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Abstract—How to secure data communication is an important 

problem in wireless sensor networks (WSNs). General solutions 

to the problem are to encrypt the packet payload with symmetric 

keys. But those solutions only prevent the packet content from 

being snooped or tampered. Adversaries still can learn network 

topology by the traffic analysis attack. In this paper, we propose 

an anonymous path routing (APR) protocol for WSNs. In APR, 

data are encrypted by pair-wise keys and transmitted with 

anonyms between neighboring sensor nodes and anonyms 

between the source and destination nodes of a multi-hop 

communication path. The encryption prevents adversaries from 

disclosing the data, and the anonymous communication prevents 

adversaries from observing the relation of the packets for further 

attacks. We implement APR on the MICAz platform to evaluate 

its overheads for demonstrating its applicability in practical 

WSNs. 

Keywords-Anonymous routing; pair-wise key; symmetric 

cryptography; wireless sensor networks 

I. INTRODUCTION 

A wireless sensor networks (WSN) consists of many 
spatially distributed, resource-constrained sensor nodes 
equipped with microcontrollers, short-range wireless radios, 
and analog/digital sensors. There are many applications of 
WSNs, like battle field surveillance, environmental monitoring, 
intrusion detection, and health care, etc. Sensor nodes sense 
environmental conditions, such as temperature, light, sound, or 
vibration, and transmit the sensed data to the sink node through 
multi-hop communication links. The sensed data are critical for 
some applications, especially for military ones. How to keep 
the sensor node communication secure is thus an important 
issue in WSNs. Since sensor nodes are resource-constrained, 
conventional security schemes using asymmetric cryptography 
cannot be directly applied to WSNs. New mechanisms are 
required to achieve secure communication for WSNs.  

When sensor nodes communicate with each other via 
wireless transmission, the adversaries can easily eavesdrop on 
every packet. By analyzing the packets, adversaries can derive 
useful information and/or start attacks. The attacks are 
categorized into two types: active attacks and passive attacks. 
As implied by the name, active attacks are “invasive.” Typical 
examples are replaying attacks, denial-of-service attacks and 
forging attacks, etc [15]. In contrast to active attacks, the 
passive attacks are “non-invasive” and difficult to detect. 
Typical examples are traffic analysis [10] and packet 

eavesdropping. Traffic analysis is usually the prelude of active 
attacks which can really damage the sensor networks. There are 
many schemes proposed for resisting attacks. SDAP [14] uses 
network topology changes to prevent adversaries from 
attacking the most effective data aggregation nodes in WSNs. 
However, SDAP has high control overhead due to the frequent 
changes of the network topology. Some protocols, such as 
ANODR [9], AnonDSR [12], SDAR [1], and MASK [15], use 
the concept of anonymous communication to hide identities of 
nodes participating in the communication to resist attacks in 
mobile ad hoc networks. Providing anonymity in WSNs is 
useful since hiding node identities in routing paths makes it 
more difficult for adversaries to identify the more active nodes 
to attack. However, the above-mentioned protocols for ad hoc 
networks are not suitable to WSNs due to high computation 
and communication overheads caused by asymmetric 
cryptography. 

In this paper, we propose an Anonymous Path Routing 
(APR) protocol to achieve anonymous communication in 
WSNs. APR hides the identities of all nodes in the routing path 
and encrypt the data by a pair-wise key shared by the sender 
and the receiver. Only the sender and the receiver can decrypt 
the data and uncover the sender’s and receiver’s identities, 
while the others cannot. As a result, the adversaries cannot 
derive actual traffic patterns by snooping packets or even by 
compromising sensor nodes in the path. The WSNs can thus 
resist traffic analysis attacks and prohibit further attacks. 
Furthermore, APR is a two-way routing protocol; i.e., when an 
anonymous path from the source to the destination is 
established, a reverse anonymous path from the destination to 
the source is also obtained. 

