

WSNTB: A Testbed for Heterogeneous Wireless
Sensor Networks

Jang-Ping Sheu1, Chia-Jen Chang2, Chung-Yueh Sun2, and Wei-Kai Hu2

1Department of Computer Science, National Tsing Hua University
2Department of Computer Science and Information Engineering, National Central University

sheujp@cs.nthu.edu.tw

Abstract—In this paper, we design and implement a testbed to
realize various experiments in heterogeneous wireless sensor
networks. Our implementation includes hardware
infrastructure and software framework. The hardware
infrastructure consists of servers, gateways with converters,
and sensor nodes in three-tier. Our testbed can support
different sensor nodes with USB or RS232 interface. Users can
experiment with real hardware resources and interactive with
our testbed in real-time. Here, we deploy two kinds of
self-designed sensor nodes, Octopus I and Octopus II, in our
testbed. The Octopus sensor nodes are compatible with IEEE
802.15.4/ZigBee standard for experiments. The software
framework composes with three main layers: services
interface layer, testbed core layer, and resource access layer.
Our testbed allows users to customize their applications for
specific sensor nodes and experiments locally with remote
hardware resource. Users can freely choose the number of
nodes and assign a period of processing time through our
testbed website. By using our testbed, users can save lots time
from creating an experiment environment, reduce the
hardware expense, enhance the devices utilization rate, and
fasten on the verification of experiment results.

Keywords: Testbed, wireless sensor networks, Zigbee

I. INTRODUCTION
Wireless sensor networks (WSNs) consist of many

sensing devices which can run individual applications and
communicate with each other. Usually, we verify our
network protocols by using simulations or experiments in
real WSNs. In simulations, we cannot control precise packet
timing, hardware interrupts, and real PHY/MAC layer
events. Not all simulation results are equal to the real
experiments. In real experiments, we have complex
environment settings and resource sharing problems. Not
every user has enough hardware devices to experiment on
large-scale WSNs. In this paper, we propose a
reconfigurable heterogeneous WSNs testbed called WSNTB.
We divided the testbed architecture into three layers. The
first layer is servers. The second layer is gateways with
converters. The third layer is sensor nodes.

In hardware infrastructure, our testbed provides
connectors and gateways for sensor nodes. We use the
standard interfaces to avoid the hardware binding problems.
The converters help sensor nodes to convert serial data into
TCP/IP packets. The gateways, a bridge between Internet
and WSNs, have their own physical Internet Protocol (IP)
address to communicate with sensor nodes. The gateways
and converters are controlled by servers. Thus the WSNTB
with gateways can support multiple WSNs over the Internet.
In the sensor nodes, we use two kinds of self-designed

sensor nodes in our testbed. The first one is called Octopus I
based on the Atmel AVR architecture[1], and the other one
is called Octopus II based on the Texas Instruments
MSP430 architecture[15]. We deploy 34 sensor nodes
(Octopus I and Octopus II) in WSNTB. The nodes are
distributed over two laboratory rooms of our department
building and the passage. In the WSNTB, the average cost of
each node is about 50 US dollars. Since the cost is cheap,
expending the testbed scale is easily. In software framework,
our testbed supports the famous sensor operating system
TinyOS [4] and our implemented operating system LOS
[14]. We develop a middleware to help users to process their
individual experiments within different sensor nodes and
heterogeneous WSNs. Readers can find more information
about WSNTB on the web at http://testbed.wsn.tw.

The remainder of this paper is organized as follows.
Section 2 describes the related works of WSN testbeds.
Section 3 involves the design and implementation details of
our testbed. The system operation and evaluation results are
shown in Section 4. Section 5 concludes this paper.

II. RELATED WORKS
The WSN testbeds are useful and flexible to realize

experiments for researchers. Users can use the testbeds to
verify and prove their protocols such as power control, time
synchronization, object tracking, routing, and security etc.
Over the past few years, users usually create and setup the
WSN environment by themselves. Then many complex
steps and various environment factors will confuse users. In
order to make users focus on their research, a number of
testbeds are proposed by researchers.

