they use the current and historical
information to estimate their locations in the maps. In the
third phase, they plan the path from their own robot
location to their own destination. Furthermore, they guide
their robots along that path to destination. Thus, the
robots are able to accomplish their navigation missions.
Because of using map-based concept of position explicitly,
model-based navigation systems are suitable for any simple
or complex environment with its correct and precise map.
Navigation systems can do more highly intelligent path
planning to let the robot move more efficiently by utilising
the maps. Furthermore, people can also utilise the maps
conveniently to command the robot to move. However,

model-based navigation systems depend on the internal
stored map and historical information of the environment.
If there is great difference between the map and the stored
information of the environment, the robot will get lost
owing to being incapable of estimating its own position.
If we got the more precise map and information that sensors
get, the model-based navigation systems operate constantly
without fail. However, higher costs for implementing the
map and sensors required are the disadvantages of the
model-based navigation systems.

The goal of this paper is to design and implement a
navigation system for an autonomous mobile robot. Our
navigation system is capable of navigating the autonomous
robot to the target position correctly. It is also a hybrid of
behaviour-based and model-based systems and therefore it
has both of their advantages. The research of WSNs
(Karl and Willing, 2007; Sheu et al., 2008) is becoming
popular recently. A WSN is a network consisting of
spatially distributed autonomous devices using sensors to
cooperatively monitor/sense environmental conditions.
There are some papers that discuss the localisation in WSNs
(Sheu et al., 2006) and robots in WSNs (Batalin et al., 2004;
Terwilliger et al., 2004). In our scheme, the system stores
the map of the environment, which can utilise the
model-based algorithm to estimate the position of the robot.
In addition, we use the localisation algorithm of WSNs
(Sheu et al., 2006) to help our system to localise the robot
robustly. The path from mobile robot to the destination is
divided into many virtual points to let the behaviour-based
algorithm be able to use them. Then, we use the
behaviour-based algorithm to approach each virtual point.
If there are some obstacles in the way, we can use our
algorithm to avoid obstacles and keep the robot moving
towards the destination. We use multithread technology to
implement our navigation system. Hence, important
modules of our navigation system can run concurrently and
our system can utilise the multi-core processor efficiently.
On the basis of our experimental results, we observe that
our navigation system can succeed in navigating the robot to
the destination, and the robot with our navigation system
can patrol a variety of the indoor passages correctly. Thus,
these experimental results make it clear that we present a
navigation system for an autonomous robot that would be
able to navigate the robot to the correct place.

The remainder of this paper is organised as follows.
In Section 2, we review the navigation systems of the robot.
In Section 3, we present our navigation system and
algorithms. The system implementation and experimental
results are shown in Section 4. Finally, the paper is
concluded in Section 5.

Design and implementation of a navigation system for autonomous mobile robots 131

2 Preliminary
Generally, the navigation of the robots can fall simply into
three steps:

1 utilising the robot own sensors to collect the
environmental information such as the location
of walls, doors, obstacles and people

2 using the information to make a strategic decision

3 controlling motors to move in accordance with the
decision.

Therefore, robot depends on its own architecture to achieve
its navigation; thus, we have to design a navigation system
of the robot according to its own mechanism, hardware
architecture and software platform. Various robots have
different kinds of shapes, mechanisms and architectures,
so their navigation systems must be adjusted in accordance
with those differences; besides, the components that are the
most related to the navigation system are sensors, motion
mechanisms, software platforms and Software Development
Kits (SDKs).

Robots depend on their sensors to obtain the information
from the environment, and provide their own navigation
systems with this information. There are many common
sensors, such as infrared, ultrasound, laser and camera;
besides, these sensors have their respective distinguishing
characteristics and properties. Software platforms and SDKs
of the robots are used to implement the robot navigation
system. However, neither software platforms nor SDKs
have a product that has a very high market share; therefore,
many companies have been investing a lot of resources in
developing their products to increase their market share
(Kramer and Scheutz, 2007). There are some famous
products, such as Microsoft Robotics Studio (MSRS)
(Jackson, 2007) and Evolution Robotics Software Platform
(ERSP) (Munich et al., 2005).

2.1 Behaviour-based system

In Figure 1, the behaviour-based navigation systems consist
of a layered set of task-achieving modules. Each module
implements one specific behaviour that achieves or
maintains goals, such as wall following (Tarokh and Kuo,
2007), goal detection, obstacle avoidance (Ma and Yang,
2007) and new area discovering. Therefore, each module
has to solve only the part of the navigation problem that it
requires; in addition, each module can take inputs from the
sensors of the robot (e.g., ultrasound, infrared or camera) or
from other modules in the system and send outputs to the
actuators of the robot (e.g., wheels, arms or legs) or to other
behaviours. Thus, a behaviour-based system is a structured
network of such interacting modules (i.e., behaviours), and a
set of modules can work together in various combinations to
display behaviours that mimic more complex actions, such
as robot navigation.