APR utilizes three basic schemes: (1) anonymous one-hop 
communication, (2) anonymous multi-hop path routing, and (3) 
anonymous data forwarding. By the first scheme, each node 
can create two unique pseudonyms for each link between itself 
and one of its neighbors with the help of a distributed pair-wise 
key establishment protocol. One pseudonym is for the in-bound 
direction of the link; the other, out-bound direction. Data are 
encrypted and sent without revealing the real identities of the 
sender and receiver. The encryption key changes for every data 
transmission, which makes it harder for adversaries to break 
the data encryption. By the second scheme, if a node needs to 
communicate with a node multiple hops away, it can find a 
two-way routing path in an anonymous way. Once an 
anonymous path is found, APR assigns a pseudo ID to the path 
for identification. An intermediate node in the path can identify 
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the path and know its pre-hop and/or next-hop nodes in the 
path, while the other nodes cannot. By the third scheme, 
packets can be forwarded in an anonymous way by using the 
pseudo ID. If adversaries eavesdrop on packets, they can only 
gather a large pool of pseudonyms but have no knowledge of 
the relationship between pseudonyms and real traffic links. 
This prevents adversaries from figuring out the network 
topology. For demonstrating the applicability and 
communication capability of APR, we implement it on the 
sensor platform MICAz with TinyOS operating system [6]. By 
the implementation, we observe that APR do not cost heavy 
computing overhead and long time delay on sensor nodes; APR 
is applicable to practical wireless sensor networks. 

The remainder of this paper is organized as follows. Section 
II shows some related work. The design of APR is detailed in 
Section III. In Section IV, we analyze the security properties of 
APR. In Section V, we explain the implementation of APR on 
MICAz, and evaluate its computational overheads. Finally, we 
conclude the paper in Section VI. 

II. RELATED WORK 

In order to resist the malicious traffic analysis and/or other 
attacks in WSNs, some countermeasures have been developed. 
Since sensor nodes are resource-constrained, most 
countermeasures are based on mechanisms using symmetric 
keys, such as symmetric encryption/decryption and message 
authentication code (MAC). Those mechanisms require that 
symmetric key should be distributed to nodes beforehand. One 
common symmetric key distribution scheme for WSNs is the 
pair-wise key scheme [3], which requires two sensor nodes to 
communicate with each other to decide a shared key that only 
the two nodes know. This scheme can prevent a compromised 
node from disclosing the packet contents. Most distributed 
pair-wise key establishments are based on pre-distributed pair-
wise keys [7].  

Although symmetric cryptography and the pair-wise key 
scheme can protect packet contents from being uncovered by 
adversaries, the identities of communication parties can still be 
revealed and network traffic patterns can thus be derived. It is 
possible that this kind of information leakage could cause 
devastating security leak. The paper [15] proposes SDAP to 
reselect aggregation leaders for performing data aggregation 
every time when the sink node wants to collect the sensed data 
in the WSN. Since the topology for data aggregation changes 
frequently, SDAP prevents adversaries from locating the 
aggregation leader nodes. The cost of SDAP is high since a 
sensor node needs re-establish pair-wise keys for new leader 
nodes. Nevertheless, the adversaries can still learn the 
communication relationships between sensor nodes and involve 
some local attacks such as the replay attack and the denial-of-
service attack. 

There is another effective solution that uses the concept of 
anonymous communication to resist malicious attacks by 
hiding the sender’s and/or receiver’s identities. If adversaries 
cannot identify the packet sender and receiver, they have no 
way to learn the network topology and the relationship of 
communication parties. Several anonymous communication 
routing protocols for ad hoc networks are proposed in [1, 2, 8, 

9, 13, 15]. Below, we describe some of them. In ANODR [9], 
routing request is encrypted with the “onion scheme” before it 
is forwarded. The onion scheme encodes routing information in 
a set of encrypted layers; each node appends the information 
about the forwarding node to the packet and then encrypts the 
appended packet by a random key each time the packet is 
retransmitted. In this manner, ANDOR provides route 
pseudonym. To improve ANODR protocol, AnonDSR [13] 
requires that the data should also be encrypted by onion 
scheme in order to prevent the global attacker from finding out 
the route by comparing the data part of the packets. MASK [15] 
is a pairing-based anonymous on-demand; it achieves 
anonymous neighborhood authentication with the assistance of 
certificate authority (CA) and key agreement from bilinear 
pairing [4]. The anonymous communication protocols for ad 
hoc networks are not suitable for WSNs due to their 
computation and memory overheads. 