Emulab [9] is a network emulation testbed developed by
Utah University. Users can develop, debug, and evaluate
their own systems. They can do a wide range experiments
such as pure emulation, 802.11 wireless experiments,
sensor networks experiments, mobile wireless experiments,
and NS-2 Simulation[11]. The testbed consists of 25
MICA2 motes [4] connected with a serial port. Users can
full control and debug these nodes.

EmStar [6] is developed by University of California.
This is a software platform for WSN experiments. They
deployed a CENS heterogeneous testbed to prove and test
their platform. The Linux-based framework consists of 39
nodes. There are 26 Mica2 motes with MIB510 [2]
programming board, and 13 Mica2 motes with the
Stargate[2]. The server is connected to the MIB510 with
serial port and the Stargate with Ethernet. They not only
provide an integrated TinyOS environment but also a
service protocol to run experiments easily.

This work was supported by the National Science Council under
grant NSC 96-2218-E-007-016.

338

978 -1-4244-1866-4/08/$25.00 © 2008IEEE

mailto:sheujp@cs.nthu.edu.tw
http://testbed.wsn.tw

MoteLab [16] is developed by Harvard University. They
use the database to log the experiment data and provide a
web-based interface for users. The authorized users can
upload binary images to run their experiments. They use a
job queue system for experiments scheduling. Users can
submit jobs and run experiments. After the experiments,
users can view the visualized results. The hardware
platform consists of 30 MICAz nodes with Ethernet
gateway. Until now, there are 190 Motes for experiments.
Each two Motes are connected to a Tmote Connector.

The TWIST [8] testbed is hold by Technische Universität
Berlin. They help users load programs and run experiments
such as time synchronization and power control. The
system is divided into two major parts. The first part is the
server to serve the demands of users and control all of
nodes. The second part includes two types of sensor nodes,
eyesIFX v2 [7] and Telos motes [12] which are plugged
onto the switch. The architecture is extended form the UC
Berkeley’s Omega testbed and Motescope testbed [13].

In Ohio State University, the Kansei sensor testbed [5] is
a large-scale testbed including both 210 Extreme Scale
Motes (XSM) and Extreme Scale Stargates (XSS). The
devices are special design for Kansei testbed. The topology
is using both Ethernet and 802.11b wireless LAN to control
the testbed. Kansei also provide a web interface for users to
upload programs, scheduled jobs, and retrieve results with
EmStar software framework. The nodes deployed on 35 4' x
6' tables by grid pattern. They could be configured as 2 ~ 3
feet with 210 nodes, 3 ~ 4 feet with 140 nodes, 4 ~ 6 feet
with 70 nodes, 6 ~ infinity feet with 35 nodes. Besides,
users can choose the grid region for their experiments.

We follow IEEE 802.15.4 standard protocol and provide
the standard interface with USB and RS232 for any sensor
node. The web-based interfaces [10] support cross-platform
services. In addition, we add a new experiment method
local mode for users who can run their programs locally on
our testbed. When users start experiments by schedule, they
will receive notification and have permission to add remote
serial port. Moreover, users can transmit and receive data
via serial port directly. In other words, users have full right
to control the actual hardware resource in local.

All of the related testbed projects are connected with
Ethernet for management. The Emulab and EmStar are
running with MICA Motes and communicate via serial
ports. The MoteLab and TWIST are running with Tmote
Sky via USB interface. The Kansei testbed is running with
Extreme Scale Motes as sensor nodes. From the software
point of view, all of the related testbed projects are based on
TinyOS. The Kansei testbed use EmStar as their software
framework. All of the above testbeds have web interface for
experiment except for the TWIST testbed. But all of them
have no local mode function as we proposed.