Behaviour-based navigation systems are based on a
belief that sensors and actuators are noisy and
information-limited, so they avoid creating a geometric

map. Hence, behaviour-based navigation systems avoid
explicit reasoning about localisation and position; instead, it
designs sets of behaviours that work together to achieve the
desired robot motion. Accordingly, behaviour-based
navigation systems have better flexibility because they do
not need precise localisations and they would not have the
problems of missing their own positions, therefore they can
handle more uncertain factors. Furthermore, behaviour-
based navigation systems can be implemented quickly in a
simple environment, but they may not handle complex
situation or environment. The reason for the above is that it
is too hard to design sets of behaviours in a complex
situation and it may cost the robot too much time to
accomplish its navigation in the complex environment.

Figure 1 Architecture for behaviour-based navigation system

2.2 Model-based system

In contrast to the behaviour-based approach, the
model-based (also called map-based) approach includes
both localisation and planning modules; besides, it is
organised in a hierarchical fashion. In Figure 2,
the model-based navigation systems consist of four phases,
namely perception, localisation, planning and motion
control. First, the navigation system uses the sensors of the
robot to take inputs, for example, using ultrasound to get
range data and using camera to get an image data, then,
system uses algorithms to transform data to information that
indicates the environment around the robot, such as the
location of walls, doors, obstacles and people (perception).
Second, because system owns the current and historical
information with the environmental map, it can utilise the
localisation algorithms (e.g., Odometry (Go et al., 2006),
Markov localisation (Fox et al., 1999) or Kalman filter
localisation (Roumeliotis and Bekey, 2000)) to estimate
their positions in the map (localisation). Third, for an
efficient movement, the navigation systems utilise the
path-planning algorithms (Karl and Willing, 2007) to plan
the path from the location of the robot to the destination.
Finally, it sends outputs to the actuators of the robot to
guide the robot along that path. Thus, the robot is going to
reach the destination and accomplish the navigation in the
end of motion control. In addition, there is an extended
technique called Simultaneous Localisation and Mapping
(SLAM) (Dissanayake et al., 2001). It is used by an
autonomous robot/vehicle to start in an unknown location in
an unknown environment, and then to incrementally
build up the map of this unknown environment while
simultaneously using this map to compute the current
position of the robot/vehicle. However, SLAM of the
mobile robots generally refers to the process of creating

132 J-P. Sheu et al.

geometrically accurate maps of the environment. So, the
sensors of the robot should be accurate enough to create a
precise map such as laser. However, it is costly to build a
robot with SLAM.

Figure 2 Architecture for model-based navigation system

Model-based navigation systems use map-based concept of
position explicitly. They are suitable for any environment
no matter how complex it is, as long as they have the correct
and precise maps of the environments. Therefore, when we
want to deploy model-based robot to a new environment,
we only have to simply give the robot a new map; then,
the robot will operate correctly in the new environment as
usual. In addition, navigation systems can utilise the maps
to do more highly intelligent path planning, and can let
robot move to the target position more efficiently.
Furthermore, the map can represent a medium for
communication between human and robot; it can show a lot
of information about the robot and environment with using
maps; it lets people be able to understand the state of the
robot more clearly and to command the robot more
conveniently.

We see that model-based navigation systems are based
on the internal stored map and historical information of
the environment. However, for a robot, to be able to use an
internal representation of the spatial layout of its
environment to position is a very complex task. First,
sensors are the fundamental robot input for the process of
perception, but there are sensor noise problems. Second, the
map usually only records the permanent objects (e.g., walls,
doorways) and movable static objects (e.g., boxes, chairs or
doors), but there are many dynamic objects (e.g., people,
dogs, cats or other robots) in the real world. Thus,
if there are too many dynamic objects or static objects
moved to other positions different from original map, it will
cause great difference between the map and the information
of the real environment, and robot will get lost because of
being incapable of estimating its own position; then, whole
navigation system will be invalid, and robot will not be able
to accomplish its navigation mission. Therefore, using
good sensors and good geometric maps that can indicate the
real environment correctly and precisely is important for the
model-based navigation. Certainly, it costs higher.
In addition, there are still some navigation systems, which
are designed to combine behaviour-based and model-based
navigation systems (Na and Oh, 2003; Qureshi et al., 2004).

To sum up, both behaviour-based and model-based
navigation systems have their distinguishing advantages and
disadvantages, and we want our navigation system to have
both of their advantages. Besides, we expect that our system
can be implemented rapidly and cost less. Thus, we design

our navigation system to be a hybrid of behaviour-based and
model-based to make it happen. Furthermore, to conquer
localisation problem from model-based systems, we use the
localisation technology of WSNs to help us. Thus, our
system is simple, but effective. It will be not only applied
extensively but also robust.