III. DESIGN OF ANONYMOUS PATH ROUTING (APR) 

PROTOCOL 

A. Overview of APR 

Anonymous Path Routing (APR) protocol proposed in this 
paper is designed for achieving anonymous communication in 
WSNs. In APR, nodes request routes and exchange data by 
recognizing hidden identities. APR is supposed to have the 
following properties: 

1) Transmission relationship anonymity: The sender’s and 
receiver’s identities in the packet header are replaced by 
pseudonyms. Even if adversaries can eavesdrop on packets, 
they still cannot find where the packet comes from and 
where the packet goes to.  

2) Authentication through anonyms: Any pair of nodes can 
authenticate mutually without revealing their identities.  

3) Unlocatability: The adversaries cannot locate nodes by 
tracing the transmitted packets that they overhear back to 
the source or to the destination.  

4) Limited area of leakage: If a node is compromised, the 
effect of the compromised behavior will be limited in a 
local area.  

5) Secure data transmission: The intermediate nodes do not 
know the source and destination of the packets that they are 
forwarding. And only the source and the destination of the 
packet can decrypt the cipher of the packet payload.  

6) Resilience to packet loss: Due to packet collision or other 
wireless medium interference, packet loss occurs frequently, 
and causes the sensor nodes confuse about the anonyms.  

7) Light-weight computation: APR can achieve anonymous 
communication without heavy computation overhead. It is 
thus suitable for sensor nodes with limited resources.  

B. Network Assumptions and Notations 

We assume that the wireless links are symmetric and each 
node has limited transmission and reception capabilities. 
Notations used throughout this paper are defined as follows: 



‧ IDA: identity for node A 

‧ rn: a random nonce number 

‧ SeqAB (= SeqBA): sequence number of the link between 

node A and node B 

‧ KAB (= KBA): the pair-wise key shared with node A and 

node B 

‧ K
i
AB-enc (=K

i
BA-enc): the i-th pair-wise key shared with node 

A and node B used to encrypting packet payload 

‧ KAB-enc (=KBA-enc): the set of K
i
AB-enc for i = 0… n 

‧ E{KAB, M}: a messge M encrypted with pair-wise key KAB 

‧ H: a one way hash function 

‧ K
i
AB-mac (=K

i
BA-mac): the i-th pair-wise key shared with 

node A and node B used to compute MAC (Message 

Authentication Code of the packet) 

‧ KAB-mac (=KBA-mac): the set of K
i
AB-mac for i = 0… n 

‧ HI
i
A


B: the i-th hidden identity presenting the link from 

node A to node B 

‧ HIA


B: the set of HI
i
A


B for i = 0… n 

‧ HIPSD (=HIPDS): the hidden identity for a pair of source 

node S and destination node D 

C. Three Schemes of APR 

APR protocol consists of three schemes: anonymous one-
hop communication, anonymous multi-hop path routing, and 
anonymous data forwarding. Below, we describe the three 
schemes one by one. 

1)  Anonymous One-hop Communication 
This scheme is performed right after the sensors are 

deployed. By this scheme, every sensor node establishes a 
bidirectional anonymous communication link for each of its 
one-hop neighbors after sensor nodes are deployed in the 
sensing field. In order to achieve this goal, any two 
neighboring nodes must have a pair-wise key to create hidden 
identities (HIs) for each other. In practice, APR can rely on a 
pair-wise key establishment protocol like PIKE [12] to 
establish a one-hop pair-wise key KAB and a random nonce 
number rn for a communication link between node A and A’s 
neighboring node B. Afterwards, APR establishes two more 
keys, namely data encryption key KAB-enc and MAC (Message 
Authentication Code) encryption key KAB-mac. APR also 
establishes two hidden identities, namely HIA


B and HIB


A, for 

the anonymous links from A to B and from B to A, respectively. 
KAB-enc, KAB-mac, HIA


B and HIB


A are used only once; APR 

alters them when they are ever used. KAB-enc and KAB-mac are first 

calculated by hashing the values of (KAB⊕C1) and (KAB⊕C2) 

respectively, where ⊕ stands for EXCLUSIVE OR operation 

and C1 and C2 are pre-specified constants (refer to (1)). 
Afterwards, KAB-enc and KAB-mac are calculated by hashing their 
previous values (refer to (2)). And HIA


