
Information Processing Letters 35 (1990) 313-316

North-Holland

15 September 1990

EFFICIENT PARALLEL k SELECTION ALGOIUI’HM

Jang-Ping SHEU

Department of Electrical Engineering, National Central University, Chungli, 32054, Taiwan

Jyh-Shyan TANG

Institute of Information Engineering, Tatung Institute of Technology, Taipei, Taiwan

Communicated by K. Ikeda

Received 25 December 1989

Revised 25 April 1990

In this paper, a parallel algorithm to select the first k largest numbered processes in an n-cube network is proposed. The
time complexity of the algorithm is max(O(k), O(n*)) and it is optimal when k > n2.

Keywords: Parallel algorithm, k selection, n-cube networks

1. Introduction

Election is the problem of choosing a unique
processor as the leader of a network of processors.
The election problem was first discussed by Lelann
[7] in a ring connection network to elect a new
leader as responsible for regenerating a new con-
trol token after the previous token is lost in the
ring. He first poses the election problem and gives
a solution with time complexity O(N’) in a uni-
directional ring, where N is the number of
processors in the ring network.

Peterson [9] presents an algorithm with O(N
log N) messages in the worst case and he also
disproves Hirschberg and Sinclair’s [4] conjecture
that any unidirectional solution must be 52(N 2).
The upper bound for the unidirectional ring with
the smallest leading constant is obtained in [3]; it
needs (1.356 N log N) + O(N) messages in the
worst case. Burns [l] has a bidirectional
O(N log N) algorithm and gives an Q(N log N)
lower bound for the bidirection case. Korach et al.
[6] and Loui et al. [B] study the election problem
in a complete network.

Rotem, Korach, and Santoro [lo] present a k

selection algorithm in a ring. The average number
of messages transmitted for a k selection al-
gorithm under the unidirectional ring is very
closely approximated by ln N for large N. The
objective of the k selection problem is that the
largest process is the leader and the other processes
are used as standby. If the leader fails, the next
largest can immediately take control without re-
starting the election algorithm. Sheu and Wu [ll]
present a parallel algorithm to select the first k

largest numbered processes in n-cube networks.
The time complexity of their algorithm is O(k(n

- log k) + k). It is optimal when k = 1 or k = N

(= 2”). In this paper, we shall propose a parallel
algorithm to determine the first k largest num-
bered processes in n-cube networks. The time
complexity of the algorithm is max(O(k), 0(n2))
and it is optimal when k a n2.

2. Parallel k selection algorithm

In this section, we propose a parallel algorithm
for the k selection problem in an n-cube network.

0020-0190/90/%03.50 0 1990 - Elsevier Science Publishers B.V. (North-Holland) 313

Volume 35, Number 6 INFORMATION PROCESSING LETTERS 15 September 1990

The n-cube network is a hypercube of dimension
n. It consists of N = 2” identical nodes so that
every node is a general-purpose processor with its
own local memory. Every node is numbered from
0 to N - 1 by an n-bit binary number
(a,a,_, . . . ai). If two nodes have node numbers
different in aj only, then they are called opposite
ones in the jth direction. Every node has a direct
link to the opposite node. So every node has
n-neighbor nodes with direct links.

In order to study the efficiency of different
algorithms, we not only use the computation time
but also use the communication time as the mea-
sure in any execution of these algorithms. We
measure the communication steps because it re-
flects the communication overhead (which may
dominate the computation time) on the communi-
cation system of the n-cube networks. The follow-
ing assumptions are used to analyze the algorithm
complexity:

(1) Moving a fixed-sized data packet from one
node to a neighbor one figures as a message
complexity and takes a unit time;

(2) the data communication is bidirectional;
(3) each node has memory of size O(k).
In the beginning, each process running at a

node in the n-cube is uniquely identified by an
integer number. All processes are identical except
that each one has its own number. The k selection
problem is to find the first k largest numbered
processes and let all processes know where these k

processes reside. Sheu and Wu [ll] had proposed
an algorithm to solve this problem. The time com-
plexity of their algorithm is comparable to the
lower bound when k is a small constant or ap-
proaches to N. However, the performance of their
algorithm is poor, as k approaches to n or to a
polynomial of n. Here, we propose a k selection
algorithm that is optimal when k >, n2.