III. DESIGN AND IMPLEMENTATION OF WSNTB
Our WSNTB is designed for heterogeneous WSN

experiments. WSNTB provides users with real hardware
resources in WSNs. Users can use both the web-based
interface and the special function, called local mode, to run
their applications on testbed. It involves two WSNs and
three gateways. Each WSN has 17 sensor nodes. According
to users’ requirements, users can choose the single one or

both of WSNs, with or without the gateways to experiment.

A. Hardware Infrastructure
In this section, we will describe the hardware

infrastructure of our testbed. The hardware infrastructure,
being a chain from the server tier to node tier, consists of
servers, gateways with converters, and the sensor nodes. All
of these nodes are connected to the network. Recently, most
testbeds are constituted of several specific nodes. But we
want to avoid sensor nodes bound with specific ones; we
use converters and gateways as standard connector to make
up the communication chain. The converters and gateways
with RS232/USB connector can easily connect to our
self-implemented nodes. The benefits are that users can
rapidly change or upgrade the nodes on demand. Otherwise,
users can control various instruments through Ethernet.

A 3-tier hardware infrastructure was designed to
construct the WSNTB as shown in Fig. 1. The web server,
emulating server, and database server are running with
Intel’s Pentium 4 CPU. The database server requires more
disk space to store all experiment results, but the web server
needs more RAM space to handle all requests from the
whole world. Finally, the emulating server just needs a
stable operating environment for long work. All of them
have high speed Ethernet interface to connect to the
network backbone.

Figure 1. WSNTB architecture

There are two converters, RS232 to Ethernet (UT-620)
and USB to Ethernet (SX-1000U). All of our sensor nodes
are connected with those converters. The first generation
node, called Octopus I, consists of an 8-bit MCU (AVR
Amega128L[1]) with 128Kbytes ROM and a 2.4GHz IEEE
802.15.4 compliant RF transceiver (Texas Instrument
CC2420). The dock of Octopus I provides not only a serial
programming interface but also extended power prediction.
The second generation node, called Octopus II, is a reliable
low-power wireless sensor node platform. Octopus II is
equipped with a 16-bit MCU (Texas Instruments MSP430)
and a CC2420 transceiver.

Gateways play the role of communication between
WSNs and Internet access. For example, we can deploy a
single board computer with public IP address as gateway in
a WSN. Then the node on the single board computer can
communicate via RF with neighbor nodes and access

339

Internet with IP address. Several testbeds use the
customized hardware as the gateway, such as the Crossbow
Stargate [2]. But the Stargate cannot run the usual PC
program. If users want to develop their own applications on
Stargate, they need to be training again. In order to solve the
problem, we adopt the Soekris Engineering’s products with
the standard x86 PC CPU and port PC operating system
directly. We use the two versions of PC compatible single
board computers: Soekris Engineering single board
computers net4501 and net4801 as our gateways. Thus, it is
flexible to use net4501 and net4801 to provide a whole
range of different functions and run communication
applications.

We install the operating system either by preloading the
Compact Flash storage, or by booting over the network
using the PXE boot code in the standard BIOS. While we
have a new experiment, we reinstall them via the Ethernet
to avoid any security risks. They are not expensive but
support standard protocol, common interfaces, and popular
operating systems. That using the gateway will help users to
develop their programs fast and easily. Finally, we use the
ZyXEL ES-108A Ethernet switch as LAN switch to build
our testbed Ethernet backbone. The ZyXEL Ethernet Switch
offers advanced VIP ports to provide high priority
bandwidth. So we can let sensor nodes use normal port and
the backbone lines use the VIP ports. The network for
expansion becomes very rapidly and handily.
B. Software Implementation

In this section, we want to describe the software
framework of WSNTB. The software framework of WSNTB
includes services interface layer, testbed core layer, and
resource access layer as shown in Fig.2.