B and HIB


A are 

calculate by hashing the values of (KAB ⊕ IDB ⊕ SeqAB × rn) 

and (KAB ⊕ IDA ⊕ SeqAB × rn) respectively, where SeqAB, 

which is initially 0, is the sequence number of the packet 
transmitted between A and B (refer to (3)). 
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By (1), (2) and (3), a sensor node can create a link table 
which contains an entry for each link between itself and one of 
its one-hop neighbors. Each entry has the fields of the one-hop 
neighbor ID, the sequence number of the link, Kenc, Kmac, HI-in, 
and HI-out, where HI-in is the hidden identity for the in-bound 
direction, and HI-out, the out-bound direction. For example, 
assume node A has 3 one-hop neighbors, B, C, and D. After the 
pair-wise key establishment, A has the initial link table as 
shown in Table I. 

TABLE I.  THE INITIAL LINK TABLE OF NODE A 

ID Seq HI-in HI-out Kenc Kmac 

IDB 0 HI
0
B


A HI
0
A


B K
0

AB-enc K
0
AB-mac 

IDC 0 HI
0

C


A HI
0
A


C K
0

AC-enc K
0
AC-mac 

IDD 0 HI
0
D


A HI
0

A


D K
0
AD-enc K

0
AD-mac 

 

The link table changes for every communication. For 
example, the entry in the link table for the link from node A to 
node B becomes the six-tuple (IDB, i, HI

i
A


B, HI
i
B


A, K
i
AB-enc, 

K
i
AB-mac) after the i-th . If a node A wants to send the (i+1)-th 

packet to B, it uses the corresponding out-bound hidden 
identity HI

i
A


B in the field HI-out to represent the link from A 
to B anonymously. Node A also encrypts the packet payload 
with the key K

i
AB-enc in the field Kenc, and prepares a MAC for 

the packet payload by the key K
i
AB-mac in the field Kmac. To be 

more precise, the (i+1)-th packet from A to B is of the form 
<HI

i
A


B, E{K
i
AB-enc, DATA||(i+1)}, MAC(K

i
AB-mac)>. When node 

B receives the packet, it will check if the packet is sent to itself 
by comparing HI

i
A


B with all in-bound hidden identities of the 
field HI-in in its link table. If there is a match, node B receives 
this packet, decrypts the packet by K

i
AB-enc and acknowledges 

the packet. Otherwise, it drops the packet. 

One-hop acknowledgement 
After the sender receives an acknowledgement (ACK) 

packet, form the receiver, the sender and receiver have both 
updated the values of the fields Seq, HI-in, HI-out, Kenc, and 
Kmac of corresponding link table entries by (2) and (3). Nodes 
can then communicate with the new setting properly. However, 
packet loss and transmission errors may occur to make the 
sender’s and the receiver’s link tables out of synchronization. 
This will hinder future communication of the link. 

In order to solve this problem, APR requires one more field 
Old-HI-in in the link table to store the previous value of the HI-
in field, and requires a receiver B to send an ACK packet, 
<HI

i
B


A, E{K
i
AB-enc, ACK||(i+1)}, MAC(K

i
AB-mac)>, to the sender 

A when B receives A’s (i+1)-th packet. The last ACK packet 
should also be kept for possible further use. On receiving a 
packet, B sends an ACK packet and updates the values of fields 
Seq, HI-in, HI-out, Kenc, Kmac, and Old-HI-in of the 



corresponding link table entry. On receiving the ACK packet, 
A updates the values of fields Seq, HI-in, HI-out, Kenc, and Kmac 

of the corresponding link table entry. If A cannot receive the 
ACK packet after a timeout period due to the packet loss or 
transmission errors, A retransmits the packet. Node B can 
identify the retransmitted packet since its HI can match with a 
value of the field Old-HI-in of source link table entry. The 
coming of a retransmitted packet means that the ACK packet 
has been lost and B just resends the last ACK packet kept. 
After A receives the ACK packet properly, its link table is 
updated and in synchronization with B’s again. 

