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1. Introduction 

Election is the problem of choosing a unique 
processor as the leader of a network of processors. 
The election problem was first discussed by Lelann 
[7] in a ring connection network to elect a new 
leader as responsible for regenerating a new con- 
trol token after the previous token is lost in the 
ring. He first poses the election problem and gives 
a solution with time complexity O(N’) in a uni- 
directional ring, where N is the number of 
processors in the ring network. 

Peterson [9] presents an algorithm with O(N 
log N) messages in the worst case and he also 
disproves Hirschberg and Sinclair’s [4] conjecture 
that any unidirectional solution must be 52( N 2). 
The upper bound for the unidirectional ring with 
the smallest leading constant is obtained in [3]; it 
needs (1.356 N log N) + O(N) messages in the 
worst case. Burns [l] has a bidirectional 
O(N log N) algorithm and gives an Q(N log N) 
lower bound for the bidirection case. Korach et al. 
[6] and Loui et al. [B] study the election problem 
in a complete network. 

Rotem, Korach, and Santoro [lo] present a k 

selection algorithm in a ring. The average number 
of messages transmitted for a k selection al- 
gorithm under the unidirectional ring is very 
closely approximated by ln N for large N. The 
objective of the k selection problem is that the 
largest process is the leader and the other processes 
are used as standby. If the leader fails, the next 
largest can immediately take control without re- 
starting the election algorithm. Sheu and Wu [ll] 
present a parallel algorithm to select the first k 

largest numbered processes in n-cube networks. 
The time complexity of their algorithm is O(k(n 

- log k) + k). It is optimal when k = 1 or k = N 

(= 2”). In this paper, we shall propose a parallel 
algorithm to determine the first k largest num- 
bered processes in n-cube networks. The time 
complexity of the algorithm is max(O(k), 0(n2)) 
and it is optimal when k a n2. 

2. Parallel k selection algorithm 

In this section, we propose a parallel algorithm 
for the k selection problem in an n-cube network. 

0020-0190/90/%03.50 0 1990 - Elsevier Science Publishers B.V. (North-Holland) 313 



Volume 35, Number 6 INFORMATION PROCESSING LETTERS 15 September 1990 

The n-cube network is a hypercube of dimension 
n. It consists of N = 2” identical nodes so that 
every node is a general-purpose processor with its 
own local memory. Every node is numbered from 
0 to N - 1 by an n-bit binary number 
(a,a,_, . . . ai). If two nodes have node numbers 
different in aj only, then they are called opposite 
ones in the jth direction. Every node has a direct 
link to the opposite node. So every node has 
n-neighbor nodes with direct links. 

In order to study the efficiency of different 
algorithms, we not only use the computation time 
but also use the communication time as the mea- 
sure in any execution of these algorithms. We 
measure the communication steps because it re- 
flects the communication overhead (which may 
dominate the computation time) on the communi- 
cation system of the n-cube networks. The follow- 
ing assumptions are used to analyze the algorithm 
complexity: 

(1) Moving a fixed-sized data packet from one 
node to a neighbor one figures as a message 
complexity and takes a unit time; 

(2) the data communication is bidirectional; 
(3) each node has memory of size O(k). 
In the beginning, each process running at a 

node in the n-cube is uniquely identified by an 
integer number. All processes are identical except 
that each one has its own number. The k selection 
problem is to find the first k largest numbered 
processes and let all processes know where these k 

processes reside. Sheu and Wu [ll] had proposed 
an algorithm to solve this problem. The time com- 
plexity of their algorithm is comparable to the 
lower bound when k is a small constant or ap- 
proaches to N. However, the performance of their 
algorithm is poor, as k approaches to n or to a 
polynomial of n. Here, we propose a k selection 
algorithm that is optimal when k >, n2. 

The basic idea of our algorithm is described as 
follows. First, the N process numbers in an n-cube 
are sorted in descending order [5]. The Johnsson’s 
parallel sorting algorithm is based on Batcher’s 
bitonic sort. First, Johnsson’s algorithm takes 
in(n + 1) steps to obtain ;N elements with 
ascending order in the half cube with highest 
address bit 0, and the other +N elements with 
descending order in the half cube with highest 
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address bit 1. Then two sorted subcubes of equal 
length can be merged in n steps. 

After sorting, the ith largest process number is 
located in the i th node whose address number is 
i - 1. Then the i th node, for 1 < i < k, sends its 
process number to its opposite node in the n th 
direction. After this step, there are 2k nodes each 
with one of the first k largest process numbers. 
These 2k nodes also send their process numbers 
to the opposite node in the (n - 1)th direction 
again. We repeat the above operations n - [log k] 
times by letting every node of the n-cube get one 
of the first k largest process numbers. Note that 
there are some (2” - k2”-i1”g kl) nodes having no 
such process number when k f 2’. After the above 
procedure, we merge the data of each node along 
the first direction of its opposite node to the 
[log k]th direction. In each merge step, we insert 
data received from the opposite node in the jth 
direction into the rear (front) of the original data 
list as the jth bit is 0 (1). The formal algorithm of 
the k selection problem is described as follows. 