3 System architecture and algorithms
In this section, we present our system including the
architecture and algorithms. The purpose of our navigation
system is to guide the robot to the desired destination, and it
can avoid those obstacles on its navigation way and reach
the destination safely and correctly. There are a lot of issues
of navigation. The real environment has a lot of kinds of
objects such as doors, walls or tables; it is not easy to make
a map record of all objects precisely. There are too many
uncertain factors in the real world, and too many uncertain
factors cause that the navigation would become very hard,
and the navigation system is easy to be invalid. The
localisation of a robot is a big problem because a robot may
have limited sensors (often has its own noise problem) and
the stored map may not be precise enough, therefore it is
difficult to localise the robot exactly. In addition, the system
must be fast enough to react to an emergent accident,
and so on. Thus, we need both of the advantages of
behaviour-based and model-based navigation systems to
overcome those navigation problems.

The architecture of our system is shown in Figure 3.
Our system consists of many modules, such as wall
following, obstacle avoidance, heading towards the
destination, localisation and planner. Among these modules,
wall following, obstacle avoidance, heading towards the
destination and fusion form the behaviour-based subsystem,
and localisation and planner form the model-based
subsystem. In our scheme, the behaviour-based subsystem is
in charge of low-level reactive actions and the model-based
subsystem is in charge of high-level planned actions.
In other words, behaviour-based subsystem is responsible
for the execution and for reacting to unforeseen situations,
and model-based subsystem models the environment and
plans actions. Our system use model-based algorithms to
localise our robot with the map of the environment and to
plan an efficient path to the destination. Then, it divides
the path into several virtual points as sections of the path for
behaviour-based algorithms, because behaviour-based
algorithms are suitable for short distance moving;
accordingly, our system can utilise the behaviour-based
algorithms to approach each virtual point, and finally reach
the destination; in this way, we can conquer the uncertain
factors and handle emergent tasks (e.g., obstacle avoidance)
more effectively.

After introducing the whole navigation system, the
details of modules of our system are given here. The
responsibility of User Interface is simple. User Interface is
designed to communicate with users and to receive
commands from users. Command System is responsible for
transforming user command into a series of system
commands that drive the navigation system.

Design and implementation of a navigation system for autonomous mobile robots 133

Figure 3 The architecture of our navigation system (see online
version for colours)

3.1 Behaviour-based algorithms

Our behaviour-based subsystem is composed of wall
following, obstacle avoidance, heading towards the
destination and fusion. First, we introduce heading towards
the destination. The purpose of heading towards the
destination is to let the robot rotate and head to the target
position. In Figure 4, the first step of it is to use
the positions of the robot and target to compute the direction
of the target (θt) relative to the robot by using equation (1).

1tant
y
x

θ − ∆=
∆

 (1)

where θt is the direction of the target, ∆x and ∆y are the
difference between the x coordinate and y coordinate of the
target and robot, respectively. After we get the direction of
the target (θt), we can utilise it and the heading of the robot
(θr) got from the system to compute the included angle (θ)
of the direction of the target and the heading of the robot.
Accordingly, the robot rotates by the degree of this angle,
and then goes straight towards the target.

Figure 4 An included angle between the target and the heading
of the robot (see online version for colours)

Second, we describe the module of wall following. Wall
following is a typical behaviour of navigation. If the
environment is only partially known with lacking position
information, the robot can use a wall following strategy
to fulfil some navigation missions quickly without having to
learn an unknown environment. Certainly, if the
environment is known clearly, the robot may not need to
sense along a wall and could move along a planned path.
In this case, wall following can still help the robot to avoid
unforeseen obstacles and to move more smoothly. In our
scheme, if a robot has a short distance moving as shown in
Figure 5, we utilise the displacement of the robot from a
short time before to current moment (as the length of line 1),
the current distance sensed by ultrasonic sensor to the wall
(as the length of line 2) and the previous distance sensed

by ultrasonic sensor to the wall (as the length of line 3) to
estimate the included angle (θ) between the heading of the
robot and the wall.

Figure 5 Computing the included angle of the heading of the
robot and the wall (see online version for colours)

There is the problem of sensor noise that induces a
limitation on the consistency of sensor readings in the same
environmental state. For reducing the effect of sensor noise,
we do not directly use the distance sensed by ultrasonic
sensor to the wall (i.e., the present ultrasonic sensor
reading), but use equation (2) to estimate the current
distance to the wall. In equation (2), we use the last two
estimative distances to adjust the current distance sensed
by ultrasonic sensor to the wall that can reduce the effect of
sensor reading error owing to sensor noise.

now 1 2t t td d d dα β γ− −= × + × + × (2)

where dt is the estimative distance to the wall on the current
time, dt–1 is the estimative distance to the wall at last time,
dt–2 is the estimative distance to the wall at the time before
last time, dnow is the present distance that sensor is reading,
α, β, γ are parameters and α + β + γ = 1 (We set α = 0.6,
β = 0.3 and γ = 0.1 in our experiments). After estimating the
included angle between the robot and the wall, the robot
knows how to rotate to follow the wall in accordance with
this included angle (i.e., try to let the included angle be
zero).