2) Anonymous Multi-hop Path Routing 
After one-hop anonymous link are established, a data 

source node may communicate with a destination node 
multiple hops away. APR establishes an anonymous two-way 
multi-hop path between the source and destination nodes. It 
contains two steps: anonymous path routing request and 
anonymous path routing reply. We assume the source node and 
the destination node share a pre-distributed pair-wise key. 
When the pair of nodes do not share a pre-distributed pair-wise 
key, they can first establish a pair-wise key by integrating the 
anonymous multi-hop path routing scheme with a pair-wise 
key establish protocol like PIKE. Afterwards, the routing can 
proceeds normally with the newly established pair-wise key. 
However, we omit the details in this paper. 

Anonymous Path Routing Request 
When a source node S wants to find a path to a destination 

node D multiple hops away, S broadcasts an anonymous path 
routing request (APR-REQ) locally. APR puts a hidden 
identity HIP instead of a destination node identity in the 
routing request. HIP stands the hidden identity for the pair of 
the source and the destination nodes. It is computed by hashing 
the value of KSD⊕IDS⊕IDD, where KSD is the pre-distributed 

pair-wise key and IDD (resp., IDS ) is the identity of node D 
(resp., S). 

)( DSSDSD IDIDKHHIP                      (4) 

In APR, each sensor node maintains a HIP table right after 
it is deployed. The HIP table contains an entry for each 
possible source node that shares a pre-distributed pair-wise key 
with itself. Each entry has the fields of ID, K and HIP, which 
stand for the source node identity, the pair-wise key and in-
bound HIP, respectively. The routing request is flooded to the 
entire network to find a path from source to destination. The 
nodes which receive routing request APR-REQ but are not the 
destination should keep the request for further use. Then they 
rebroadcast this routing request locally. 

This APR-REQ packet has the form <APR-REQ, IDS, 
HIPSD, RSeqS


D>, where RSeqS


D is set to be the last known 

routing request sequence number from S to D. The second field 
of the packet represents the identity of the node which initiates 
or rebroadcasts the packet. It is initially set to IDS, the identity 
of S, and will be replaced by the identity of the node which 
rebroadcasts the packet. Every node which receives the APR-
REQ packet stores it for further use. The node checks if there is 
any entry of HIP table matching HIPSD of the APR-REQ 
packet. If so, the node is the destination node. If not, the node 
rebroadcasts the packet but replaces IDS with its own identity. 
The steps to send anonymous path routing request packet from 

S to D through nodes E and C is depicted in Fig. 1 (steps 1 to 
3). 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Anonymous multi-hop path establishment from the source S to the 

destination D 

Anonymous Path Routing Reply 
When the destination node D receives a routing request 

APR-REQ of node S from a neighboring node C (refer to Fig. 1 
step 4), D specifies C as the forwarding node to send an 
anonymous path routing reply APR-REP to S. The APR-REP 
packet has the form <HID


C, E{KCD-enc, APR-

REP||HIPSD||PathIDSD||RSeqS


D ||SeqCD}, MAC(KCD-mac)>. Note 
that, we omit MAC field in the following context for simplicity. 
This routing reply contains a path identity PathIDSD of the 
route path between S and D. Each route path is two-way, so 
PathIDSD represents not only the path from S to D, but also the 
reverse path from D to S. PathIDSD is generated by D randomly; 
however, every path identities for the path between S and D 
should be different.  

Each node maintains a two-way routing table consisting of 
entries with the fields PathID, Pre-hop, Next-hop, and Sour 
(Dest). A node updates the table when receiving an APR-REP 
packet. The field PathID stores the identity of the route path, 
Dest stores the identity of the destination node, Pre-hop stores 
the identity of the node where the APR-REQ packet comes 
from; and Next-hop stores the identity of the node from which 
the corresponding APR-REP packet comes. After D sends out 
this APR-REP and receives ACK packet from C, D inserts an 
entry or updates the corresponding entry in its routing table as 
follows. It puts PathIDSD into the PathID field, puts IDC into 
the Pre-hop field, puts IDS into the Sour (Dest) field, and sets 
the Next-hop field as Null. 