Figure 2. The software framework of WSNTB

The service interface layer let users access our web
services from the website. We allow users to control and
interactive with the testbed via web services. The service
interface layer consists of web services and TCP/IP
redirector. Web services will dispatch the jobs in testbed
core layer. TCP/IP redirector is the kernel of local mode. In
the testbed core layer, there are real-time control protocol,
local mode, and background agents. The real-time control
protocol and local mode are very important components in
WSNTB we developed. Real-time control protocol is a new
process in our testbed. In the past, users can only load

program into sensor nodes by schedule and waiting the
experiment results. But we allow users to assign a period of
time for their experiments. During the experiment period,
users still receive packets form individual notice and have
the domination of controlling our testbed, including sending
commands, getting response, or uploading files into sensor
nodes in real-time. Background agents are dealing with
users’ requirements in running experiments. Users can
interactive with sensor nodes under TinyOS and collect
experiment results just like that users have the whole
hardware infrastructure to themselves. The function of local
mode can help users to access hardware resources directly.
Users can develop their programs and even collect results at
their original TinyOS environment. In the resource access
layer, we provide the data access controller to save files and
database records. In security, we adopt the private IP
address in communication with database and storage.
Hardware controller can assist the testbed core layer to
detect the living hardware, its status, and reset it. The
software framework in WSNTB also has event notification.
We can detect existing events and response events correctly.
When users do their experiments, they can get real-time
messages and interactive with the devices.

Mapping to the real WSN environment, the
implementation detail is shown in Fig.3. We divide the
WSNTB into 3-tier architecture. The first tier of WSNTB
consists of the web server, emulating server, and database
server. The three servers are connected with the Ethernet
backbone. But only the web server has its public IP address
for public access, the others own their private IP address for
security. Internet users can only connect to web server to
avoid any illegal access.

We have installed Apache with PHP as web and MySQL as
database in all three servers. They are open source software
and can execute in cross operating systems. These servers
are following HTTP protocol. Then, we deploy different
software packages into individual server. In web server, we
use WYSIWYG Editor as the basic text editor and
phpMyAdmin as database management interface for
MySQL. We developed the following modules:
management system and user interface. In the management
system module, we provided the online experiment,
environment status, feedback functions, and the map. In the
user interface, we provided the testbed documents, data
downloads, and the user register functions. WSNTB is public
for operation and users can register their accounts via web
server.

The emulating server plays an important role in online
experiment, especially in local mode and real-time control
protocol. We install Microsoft VB and Java runtime library
in the emulating server. The Java runtime library supports
TinyOS and Cygwin environment and the VB library
supports windows GUI applications. The Virtual COM is
software for users to create virtual serial port in local
computer. By using the software, users can use local mode
to access sensor nodes directly in WSNTB. AVR tools are
used for writing the image of AVR series and
reprogramming the boot loader program for our sensor
nodes. We also deploy two modules, system control and
hardware control, in the emulating server. In system control
modules, we provide the local mode, job queue, result

340

viewer, and scheduler. In hardware control modules, we
provide the real-time control protocol, TCP/IP tools,
hardware device reseter, and hardware device checker. The
most important applications of emulating server are local
mode, real-time control protocol, and hardware device reset.

We provided local mode for users to experiment on their

own computer with the actual hardware resources. The local
mode does not appear in other studies of testbeds. In the
past, users can only experiment on the testbed by using the
existing interfaces and functions. It is traditional to display
the results with packet format in text in the
above-mentioned testbeds. If users want to show a curve or

Figure 3. The implementation details of WSNTB

a table, they need to get the experiment results back and
parse the results to the chart. As implied by the name, local
mode let users develop and run their programs in users’
computers. When users get a period of time for their
experiments, they will receive a note to ask them to get
permission and to use local mode. Users need to login
WSNTB and configure the serial port redirector. According
to the nodes chosen by users, we will open the
corresponding TCP ports for them to add the ports as local
serial ports. For example, assume a user has 10 nodes to
perform his experiment. The emulating server will open 10
TCP ports with individual public IP address. Then user can
use the TCP/IP software to add these TCP ports as local
serial ports. After setting the TCP ports, the user can
communicate with individual sensor node and experiment
directly in his local computer.