Third, we present the algorithm used in obstacle
avoidance module. Our obstacle avoidance algorithm is an
extended Bug algorithm (Broadhurst et al., 2005). The Bug
algorithm is a simple but effective obstacle avoidance
algorithm. The behaviours of the Bug algorithm are:

1 following the contour of each obstacle

2 moving in a straight line towards goal.

The typical Bug algorithms are Bug 1 and Bug 2; using
Bug 1, the robot fully circles the obstacle, and then departs
from the point with the shortest distance moving towards
the goal, of course, this scheme is inefficient. With Bug 2,
the robot heads towards the goal on the line that starts from
the location of the robot to the goal. If an obstacle is in the
way, the robot follows the contour of the obstacle until the
robot encounters the above line again. In general, Bug 2
algorithm will have significantly shorter travel than Bug 1.

We modify the typical Bug algorithms to be our obstacle
avoidance algorithm. In our scheme, if an obstacle is in the
way, first, we use ultrasonic sensors to find which side of

134 J-P. Sheu et al.

the robot is nearest obstacles; if the right (left) side of the
robot is nearest obstacles, the robot turns left (right) and
then using right (left) wall (obstacle) following follows the
contour of the obstacle. The robot departs immediately
when its heading is equal to the direction of the goal and
there is no obstacle in the way, and then it moves directly
towards the goal. In general, our algorithm will have shorter
total robot travel distance than Bug 2 as shown in
Figure 6.

Figure 6 Examples of obstacle avoidance with H, hit point,
and L, leave point (a) Bug 2 algorithm and (b) our
obstacle avoidance algorithm

 (a) (b)

Finally, we present the design of the fusion module.
The purpose of the fusion is to combine behaviour modules
(wall following, obstacle avoidance, heading towards the
destination) to display the short-distance navigation.
In Figure 7, the structure of the fusion is layered, and each
layer is a behaviour module. Besides, layers of the fusion
have different levels; a higher layer has a higher level.
When one layer (module) has to be active, the layer can
send a ‘suppressive signal’ to suppress other lower-level
layers. Therefore, if there are several behaviours operating
at the same time, only a behaviour module can drive the
actuators.

Figure 7 The layer structure of the fusion (see online version
for colours)

In our design, we assign the highest level to the layer
(module) of obstacle avoidance, because avoiding obstacles
has top priority to prevent the robot from being damaged.
The layer (module) of wall following is assigned the normal
level; when the robot is near the wall and wall following
benefits approaching the target, the robot will follow the
wall to approach the target. Finally, we assign the lowest
level to the layer (module) of heading towards the
destination; the fundamental purpose of the navigation is to

let the robot reach the destination, so the robot should be
heading towards the destination all the time in an ordinary
situation.

The behaviour-based subsystem that consists of wall
following, obstacle avoidance, heading towards the
destination and fusion can achieve the short-distance
navigation. The operating process of the behaviour-based
subsystem is as follows. At the beginning of the process,
the behaviour-based subsystem receives the information of
the target including its position. Then, it uses the module
of heading towards the destination to approach the target
constantly in an ordinary situation. If there is a wall near the
robot, the subsystem let the robot follow the wall by using
the module of wall following as long as the robot following
this wall profits approaching the target. When an obstacle is
in the way, the subsystem utilises the module of obstacle
avoidance to avoid it. After repeating these steps, the
subsystem will guide the robot to the target, and will have
accomplished its short-distance navigation task in the end.

3.2 Model-based algorithms
Model-based subsystem is composed of localisation and
planner. First, we introduce localisation. The purpose of
localisation is to estimate the robot position. Our module of
the localisation consists of three techniques. The first
technique is odometry that is the most widely used method
for estimating the position of a mobile robot. Besides,
relative positioning is usually based on odometry that is
monitoring the wheel revolutions to compute the offset from
a known starting position. Odometry is simple, inexpensive,
and easy to accomplish in real time. But, the drawback of
odometry is unbounded accumulation of errors.

Furthermore, when the robot is operating, the
robotic coordinates system may be different with the global
coordinates system as shown in Figure 8. So, we have to
transform the position in the robotic coordinates system into
the position in the global coordinates system. By using
equation (3).

cos sin
sin cosG Rp p

θ θ
θ θ

è ø
= ×é ù
ê ú

 (3)

where pR is the position of the robot in its own robotic
coordinates system, and pG is the position of the robot in the
global coordinates system. Both pR and pG are vectors with x
coordinate and y coordinate, and θ is the angular difference
between the global and the robotic coordinates system.
In Figure 8, by applying θ = 90° to equation (3), we can get
that the x coordinate of the global coordinates system (XG) is
equal to the negative of the y coordinate of the robotic
coordinates system (–YR), and that the y coordinate of the
global coordinates system (YG) is equal to the x coordinate
of the robotic coordinates system (XR).