When node C receives the APR-REP from D, C first 
figures out the pre-hop node, say node E, by matching HIPSD of 
the APR-REP with that of previous APR-REQ packet stored in 
its memory. When a match occurs, the corresponding APR-
REQ is purged from the memory. The APR-REP is then 
encrypted with the pair-wise key KCE-enc and sent to E. Node C 
inserts an entry in its two-way routing table as follows. It puts 
PathIDSD in the PathID field; IDD, Next-hop field; IDE, Pre-
hop field. However, the Sour (Dest) field is set as Null because 
C is just a forwarding node but not a destination or a source in 
this route path. Through hops of relaying, the source node S 
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Step 1 Step 2 Step 3 

Step 4 Step 5 Step 6 
S D E C 

APR - REQ ,  ID S ,  HIP SD ,  RSeq S 
 D APR - REQ ,  ID E ,  HIP SD ,  RSeq S 

 D APR - REQ ,  ID C ,  HIP SD ,  RSeq S 
 D 

HI D  C ,  E { K CD - enc ,  APR - REP || HIP SD || 
PathID SD || RSeq S 

 D || Seq CD } 
HI E  S ,  E { K SE - enc ,  APR - REP || HIP SD ||  

PathID SD || RSeq S 
 D || Seq SE } 

HI C 
 E ,  E { K CE - enc ,  APR - REP || HIP SD || 
PathID SD || RSeq S 

 D || Seq CE } 



receives an APR-REP with HIPSD from a relaying node E. S 
recognizes that the APR-REP is a reply for the APR-REQ sent 
by S previously. S inserts an entry or updates the corresponding 
entry as follows. It sets the field Pre-hop as Null and puts 
PathIDSD in the PathID field; IDE, Next-hop field; IDD, Sour 
(Dest) field. The steps to send anonymous path routing reply 
APR-REP through node E and node C is depicted in Fig. 1 
(steps 4 to 6). By the procedures mentioned above, a path from 
S to D is established successfully and anonymously. 

Because the identities of the source node and the 
destination node do not appear in the routing request and 
routing reply, the forwarding nodes only know where it should 
relay to but no other information. It is worthwhile to mention 
that the established path is a two-way path instead of a one-way 
path established by another protocol like MASK. 

3) Anonymous Data Forwarding 
When the source node S wants to send a data packet to the 

destination node D multiple hops away after the anonymous 
path routing establishment (suppose the forwarding node is E), 
It first finds out PathIDSD and the forwarding node identity IDE 
for D by looking up the routing table. The identity of the 
forwarding node is stored in non-Null Pre-hop field or Next-
hop field of the entry for destination D. Then S sends out the 
data packet to the forwarding node E with the form <HIS


E, 

E{KSE-enc, MHOP-DT||PathIDSD||E{KSD-enc, DATA}||SeqSE}>, 
where MHOP-DT stands for the packet label for multi-hop 
data transmission. When a forwarding node C receives a 
MHOP-DT packet, it looks for the entry of PathIDSD in its two-
way routing table. If the identity stored in the Pre-hop (resp., 
Next-hop) field matches with IDE (the identity of the node from 
which the packet comes), the next forwarding node is with the 
identity stored in the Next-hop (resp. Pre-hop) field. If the 
Next-hop (resp. Pre-hop) is Null, the destination node is 
reached. The destination node D knows the source node 
identity IDS which is stored in the Sour (Dest) field in the 
routing table. Then D can decrypt the data cipher with the key 
KSD-enc shared by S and D. 

D. PathID Collision Problem 

Since PathID of a path is generated randomly by the 
destination node of the path, two different paths crossing at a 
same forwarding node may have the same PathID. We call this 
the PathID collision problem. There are two cases for such a 
problem: (case 1) the Pre-hop fields of the paths are different 
and (case 2) the Pre-hop fields of the two paths are identical.  

The scenario depicted in Fig. 2 is an example of case 1. The 
forwarding node, F, has two paths with PathID = 12. Since 
both the Pre-hop and Next-hop fields of the paths are different, 
the forwarding node can choose proper node to forward the 
packet. For example, packets with PathID = 12 from I should 
be forwarded to K, and packets with PathID = 12 from L 
should be forwarded to N. 