We design a real-time control protocol for users to make
instruction submission, data exchange, and TCP/IP
communications in real-time. The communication flow is
between emulating server and converters. It is necessary to
submit experiment and wait experiment results. For
example, users compile their programs with TinyOS and
start their experiments. When all the experiments were done,
users could analyze experiment results. But users need to
interactive with sensor nodes in experiments. The real-time
control protocol is different from traditional method. During
the processing experiment, users can send command or
compile programs to the sensor nodes via this protocol. The

emulating server will help users call system shell to execute
programs and catch the response messages for users.

If the system ran into a halt or application error, the
system administrator needs to reset the sensor nodes
manually for Octopus I. To reduce the workload of system
administrator, we design a hardware reset device attached to
each sensor node. When a sensor node receives the reset
command, the sensor node will reboot automatically.

In emulating server, we provide the job queue and
scheduler, result viewer, TCP/IP tools, device checker, and
device reseter. Job queue and scheduler can allow users to
assign a period of time for experiments. Users can check
any device via the web but only the administrator has the
right to reboot a specific device.

We deploy user management modules and job
management modules in the database server. The working
history function will record experiment information and
environment status. The user information includes personal
information, feedback opinion, announcement for
administrator etc. The source code box is to collect the
experiment’s source code, and compress them into a zip file.
Users can load their programs form the source code box,
and edit it again. The binary code box saves the
experiment’s binary image. If users want to run the same
experiment again, they can easily choose the existed binary
image in binary code box.

The second tier of WSNTB means servers to nodes. They

341

are the Internet and Ethernet backbone, Ethernet switches,
and the gateways with converters. The third tier of WSNTB
means the terminal nodes. In security issue, we build three
firewalls on the Internet and Ethernet backbone. The first
firewall built in front of the Internet router to block the
illegal incoming connections from remote users. Then the
two firewalls built on each WSN backbone to protect
network environment.

The gateways are the bridges over our network
environment. In our testbed, we deploy the gateway with
public IP address and allow users to access the gateway via
the direct connections. We use the single board computer as
our gateway. The single board computer can replace the
specific Ethernet gateway hardware such as Stargate.
Gateways can communicate with WSNs and Internet. We
installed Linux as our operating system and porting TinyOS
on the gateway. We assign private IP address for each
converter. Through the Ethernet connections, the server can
control individual converter directly and avoid the Internet
illegal access. This solution can make sure receiving the
experiment data correctly. The nodes execution environment
is composed of self-made hardware, firmware, and software.
We developed a boot loader to receive programs form the
gateways or converters. The library of sensor operating
system will pack with applications.

In this section, we present the main system architecture,
hardware infrastructure and software framework, and the
implementation details. The detail system operations will
describe in next section.

IV. SYSTEM OPERATIONS

A. System Menu
We design and implement several menu items on

WSNTB. Users can use these menu functions from our
website as shown in Fig.4. We display the users’ menu
according to their permission. For example, the guest users
just can see the basic menu items. The authorized users not
only see the basic menus but also their own menu. In
addition, the administrator can see the administrator menu.
Our testbed has the top level menus and submenus. The top
level menus consist of system architecture, environment,
information, services, my workspace, experiments,
configuration, device maintain, information maintain, and
system maintain. After users login, they will get their own
menus. Each normal user has basically four top level menus:
system architecture, environment, information, and services.
The authorized user has additional my workspace menu for
experiments. The administrator has the extra five menus in
top level for administrative purpose.

In system architecture, we introduce WSNTB and show
the hardware infrastructure and software framework. In
environment menu, we give the environment status of
WSNTB. Users can view the location of testbed map and
status of hardware devices. And we will show the detail of
hardware devices. Users can check anytime as they want to
use them. The hardware devices include nodes, converters,
gateways, and the servers. In information menu, users can
obtain the latest news of WSNTB. There are references to
WSNTB and publications. Users can contact with our
testbed project director and staffs.

