
Anonymous Path Routing

in Wireless Sensor Networks

Jang-Ping Sheu

Department of CS

National Tsing Hua University

Hsinchu, Taiwan

Jehn-Ruey Jiang

Department of CSIE

National Central University

Jhongli, Taiwan

Ching Tu

Department of CSIE

National Central University

Jhongli, Taiwan

Abstract—How to secure data communication is an important

problem in wireless sensor networks (WSNs). General solutions

to the problem are to encrypt the packet payload with symmetric

keys. But those solutions only prevent the packet content from

being snooped or tampered. Adversaries still can learn network

topology by the traffic analysis attack. In this paper, we propose

an anonymous path routing (APR) protocol for WSNs. In APR,

data are encrypted by pair-wise keys and transmitted with

anonyms between neighboring sensor nodes and anonyms

between the source and destination nodes of a multi-hop

communication path. The encryption prevents adversaries from

disclosing the data, and the anonymous communication prevents

adversaries from observing the relation of the packets for further

attacks. We implement APR on the MICAz platform to evaluate

its overheads for demonstrating its applicability in practical

WSNs.

Keywords-Anonymous routing; pair-wise key; symmetric

cryptography; wireless sensor networks

I. INTRODUCTION

A wireless sensor networks (WSN) consists of many
spatially distributed, resource-constrained sensor nodes
equipped with microcontrollers, short-range wireless radios,
and analog/digital sensors. There are many applications of
WSNs, like battle field surveillance, environmental monitoring,
intrusion detection, and health care, etc. Sensor nodes sense
environmental conditions, such as temperature, light, sound, or
vibration, and transmit the sensed data to the sink node through
multi-hop communication links. The sensed data are critical for
some applications, especially for military ones. How to keep
the sensor node communication secure is thus an important
issue in WSNs. Since sensor nodes are resource-constrained,
conventional security schemes using asymmetric cryptography
cannot be directly applied to WSNs. New mechanisms are
required to achieve secure communication for WSNs.

When sensor nodes communicate with each other via
wireless transmission, the adversaries can easily eavesdrop on
every packet. By analyzing the packets, adversaries can derive
useful information and/or start attacks. The attacks are
categorized into two types: active attacks and passive attacks.
As implied by the name, active attacks are “invasive.” Typical
examples are replaying attacks, denial-of-service attacks and
forging attacks, etc [15]. In contrast to active attacks, the
passive attacks are “non-invasive” and difficult to detect.
Typical examples are traffic analysis [10] and packet

eavesdropping. Traffic analysis is usually the prelude of active
attacks which can really damage the sensor networks. There are
many schemes proposed for resisting attacks. SDAP [14] uses
network topology changes to prevent adversaries from
attacking the most effective data aggregation nodes in WSNs.
However, SDAP has high control overhead due to the frequent
changes of the network topology. Some protocols, such as
ANODR [9], AnonDSR [12], SDAR [1], and MASK [15], use
the concept of anonymous communication to hide identities of
nodes participating in the communication to resist attacks in
mobile ad hoc networks. Providing anonymity in WSNs is
useful since hiding node identities in routing paths makes it
more difficult for adversaries to identify the more active nodes
to attack. However, the above-mentioned protocols for ad hoc
networks are not suitable to WSNs due to high computation
and communication overheads caused by asymmetric
cryptography.

In this paper, we propose an Anonymous Path Routing
(APR) protocol to achieve anonymous communication in
WSNs. APR hides the identities of all nodes in the routing path
and encrypt the data by a pair-wise key shared by the sender
and the receiver. Only the sender and the receiver can decrypt
the data and uncover the sender’s and receiver’s identities,
while the others cannot. As a result, the adversaries cannot
derive actual traffic patterns by snooping packets or even by
compromising sensor nodes in the path. The WSNs can thus
resist traffic analysis attacks and prohibit further attacks.
Furthermore, APR is a two-way routing protocol; i.e., when an
anonymous path from the source to the destination is
established, a reverse anonymous path from the destination to
the source is also obtained.