The basic idea of our algorithm is described as
follows. First, the N process numbers in an n-cube
are sorted in descending order [5]. The Johnsson’s
parallel sorting algorithm is based on Batcher’s
bitonic sort. First, Johnsson’s algorithm takes
in(n + 1) steps to obtain ;N elements with
ascending order in the half cube with highest
address bit 0, and the other +N elements with
descending order in the half cube with highest

314

address bit 1. Then two sorted subcubes of equal
length can be merged in n steps.

After sorting, the ith largest process number is
located in the i th node whose address number is
i - 1. Then the i th node, for 1 < i < k, sends its
process number to its opposite node in the n th
direction. After this step, there are 2k nodes each
with one of the first k largest process numbers.
These 2k nodes also send their process numbers
to the opposite node in the (n - 1)th direction
again. We repeat the above operations n - [log k]
times by letting every node of the n-cube get one
of the first k largest process numbers. Note that
there are some (2” - k2”-i1”g kl) nodes having no
such process number when k f 2’. After the above
procedure, we merge the data of each node along
the first direction of its opposite node to the
[log k]th direction. In each merge step, we insert
data received from the opposite node in the jth
direction into the rear (front) of the original data
list as the jth bit is 0 (1). The formal algorithm of
the k selection problem is described as follows.

Algorithm PKS (Parallel k selection).
Step 1: Sort the N process numbers of an

n-cube in descending order. After sorting, the i th
largest number is located in the ith node.

Step 2:
(2.1) Each of the first k nodes sends its process

number to its opposite nodes from the
n th direction to the ([log k] + 1)th direc-
tion.

(2.2) Besides, each node which receives process
number from its opposite node in the i th
direction also sends the process number
to its opposite nodes from the (i - l)th
direction to the ([log kl + l)th direction.

Step 3: For i = 1 to [log k] do
/ * Data exchange phase * /

(3.1) Each node exchanges its accumulated
process numbers with its opposite node in
the i th direction.

/ * Data accumulated phase * /
(3.2) After data exchanging, if the ith bit of a

node is 0 (l), it will insert the data re-
ceived from the opposite node in the i th
direction into the rear (front) of the origi-
nal data list.

Volume 35, Number 6 INFORMATION PROCESSING LETTERS 15 September 1990

Example 2.1. In the following, we show how to get
the first two largest process numbers in a 3-cube.

P,: Represents the process number residing in
node i.

0,: Represents a temporary buffer which will
be used to store the first k largest process num-
bers at node i.

Initially, Pi and Di of node i are shown in Fig.
l(a). After sorting the 8 process numbers, the ith

PO= 8 P4= 4

p, = 5 DO=181 D4 = I4)

Pg = 6 P, = 1 D6 =

D3 = t6) D7 ={I)

(a) Initial (b) After completion of sorting

Do={81 D4 = t*l Do = (81 D, = 181

D3 =0 D,=O

(c) After sending of the
third direction

Do = t&7)

largest number is located in the ith node, which is
shown in Fig. l(b). The arrows in Fig. l(c) show
the actions in the third direction (bit 3). The node
0 sends the largest process number (8) to node 4
and the node 1 sends the second largest process
number (7) to node 5. The result is shown in Fig.
l(c). After sending in the second direction (bit 2),
the result is shown in Fig. l(d). Finally, all nodes
exchange their data in the first direction (bit 1)

D o = 181 D4 = (4)

D3 = (5) D7 =(I)

D1 =

D3 = (7) D7={7) -

(d) After sending of the
second direction

D4 = I&7)

{%71

D3 = {8,7] D7 = {8,71

(e) After data exchange phase of the first direction

Fig. 1. Data exchanges and ordered data lists for k = 2 selection in a 3-cube.