In service menu, there is a service center for users. If
users have any question about WSNTB, users can use the
feedback item to tell us their problems. We will help users
to solve the problems. Also users can subscribe our e-letter
to get the news immediately.

My workspace menu is only for authorized users. When
user’s register is legal, user can do his/her experiment. In
my workspaces menu, it is the core applications of WSNTB.
Especially for the experiments menu, there is an experiment
flow for users. First, users need to create a new experiment
task or choose the existed experiment one from the code
box, and choose which nodes and gateways they want to use.
Users can use the code box to create and maintain their
program. If users want to use the program again in the new
experiments, they can load the programs form the code box.
Finally users have to decide when to run the experiments.

Figure IV. The screenshot of WSNTB

As experiments finished, users can retrieve and download
results. If users use the local mode, we allow users to
configure the TCP port setting and access testbed’s
hardware resource directly. There is a space for java code
saving. We usually use the TOSBase to listen packets. The
listen program is a java program in TinyOS. So we provide
the java code in the java box. Then users can modify and
compile the code. When a new experiment starts, users can
choose the code to run from java box. Besides, users can
interactive with sensor nodes in real-time by using the
real-time control protocol.

A sysadmin can retrieve the experiment files, control the
job schedule, and modify the testbed’s structure. There is a

342

map editor for changing the location map. The listening of
node, converter, and gateway allow an administrator to add
or remove hardware devices. And the LAN switch port
settings are to mark the location of Ethernet topology. In
device maintenance menu, the sysadmin can adjust the
devices and check their status. If a node is not work, the
sysadmin may take action to reset the device. The
information maintenance menu let the sysadmin to maintain
these submenus: announcement, references, papers, Q&A,
feedback, and about us. We provide add action, modify
action, delete action, and view action for maintenance. In
the system maintenance menu, the sysadmin can maintain
system configurations such as the account, permission,
contact email, and so on.

B. Experiments with WSNTB
There are two test programs running in our testbed. The

first test is running an application with distributed adaptive
transmission power-control algorithm, and the other one is
with secure reprogramming protocols.

l Distributed adaptive transmission power control
algorithm: In this algorithm, we proposed a distributed
adaptive transmission power control algorithm. In the
algorithm, each node utilizes the RSSI (Received
Signal Strength Indicator) and LQI (Link Quality
Indicator) of the radio to determine the appropriate
transmission power for its neighbors. The algorithm can
dynamically adjust the transmission power from the
surrounding change. All of experiments are
implemented on our testbed. The experimental results
show that the adaptive transmission power-control
algorithm can save 20% ~ 30% energy consumption.
Besides, the algorithm can achieve at least 99% average
packet delivery ratio between two nodes.

l Secure Reprogramming Protocols: We consider the
remote reprogramming protocols in wireless sensor
networks. As a remote code is distributed to the
networks, users make sure of each sensor node that can
receive the remote code securely through wireless
medium. We implement three recently proposed secure
reprogramming protocols on our testbed [3]. The three
secure reprogramming protocols are based on Deluge
reprogramming protocol. Finally, we also present the
performance of the three reprogramming protocols.

V. CONCLUSION
WSNTB is a heterogeneous, stable, scalable,

reconfigurable, and expandable architecture testbed. We
allow any devices with an USB and RS232 connector as
sensor device. The standard interface is easy to upgrade and
expand at scale. In our department building, we constructed
a testbed which consists of 34 sensor nodes, three gateways,
and three servers. To test and demonstrate the presented
concept we have presented a software framework to
perform WSNTB. The web-based interface is followed by
the HTTP protocol. In WSNTB, we can experiment cross
WSNs and choose their own nodes and gateways. Users can
experiment anytime and anywhere and avoid spending time
in establishing the WSNs environment. The local mode,
real-time control protocol, and hardware reset devices on
WSNTB are the core value. Users can run any customized
applications by themselves and work with any node over

Internet. Especially, the local mode function allows users to
experiment on their own computer but use our hardware
resources in WSNTB. We propose a software framework for
users to run their programs and collect experiment results.
Using the testbed website, users can book a period of time
and chooses nodes to experiment. Then users can upload
their own programs and reprogramming them. We provide
many functions such as compiler, online editor, data logger,
working status monitor, job queue system, and so on. By
using our testbed, researchers can save lots of time on
building a huge experiment environment and reduce the
hardware cost, but enhance the devices utility rate, and
fasten to verify the experiment results.