Algorithm PKS (Parallel k selection). 
Step 1: Sort the N process numbers of an 

n-cube in descending order. After sorting, the i th 
largest number is located in the ith node. 

Step 2: 
(2.1) Each of the first k nodes sends its process 

number to its opposite nodes from the 
n th direction to the ([log k] + 1)th direc- 
tion. 

(2.2) Besides, each node which receives process 
number from its opposite node in the i th 
direction also sends the process number 
to its opposite nodes from the (i - l)th 
direction to the ([log kl + l)th direction. 

Step 3: For i = 1 to [log k] do 
/ * Data exchange phase * / 

(3.1) Each node exchanges its accumulated 
process numbers with its opposite node in 
the i th direction. 

/ * Data accumulated phase * / 
(3.2) After data exchanging, if the ith bit of a 

node is 0 (l), it will insert the data re- 
ceived from the opposite node in the i th 
direction into the rear (front) of the origi- 
nal data list. 
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Example 2.1. In the following, we show how to get 
the first two largest process numbers in a 3-cube. 

P,: Represents the process number residing in 
node i. 

0,: Represents a temporary buffer which will 
be used to store the first k largest process num- 
bers at node i. 

Initially, Pi and Di of node i are shown in Fig. 
l(a). After sorting the 8 process numbers, the ith 

PO= 8 P4= 4 

p, = 5 DO=181 D4 = I4) 

Pg = 6 P, = 1 D6 = 

D3 = t6) D7 ={I) 

(a) Initial (b) After completion of sorting 

Do={81 D4 = t*l Do = (81 D, = 181 

D3 =0 D,=O 

(c) After sending of the 
third direction 

Do = t&7) 

largest number is located in the ith node, which is 
shown in Fig. l(b). The arrows in Fig. l(c) show 
the actions in the third direction (bit 3). The node 
0 sends the largest process number (8) to node 4 
and the node 1 sends the second largest process 
number (7) to node 5. The result is shown in Fig. 
l(c). After sending in the second direction (bit 2), 
the result is shown in Fig. l(d). Finally, all nodes 
exchange their data in the first direction (bit 1) 

D o = 181 D4 = (4) 

D3 = (5) D7 =(I) 

D1 = 

D3 = (7) D7={7) - 

(d) After sending of the 
second direction 

D4 = I&7) 

{%71 

D3 = {8,7] D7 = {8,71 

(e) After data exchange phase of the first direction 

Fig. 1. Data exchanges and ordered data lists for k = 2 selection in a 3-cube. 
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and insert data received from the opposite node 
into the rear or front that depends on the bit being 
0 or 1. For example, the node 0 inserts process 
number (7) into the rear of the original data list 
and the node 1 inserts process number (8) into the 
front of the original data list. The final result is 
shown in Fig. l(e). 

In the following, we shall analyze the time 
complexity of Algorithm PKS. First, the time 
complexity of sorting N data in an n-cube is 
O(n’) [5]. In Step 2, consisting of n -[log k] 
iterations, each node sends at most one data packet 
to its opposite node in each iteration. In Step 3, 
consisting of [log k] iterations, each node sends 
twice as many data packets to the previous itera- 
tion. Thus, the time complexity T(n) for an n-cube 
is derived as follows: 

T(n) = O(n*) + n - i 

+(20+21+ . . . +y*+p) 

=O(n*)+n-i+k-1, 

where i = [log k 1. 

Hence, the time complexity of this algorithm is 
equal to max(O( k), O(n*)). The lower bound of 
the k selection problem is 

[log N - [log k] + 1 + k(l - 21-‘10gk’)] 

[ll]. Without loss of generality, let k = 2’, then the 
lower bound of the k selection problem is n - i + 
k - 1. Therefore, our algorithm is optimal when 
k >, n*. 

3. Conclusions 

The advantage of selecting the first k largest 
process numbers is that every node knows where 
the first k largest numbered processes are as well 
as that the first k largest process numbers can 

determine the ranks. Algorithm PKS is proposed 
for selecting the first k largest numbered processes 
in an n-cube network. The time complexity of 
Algorithm PKS is max(O(n*), O(k)) and it is 
optimal when k > n*. On the theoretical EREW 
PRAM model, the sorting problem can be com- 
pleted on O(n) time using N processors [2]. Un- 
der the PRAM model, the k-selection problem can 
be solved in O(n) time. 
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