315

Volume 35. Number 6 INFORMATION PROCESSING LETTERS 15 September 1990

and insert data received from the opposite node
into the rear or front that depends on the bit being
0 or 1. For example, the node 0 inserts process
number (7) into the rear of the original data list
and the node 1 inserts process number (8) into the
front of the original data list. The final result is
shown in Fig. l(e).

In the following, we shall analyze the time
complexity of Algorithm PKS. First, the time
complexity of sorting N data in an n-cube is
O(n’) [5]. In Step 2, consisting of n -[log k]
iterations, each node sends at most one data packet
to its opposite node in each iteration. In Step 3,
consisting of [log k] iterations, each node sends
twice as many data packets to the previous itera-
tion. Thus, the time complexity T(n) for an n-cube
is derived as follows:

T(n) = O(n*) + n - i

+(20+21+ . . . +y*+p)

=O(n*)+n-i+k-1,

where i = [log k 1.

Hence, the time complexity of this algorithm is
equal to max(O(k), O(n*)). The lower bound of
the k selection problem is

[log N - [log k] + 1 + k(l - 21-‘10gk’)]

[ll]. Without loss of generality, let k = 2’, then the
lower bound of the k selection problem is n - i +
k - 1. Therefore, our algorithm is optimal when
k >, n*.

3. Conclusions

The advantage of selecting the first k largest
process numbers is that every node knows where
the first k largest numbered processes are as well
as that the first k largest process numbers can

determine the ranks. Algorithm PKS is proposed
for selecting the first k largest numbered processes
in an n-cube network. The time complexity of
Algorithm PKS is max(O(n*), O(k)) and it is
optimal when k > n*. On the theoretical EREW
PRAM model, the sorting problem can be com-
pleted on O(n) time using N processors [2]. Un-
der the PRAM model, the k-selection problem can
be solved in O(n) time.

References

PI

VI

131

[41

[51

WI

[71

PI

[91

WI

1111

J.E. Bums, A formal model for message passing systems,
Tech. Rept. 91, Computer Science Department, Indiana

University, Bloomington, IN (1980).
R. Cole, Parallel merge sort, SIAM J. Comput. 17 (4)

(1988) 770-785.
D. Dolev, M. Klawe and M. Rodeh, An O(n log n) uni-
directional distributed algorithm for extreme finding in a

circle, J. Algorithms 3 (1982) 245-260.
D.S. Hirschberg and J.B. Sinclair, Decentralized extrema-
finding in circular configurations of processors, Comm.

ACM 23 (1980) 627-628.
S.L. Johnsson, Combining parallel and sequential sorting
on a boolean n-cube, in: International Conference on

Parallel Processing (1984) 444448.
E. Korach, S. Moran and S. Zaks, Tight lower and upper
bounds for some distributed algorithms for a complete
network of processors, in: Proc. 3rd Annual ACM sym-
posium on Principle of Distributed Computing (1984) 199-

207.

G. Lelann, Distributed systems-towards a formal ap-
proach, ZFZP Inform. Process. 77 (1979) 155-160.
C.M. Loui, A.T. Matsushita and D.B. West, Electron in a

complete network with a sense of direction, Inform. Pro-

cess. Left. 22 (1986) 185-187.
G.L. Peterson, An O(n log n) unidirectional algorithm for
the circular extrema problem, ACM Trans. Program. Lang.
Syst. 4 (4) (1982) 758-762.
D. Rotem, E. Korach and N. Santoro, Analysis of a
distributed algorithm for extrema finding in a ring, J.

Parallel and Distributed Comput. 4 (1987) 575-591.
J.P. Sheu and C.L. Wu, Selection of the first k largest
processes in hypercubes, Parallel Comput. 11 (3) (1989)

381-384.

316