REFERENCES
[1] Atmel AVR 8-Bit RISC processor. at http://www.atmel.com
[2] Crossbow Technology Inc. at http://www.xbow.com.
[3] P.-K. Dutta, J. -W. Hui, D. -C. Chu, and D. -E. Culler, “Securing the

Deluge network programming system,” Proceedings of the 5th
International Conference on Information Processing in Sensor
Networks, TN, USA, April 2006.

[4] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D.
Culler, “The nesC Language: A Holistic Approach to Networked
Embedded Systems”, Proceedings of Programming Language
Design and Implementation , pp. 1-11, San Diego, CA, USA, June
2003.

[5] E. Ertin, A. Arora, R. Ramnath, M. Nesterenko, V. Naik, S. Bapat, V.
Kulathumani, M. Sridharan, H. Zhang, H. Cao, “Kansei: A Testbed
for Sensing at Scale”, Proceedings of International Symposium on
Mobile Ad Hoc Networking and Computing, pp 399-406, 2006.

[6] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, D.
Estrin, “EmStar: A Software Environment for Developing and
Deploying Wireless Sensor Networks”, Proceedings of USENIX
Annual Technical Conference, June 2004.

[7] V. Handziski, J. Polastre, J.-H. Hauer, and C. Sharp, “Flexible
Hardware Abstraction of The TI MSP430 Microcontroller in
TinyOS”, roceedings of the 2nd International Conference on
Embedded Networked Sensor Systems, pp 277-278, Nov. 2004.

[8] V. Handziski, A. K¨opke, A. Willig, A. Wolisz, “TWIST: A Scalable
and Reconfigurable Testbed for Wireless Indoor Experiments with
Sensor Networks”, Proceedings of International Symposium on
Mobile Ad Hoc Networking and Computing, pp 63-70, 2006.

[9] D. Johnson, D. Flickinger, T. Stack, R. Ricci, L. Stoller, R. Fish, K.
Webb, M. Minor, J. Lepreau, “Emulab's Wireless Sensor Net Testbed:
True Mobility, Location Precision, and Remote Access,”
Proceedings of the 3rd International Conference on Embedded
Networked Sensor Systems, 2005.

[10] B.-H. Khan, “Web-Based Instruction”, Educational Technology
Publications, Feb. 1997.

[11] S. McCanne, S. Floyd., ns-2 Network Simulator. at
http://www.isi.edu/nsnam/ns/.

[12] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling Ultra-low
Power Wireless Research”, Proceedings of Information Processing
in Sensor Networks, 2005.

[13] Omega and Motescope testbed at UC Berkeley, 802.15.4 wireless
sensor network, http://www.millennium.berkeley.edu/sensornets/.

[14] J.-P. Sheu, B.-K. Hsu, P.-C. Lin, and C.-J. Chang, “Design and
Implementation of A Lightweight Operating System for Wireless
Sensor Networks,” Proceeding of International Computer
Symposium, Taipei, Taiwan, Dec. 2006.

[15] Texas Instruments ultra-low-power MSP430 MCUs. at
http://www.ti.com

[16] G. Werner-Allen, P. Swieskowski, and M. Welsh, “MoteLab: A
Wireless Sensor Network Testbed”, Proceedings of Information
Processing in Sensor Networks, pp 483-488, 2005.

343

http://www.atmel.com
http://www.xbow.com
http://www.isi.edu/nsnam/ns/
http://www.millennium.berkeley.edu/sensornets/
http://www.ti.com