Accordingly, we design a simple and effective
localisation algorithm for our system to reduce
accumulative errors of odometry. The main idea of this
localisation is shown in Figure 9. First, the robot uses wall
following algorithm to follow the wall, the state of the robot
(i.e., the position and the heading of the robot) in reality

Design and implementation of a navigation system for autonomous mobile robots 135

would be Figure 9(a). Besides, because of accumulative
errors of odometry, the internal state of the robot estimated
by odometry with the stored map would be inaccuracy like
Figure 9(b). Therefore, we have to calibrate the internal
state of the robot close to the state of the robot in reality
(i.e., reduce errors of odometry). We use the ultrasonic
sensor readings to calculate the heading of the robot in
reality, and then use it to calibrate the internal heading of
the robot as shown in Figure 9(c). Afterward, using the
distance sensed by ultrasonic sensor to the wall calibrates
the internal position of the robot as shown in Figure 9(d).
Thus, we have accomplished the calibration of the internal
position and heading of robot estimated by odometry with
the stored map (localisation), and have reduced the errors of
odometry to let the robot have a more accuracy estimated
state. Furthermore, when the robot follows a wall every
time, the robot will check the difference between the
position and heading of robot calculated by using ultrasonic
sensor readings and the internal position and heading
of the robot estimated by the odometry with stored map.
If the difference is bigger than a threshold (the threshold of
the positional difference is 66 cm and the threshold of the
heading difference is 5° in our experiments), we calibrate
the internal position and heading of the robot with this
algorithm.

However, even we use the above-mentioned localisation
techniques; the robot may be still lost sometimes, because
there is the accumulation of odometry errors, and not every
environment can use our localisation algorithm. Therefore,
we use the localisation technology of the WSNs to help us
localise our robot more robustly. The location algorithm of
WSN we used is based on Received Signal Strength
Indicator (RSSI) values that will decrease when the distance
increases. Reference nodes are static nodes placed at known
positions. A Blind node is a node that will collect signals
from all reference nodes responding to a request. Then,
it reads out the respective RSSI values and feeds the
collected values into the hardware engine. Afterward,
it reads out the calculated position and sends the position
information to our navigation system. Thus, we deploy the
reference nodes in some complex environment such as
around intersection, corners, or some environments without
walls, and put the blind node on our robot to let it operate
with our navigation system. In this way, we could utilise the
localisation of the WSNs to help us localise our robot and
check the estimated position in our system.

However, RSSI that can be affected by multi-path and
noise is unstable. Therefore, the localisation of the WSNs
based on RSSI sometimes would be unstable, and we would
get a big positional difference between the current and
previous calculated positions. If we detect that the
difference between the current and previous calculated
positions is bigger than a threshold, we use the last
calculated position plus the last displacement of the robot
to be the new calculated position instead. Since the average
speed of our robot is 0.5 m/s, and we receive an estimated
location of the robot from sensor node per second, we set
the threshold as 2 m in our experiments.

Figure 8 The robotic coordinates system and the global
coordinates system (see online version for colours)

Figure 9 The calibration of the position and heading
of the robot: (a) the state of the robot in reality;
(b) the internal state of the robot; (c) calibrate the
heading of the robot and (d) calibrate the position
of the robot (see online version for colours)

 (a) (b)

 (c) (d)

Finally, we present the module of the planner. The main
purpose of planner is that it plans an efficient path from the
location of the robot to the destination, and divides that path
into many segments for behaviour-based subsystem.
In Figure 10, we use the A* algorithm (Dalmau, 2003) to be
our path-planning algorithm. A* is a well-known and
effective algorithm, and is a best-first, graph search
algorithm that finds the least-cost path from a given initial
node/position to the goal node/position. After A* have
planned the path, the path would be divided into many
segments, because the behaviour-based subsystem is
capable of accomplishing a short-distance navigation task
very well, but it is not good at long-distance navigation task
or complex situation (e.g., the robot should turn many times
in the navigation task). Therefore, we assign many virtual
points to the path, and these virtual points divide the path
into segments. The method of assigning virtual points is that
every short distance (we used 10 m in our experiments),
we assign a virtual point to the straight-line region of the
path, and we assign a virtual point to each turning point

136 J-P. Sheu et al.

of the path. Afterward, the behaviour-based subsystem can
approach each virtual point and reach the destination finally.