The scenario depicted in Fig. 3 is an example of case 2. The 
forwarding node O receives an APR-REP packet with PathID = 
13 from node P. According to the HIP in the APR-REP packet, 
this packet should be relayed to node Q. But there is already a 
path with PathID = 13 in the routing table, and the relay (pre-
hop) node of the path is also, Q. To distinguish the two 

different paths, node O changes PathID from 13 to another 
number, say 14, in the APR-REP packet and sends it to the 
relay node Q. After that, if node O receives a packet from node 
Q with PathID = 14, it forwards this packet to node P by 
changing PathID to 13. Therefore, node O will keep PathIDs 
13 and 14 in the routing table. To indicate that a PathID should 
be changed to a new one, node O stores the new PathID in 
Change field. If the Change field is Null, the PathID has no 
need to be changed. To make sure that the forwarding node O 
can choose a proper node for forwarding the packet sent from 
node Q, an Original field is added in the routing table. Original 
field of the first path with PathID = 13 is set to be “true”, 
which means this entry should be checked first if node O 
receives a packet with PathID = 13. After checking the entry 
with Original is true, if the packet is sent from Q (R), node O 
forwards the packet to R (Q). Otherwise, node O will check the 
entry with Original being false and determines its next relay 
node accordingly. 

 

 

 

 

 

 

Figure 2.  Two different paths with the same PathID and different Pre-hop 

nodes 

 

 

 

 

 

 

Figure 3.  Two different paths with the same PathID and Pre-hop node 

IV. SECURE ANALYSIS OF ANONYMITY 

In this Section, we analyze how well APR achieves 
anonymity for communication In APR, except the rebroadcast 
node ID in the APR-REQ packet, no real node identity appears 
in any packet after one-hop pair-wise keys are established. But 
the rebroadcast node ID is useless for adversaries because any 
local communication uses hidden identity. Furthermore, a 
multi-hop communication path is anonymous since it is 
identified by PathID and its source and the destination nodes 
are represented by HIP, which can only be identified by the 
corresponding source and destination nodes. Due to the 
anonymity, APR can resist the following attacks. 

‧ Traffic Analysis attacks 
In one-hop communication, two neighboring nodes use 

different parameters, such as hidden identity HI, data 
encryption key and MAC encryption key, for different packets. 
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Except the two communication nodes, no node can uncover the 
data packet or identify the sending and receiving nodes. 
Although the receiving node sends an ACK packet 
immediately to confirm that the packet is successfully received, 
the HI in the ACK packet is different from the HI of the 
received packet. So the other nodes cannot learn the 
relationship between the sending and receiving nodes to derive 
the network topology. That prevents the traffic analysis attack. 

‧ Forging attacks 
In APR, hidden identity should be used in common data 

transmission. If the adversary sends a malicious packet with a 
forged HI, the packet will be accepted with probability 1/2

h
, 

where h is the length of HI. However, even the adversary has a 
correct guess of HI, it should have a correct guesses of the 
packet MAC to make the forged packe be accepted. If the 
MAC has a length of m, the adversary has a 1/2

h+m
 chance in 

blindly forging a valid HI and MAC for a particular packet. A 
typical setting of h and m is h = 16 and m = 32. Under such a 
setting, if an adversary repeatedly attempts blind forging, s/he 
is guaranteed to succeed after about 2

48
 tries. Adversaries can 

try to broadcast with forgeries, but on a 125kb/s channel, 
sending 2

48
 packets would spend over 500 years. 

‧ Replay attacks 
Replay attacks use the legal packets sent before which have 

correct MAC and cipher. In APR, each HI is used once only, so 
sensor nodes will discard replayed packets. In order to maintain 
the synchronization of link table entries between neighboring 
nodes, APR keeps the last HI. If adversaries replay a data 
packet, this packet will only be accepted by the receiving node 
only once. This is because the receiving node will adjust its 
link table and update the last HI when accepting the replayed 
packet. Therefore, APR can resist replay attacks effectively. 

‧ Denial-of service (DoS) attacks 
DoS attacks are generally hard to resist. In APR, multi-hop 

communications are split as a chain of one-hop transmissions, 
which use different HIs. Without correct HI, DoS attack 
packets will be ignored directly. APR can limit the damage 
caused by this kind of attacks in a local area. 

V. IMPLEMENTATION AND MEMORY OVERHEAD 

EVALUTION 

In order to provide strong security protection and good 
scalability, APR combines symmetric key cryptographic 
algorithm, hash function and message authentication code 
together. We use Skipjack block cipher algorithm [13] as the 
symmetric key cryptosystem, SHA-1 [5] as the hash function, 
and CBC-MAC [11] as the MAC function. 