Figure 10 A path from start to goal with virtual points (see online
version for colours)

To sum up, the process of our navigation system is as
follows. First, the system gets the destination required from
the user; it uses the model-based algorithm to plan the path
to the destination with the stored map and gets many virtual
points that divide this path into segments. Then, it uses the
behaviour-based algorithm to approach each virtual point.
During the period of the approaching, each virtual
point, if there is an obstacle in the way, can use the
behaviour-based algorithm to avoid it; besides, it uses the
model-based algorithm with WSN to localise the robot
continuously. Finally, the robot reaches the destination
without fail, and our navigation system has accomplished a
successful navigation mission.

4 System implementation and experiments
In this section, we present how to implement our navigation
system and show the results of our experiments. We chose
Pioneer 3-DX as our robot platform. The P3-DX is a
two-wheel-drive robot. It is 44 × 38 × 22 cm3 aluminium
body and its weight is 9 kg. The P3-DX can move at speeds
of 1.6 m/s on the flat floor. In addition, the P3-DX base
includes eight ultrasonic sensors that read ranges from
10 cm to 5 m basically. The P3-DX can contain up to three
12 volts direct-current batteries for long missions. Besides,
it includes a 32-bit RISC-based controller; the robotic
software running on a computer can be connected with
its microcontroller via the host serial link to provide the
high-level intelligent robot controls.

Furthermore, we use a notebook computer for running
our robotic software. We put this notebook computer on our
robot (P3-DX), and connect it with the robot for providing
intelligent controls. In addition, we deployed a WSN using
CC2431 (Texas Instruments Inc., 2007) nodes 0 in the
portion of the experimental environment, and put a CC2431
node communicating with the notebook computer on the
robot. The CC2431 is a true system-on-chip for wireless
sensor networking ZigBee/IEEE 802.15.4 solutions.
The chip includes a location engine that can be used in
nodes with unknown location (i.e., blind node) to receive
signals from nodes knowing their locations (i.e., reference
nodes). On the basis of the location engine, it can calculate
an estimate of position of the blind node.

The operating system we used on our notebook
computer is Microsoft Windows XP Service Pack 2.
We chose the programming language C++/CLI and

Microsoft Visual Studio 2008 to develop our navigation
system in the .NET 2.0 platform. For controlling our robot,
we utilised Advanced Robotics Interface for Applications
(ARIA) to achieve it. The ARIA written in C++ language is
an object-oriented robot control application, programming
interface for P3-DX, and is a programming library for
programmers to access/control their robots.

Moreover, we used multithread technology to establish
our navigation system. A multithreaded application allows
us to run several threads, and each thread is running in its
own process. Therefore, we are able to run important
subprogrammes (modules) of our navigation concurrently.
Obviously, it is the advantage of our navigation system.
When our robot is heading towards the destination, our
robot can detect constantly if there are obstacles in its way
concurrently. Hence, if there are some obstacles in the way,
our robot can react to those obstacles more rapidly and
would prevent itself from the collision more effectively.
In addition, there are more and more multi-core computers
in the future and we see that the benefit of having multi-core
processor is that the system can handle more than one
thread. Our navigation system designed with multithread
can utilise the multi-core processor more efficiently than
any single-threaded robotic programme.

The following is the results of our experiments. In our
experiments, the moving speed of the robot is set to
0.5 m/s. In the first experiment, we wanted to test if our
navigation system is able to guide the robot to the
destination correctly in an ordinary environment. We chose
an indoor passage of the building as our navigation
environment. The rough environmental map of the first
experiment is shown in Figure 11. The robot with our
navigation system was going to patrol this section of the
passage. The result of the first experiment is shown in
Figure 12.

Figure 11 The rough environmental map of the first experiment
(see online version for colours)

Figure 12 The robot with our navigation system is patrolling the
passage (see online version for colours)

 (a) (b) (c)

 (d) (e) (f)

Design and implementation of a navigation system for autonomous mobile robots 137

Figure 12 The robot with our navigation system is patrolling the
passage (see online version for colours) (continued)

 (g) (h) (i)

The position of the robot in Figure 12(a)–(i) is equal to the
position (a)–(i) in Figure 11. In Figure 12(a)–(d), the robot
is moving forward in a straight line with wall following.
Figure 12(d)–(f) shows the turnaround of the robot. We can
see that the robot is following wall to move in a straight line
again in Figure 12(f)–(i). On the basis of the result, we can
see that our robot can move in a straight line by using wall
following and the included angle of the heading of the robot
and the wall is smaller than 3°; while our robot is following
the wall, it keeps a distance to the wall that is bigger than
90 cm for safe; our navigation system can operate correctly
and control the robot to achieve a successful patrol.
Furthermore, the length of this patrol is 26 m. The total time
of the patrol is 54 s, and the average speed is 0.4815 m/s.
It is clear that the average speed is close to the speed we set
and the movement of our robot is very fluent.

In the second experiment, we wanted to challenge the
ability of our navigation system. For this reason, we added
an opened umbrella and a big box in the environment of the
above-mentioned experiment to build a much more complex
environment. Our robot should go through these obstacles
and accomplish its patrol mission to prove that it can
operate very well in a much more complex environment.
The experimental result of our robot patrolling this
environment is shown in Figure 13.

Figure 13 Our robot is patrolling the passage with a bonsai,
an open umbrella and two boxes in its way (see online
version for colours)

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Figure 13 Our robot is patrolling the passage with a bonsai,
an open umbrella and two boxes in its way (see online
version for colours) (continued)

 (j) (k) (l)

 (m) (n) (o)

In Figure 13(a)–(e), our robot finds the obstacles in its way;
then, the robot follows continuously the contours of the
bonsai and the opened umbrella to avoid them in an
impressive manner. Figure 13(f)–(k) shows that our robot
goes through between the two boxes efficiently twice.
Finally, our robot avoids the bonsai again and returns to the
start as shown in Figure 13(l)–(o). According to this
experimental result, we see that our navigation system is
also suitable for a much more complex environment, and
that our navigation system can achieve its patrol task
effectively as usual in the complex environment.
Furthermore, the length of this patrol is 26 m. The total time
of the patrol is 78 s, and the average speed is 0.3333 m/s.
The average speed of the robot in this experiment decreases
more than in the second experiment because of more
obstacles in the way.

In the last experiment, we chose a different form of
environment for our test as shown in Figure 14. We would
test if our system can patrol various forms of the
surroundings. The result of our robot patrolling this area is
shown in Figure 15.

Figure 14 The rough environmental map of the fourth experiment
(see online version for colours)

Figure 15 The robot with our navigation system is patrolling the
passage (see online version for colours)

(a) (b) (c)

138 J-P. Sheu et al.

Figure 15 The robot with our navigation system is patrolling the
passage (see online version for colours) (continued)

 (d) (e) (f)

 (g) (h) (i)

 (j) (k) (l)

The position of the robot in Figure 15(a)–(l) is equal to the
position (a)–(l) in Figure 14. In Figure 16(a)–(c), the robot
is moving in a straight line with wall following as earlier.
The robot turns right into another section of the passage for
patrolling in Figure 15(d)–(e). To mention in passing,
it would increase accumulative errors of odometry after the
robot turned many times. Hence, the estimated position of
the robot would become inaccurate. However, we could
utilise our localisation algorithm and WSN to help us to
calibrate the estimated position of the robot. So, our robot
could have a reliable estimated position of itself. Therefore,
after a sequence of actions in Figure 15(a)–(h), the
estimated position of our robot has become a little
inaccurate. Then, our system detects this inaccuracy and
localises the robot for decreasing the inaccuracy of the
estimated position of our robot, as shown in Figure 15(i).
Afterward, robot can continue patrolling the area to
accomplish its patrol mission, referring to Figure 15(i)–(l).
On the basis of this experiment result, it is clear that
our system can handle various forms of the indoor
environments. Furthermore, the length of this patrol is 33 m.
The total time of the patrol is 74 s, and the average speed is
0.4459 m/s. The patrol path in this experiment is more
complex than in the first experiment so the average speed in
this experiment is slower than in the first experiment.
However, there are no obstacles in the way; hence, the
average speed in this experiment is faster than in the second
experiments.

5 Conclusion

In this paper, a navigation system for autonomous mobile
robots has been developed, which achieves safe and robust
navigation in an arbitrary indoor environment. To be
specific, we combine behaviour-based and model-based
navigation systems to form our navigation system.

We utilise the behaviour-based subsystem to achieve
low-level reactive actions such as wall following or obstacle
avoidance; the model-based subsystem is in charge of
high-level planned actions such as planning or localisation.
Furthermore, our system can communicate with WSN and
use the localisation technology of WSN to calibrate the
estimated position of our robot. Hence, our robot can
localise itself more robustly. On the basis of our
experimental results, the average speed of our robot closes
to the speed we set, and the movement of our robot is fluent.
Besides, the robot with our navigation system can use wall
following to move in a straight line and can avoid obstacles
in its way successfully. In conclusion, the robot with our
navigation system can still patrol the passages correctly and
efficiently even if there are many unforeseen obstacles in
the way.

References
Batalin, M.A., Sukhatme, G.S. and Hattig, M. (2004) ‘Mobile

robot navigation using a sensor network’, Proceedings of
IEEE International Conference on Robotics and Automation,
Los Angeles, USA, Vol. 1, May, pp.636–641.

Broadhurst, A., Baker, S. and Kanade, T. (2005) ‘Monte Carlo
road safety reasoning’, Proceedings of IEEE Intelligent
Vehicles Symposium, Pittsburgh, USA, June, pp.319–324.

Dalmau, D.S-C. (2003) Core Techniques and Algorithms in Game
Programming, Published by New Riders, USA.