We have implemented APR on the Berkeley sensor nodes 
to demonstrate its applicability and communication capability. 
In our implementation, we assume the pair-wise keys are pre-
distributed. So the PIKE protocol is not included in our 
implementation. APR currently runs on the MICAz platform 
with TinyOS operating system. And it also can run on the 
MICA and MICA2 platform. The implementation of APR 
requires 9436 bytes of program space. The required SRAM 
size depends on the network size and node density. 

In our implementation of Skipjack, encrypting 24 bytes 
data costs 1.51 milliseconds. And the operation of executing 
link table update after each one-hop communication costs 1.27 
milliseconds. The time of computing MAC costs 0.81 
milliseconds. Comparing to the average transmission time of 
the packet with 24 bytes data payload, which is 27.5 
milliseconds, the three operations mentioned above do not cost 
heavy computing overhead and time delay on sensor nodes. 
The routing latency of APR is shown in Fig. 4. For a node 
needs to find a route path to another which is 7 hops away, the 
average time of path establishment is about 574 milliseconds. 
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Figure 4.  Average routing latency of APR 

In APR, a node needs 50 bytes of SRAM for storing an 
entry of the link table, and needs 8 bytes of SRAM for storing 
information of a path in the routing table. We conducted 
analysis to evaluate the memory overhead of APR. Because 
HIP table is loaded in the program space of the flash memory 
before nodes are deployed. Thus, only the link table and 
routing table occupy SRAM. We analyze a WSN with sensor 
nodes randomly deployed in a 5R × 5R field, where R is the 
communication range of sensor nodes. The varying parameters 
used for the analysis are the number of deployed nodes. In the 
5R × 5R field, the number of sensor nodes is 25, 50, … or 200, 
and each node must establish anonymous multi-hop 
communications with 5, 10, 15 or 20 randomly selected multi-
hop neighboring nodes. The analysis results are shown in Figs. 
5.2, 5.3 and 5.4. 

Fig. 5 shows that the link table size grows with the node 
density. For the situation of 200 nodes, the link table size goes 
to 1.1 Kbytes. According to Fig. 6, the routing table size 
decreases when the number of nodes increases. When node 
density is higher, a node has more choices of farther one-hop 
neighbors to establish paths with fewer hops, which pass 
through fewer nodes. Thus, the average routing table size is 
smaller. As the number of nodes reaches 125, the routing table 
size hardly decreases from then on. This is because the number 
of hop count of paths hardly decreases when number of nodes 
is higher than 125.  

By summing up the link table size and the routing table size 
per node, we can get the total memory overhead per node in 
APR, as shown in Fig. 7. The maximum memory overhead of 
APR shown in Fig. 7 is 1881 bytes when there are 200 nodes in 
the field, which is affordable for practical sensor nodes. To 
sum up, by the implementation and analysis results, APR is 
computationally feasible and only consumes little memory 
space. It is thus suitable for sensor nodes with limited resources. 
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Figure 5.  Average link table size of a node in a 5R × 5R field 
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Figure 6.  Average routing table size of a node in a 5R × 5R field 
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Figure 7.  Average memory overhead of a node for varying number of nodes 

in a 5R × 5R field 

VI. CONCLUSION 

In this paper, we propose an anonymous path routing 
protocol, called APR, for WSNs. APR has three basic schemes: 
(1) anonymous one-hop communication, (2) anonymous multi-
hop path routing, and (3) anonymous data forwarding. By the 
first scheme, each node can create two hidden identities for 
each link of itself and one of its neighbors. One is for the in-
bound direction of the link; the other, out-bound direction. Data 
are encrypted and sent without revealing the real identity of the 
sender. By the second scheme, APR can find a two-way multi-
hop routing path for it in an anonymous way and assign a 
pseudonym, called PathID, to the path for identification. Only 
the pair of the source and destination nodes know each other’s 
identity. The third scheme can forward packets in an 
anonymous way by using the PathIDs. If adversaries eavesdrop 
on packets, they can only gather a large pool of pseudonyms 

but have no knowledge of the relationship between 
pseudonyms and real traffic links. This prevents adversaries 
from figuring out the network topology. We implement APR 
on the sensor platform MICAz with TinyOS operating system 
and find that it is applicable to practical sensor nodes. 
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