Dissanayake, M.W.M.G., Newman, P., Clark, S.,
Durrant-Whyte, H.F. and Csorba, M. (2001) ‘A solution to
the Simultaneous Localization And Map (SLAM) building
problem’, IEEE Transactions on Robotics and Automation,
Vol. 17, No. 3, June, pp.229–241.

Fox, D., Burgard, W. and Thrun, S. (1999) ‘Markov localization
for mobile robots in dynamic environments’, Journal of
Artificial Intelligence Research, pp.391–427.

Go, Y., Yin, X. and Bowling, A. (2006) ‘Navigability of
multi-legged robots’, IEEE/ASME Transactions on
Mechatronics, Vol. 11, No. 1, February, pp.1–8.

Grush, R. (2004) ‘The emulation theory of representation: motor
control, imagery, and perception’, Journal of Behavioral and
Brain Sciences, Vol. 27, June, pp.377–396.

Jackson, J. (2007) ‘Microsoft robotics studio: a technical
introduction’, IEEE Robotics and Automation Magazine,
Vol. 14, No. 4, December, pp.82–87.

Karl, H. and Willing, A. (2007) Protocols and Architecture for
Wireless Sensor Networks, Published by John Wiley & Sons,
England.

Kramer, J. and Scheutz, M. (2007) ‘Development environments for
autonomous mobile robots: a survey’, Journal of Autonomous
Robots, Vol. 22, No. 2, February, pp.101–132.

Luke, R.H., Keller, J.M., Skubic, M. and Senger, S. (2005)
‘Acquiring and maintaining abstract landmark chunks for
cognitive robot navigation’, Proceedings of 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
Columbia, USA, August, pp.2566–2571.

Ma, M. and Yang, Y. (2007) ‘Adaptive triangular deployment
algorithm for unattended mobile sensor networks’,
IEEE Transactions on Computers, Vol. 56, No. 7, July,
pp.946–958.

Design and implementation of a navigation system for autonomous mobile robots 139

Munich, M.E. Ostrowski, J. and Pirjanian, P. (2005) ‘ERSP:
a software platform and architecture for the service robotics
industry’, Proceedings of 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Pasadena,
USA, August, pp.460–467.

Na, Y-K. and Oh, S-Y. (2003) ‘Hybrid control for autonomous
mobile robot navigation using neural network based behavior
modules and environment classification’, Autonomous
Robots, Vol. 15, No. 2, September, pp.193–206.

Qureshi, F., Terzopoulos, D. and Gillett, R. (2004) ‘The cognitive
controller: a hybrid, deliberative/reactive control architecture
for autonomous robots’, Proceedings of the 17th International
Conference on Innovations in Applied Artificial Intelligence,
May, Springer-Verlag, pp.1102–1111.

Roumeliotis, S.I. and Bekey, G.A. (2000) ‘Bayesian estimation
and Kalman filtering: a unified framework for mobile robot
localization’, Proceedings of ICRA’00 IEEE International
Conference on Robotics and Automation, April,
Los Angeles, USA, Vol. 3, pp.2985–2992.

Sheu, J-P., Chen, P-C. and Hsu, C-S. (2008) ‘A distributed
localization scheme for wireless sensor networks with
improved grid-scan and vector-based refinement’,
IEEE Transaction on Mobile Computing, Vol. 7, No. 9,
September, pp.1110–1123.

Sheu, J-P., Hsieh, K-Y. and Cheng, P-W. (2008) ‘Design and
implementation of mobile robot for nodes replacement in
wireless sensor networks’, Journal of Information Science
and Engineering, Vol. 24, February, pp.393–410.

Sheu, J-P., Li, J-M. and Hsu, C-S. (2006) ‘A distributed location
estimating algorithm for wireless sensor networks’,
Proceedings of IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing, June,
Taichung, Taiwan, Vol. 1, pp.218–225.

Simpson, J., Jacobsen, C.L. and Jadud, M.C. (2006) ‘Mobile robot
control: the subsumption architecture and Occam-Pi’,
Proceedings of the 29th WoTUG Technical Meeting of
Communicating Process Architectures, September,
Amsterdam, The Netherlands, pp.225–236.

Tarokh, M. and Kuo, J. (2007) ‘Vision based person tracking and
following in unstructured environments’, in Billingsley, J. and
Bradbeer, R. (Eds.): Mechatronics and Machine Vision in
Practice, Springer Berlin Heidelberg, December, pp.99–109.

Terwilliger, M., Gupta, A., Bhuse, V., Kamal, Z.H. and
Salahuddin, M.A. (2004) ‘A localization system using
wireless network sensors: a comparison of two techniques’,
Proceedings of the First Workshop on Positioning,
Navigation and Communication, March, Hannover, Germany,
pp.95–100.

Texas Instruments Inc. (2007) CC2431DK Development Kit User
Manual Rev. 1.5, June, pp.1–33.