APR utilizes three basic schemes: (1) anonymous one-hop
communication, (2) anonymous multi-hop path routing, and (3)
anonymous data forwarding. By the first scheme, each node
can create two unique pseudonyms for each link between itself
and one of its neighbors with the help of a distributed pair-wise
key establishment protocol. One pseudonym is for the in-bound
direction of the link; the other, out-bound direction. Data are
encrypted and sent without revealing the real identities of the
sender and receiver. The encryption key changes for every data
transmission, which makes it harder for adversaries to break
the data encryption. By the second scheme, if a node needs to
communicate with a node multiple hops away, it can find a
two-way routing path in an anonymous way. Once an
anonymous path is found, APR assigns a pseudo ID to the path
for identification. An intermediate node in the path can identify

This work was supported by the National Science Council of R.O.C.
under grants NSC 95-2221-E-008-019 and NSC 96-2221-E-008-007.

the path and know its pre-hop and/or next-hop nodes in the
path, while the other nodes cannot. By the third scheme,
packets can be forwarded in an anonymous way by using the
pseudo ID. If adversaries eavesdrop on packets, they can only
gather a large pool of pseudonyms but have no knowledge of
the relationship between pseudonyms and real traffic links.
This prevents adversaries from figuring out the network
topology. For demonstrating the applicability and
communication capability of APR, we implement it on the
sensor platform MICAz with TinyOS operating system [6]. By
the implementation, we observe that APR do not cost heavy
computing overhead and long time delay on sensor nodes; APR
is applicable to practical wireless sensor networks.

The remainder of this paper is organized as follows. Section
II shows some related work. The design of APR is detailed in
Section III. In Section IV, we analyze the security properties of
APR. In Section V, we explain the implementation of APR on
MICAz, and evaluate its computational overheads. Finally, we
conclude the paper in Section VI.

II. RELATED WORK

In order to resist the malicious traffic analysis and/or other
attacks in WSNs, some countermeasures have been developed.
Since sensor nodes are resource-constrained, most
countermeasures are based on mechanisms using symmetric
keys, such as symmetric encryption/decryption and message
authentication code (MAC). Those mechanisms require that
symmetric key should be distributed to nodes beforehand. One
common symmetric key distribution scheme for WSNs is the
pair-wise key scheme [3], which requires two sensor nodes to
communicate with each other to decide a shared key that only
the two nodes know. This scheme can prevent a compromised
node from disclosing the packet contents. Most distributed
pair-wise key establishments are based on pre-distributed pair-
wise keys [7].

Although symmetric cryptography and the pair-wise key
scheme can protect packet contents from being uncovered by
adversaries, the identities of communication parties can still be
revealed and network traffic patterns can thus be derived. It is
possible that this kind of information leakage could cause
devastating security leak. The paper [15] proposes SDAP to
reselect aggregation leaders for performing data aggregation
every time when the sink node wants to collect the sensed data
in the WSN. Since the topology for data aggregation changes
frequently, SDAP prevents adversaries from locating the
aggregation leader nodes. The cost of SDAP is high since a
sensor node needs re-establish pair-wise keys for new leader
nodes. Nevertheless, the adversaries can still learn the
communication relationships between sensor nodes and involve
some local attacks such as the replay attack and the denial-of-
service attack.

There is another effective solution that uses the concept of
anonymous communication to resist malicious attacks by
hiding the sender’s and/or receiver’s identities. If adversaries
cannot identify the packet sender and receiver, they have no
way to learn the network topology and the relationship of
communication parties. Several anonymous communication
routing protocols for ad hoc networks are proposed in [1, 2, 8,

9, 13, 15]. Below, we describe some of them. In ANODR [9],
routing request is encrypted with the “onion scheme” before it
is forwarded. The onion scheme encodes routing information in
a set of encrypted layers; each node appends the information
about the forwarding node to the packet and then encrypts the
appended packet by a random key each time the packet is
retransmitted. In this manner, ANDOR provides route
pseudonym. To improve ANODR protocol, AnonDSR [13]
requires that the data should also be encrypted by onion
scheme in order to prevent the global attacker from finding out
the route by comparing the data part of the packets. MASK [15]
is a pairing-based anonymous on-demand; it achieves
anonymous neighborhood authentication with the assistance of
certificate authority (CA) and key agreement from bilinear
pairing [4]. The anonymous communication protocols for ad
hoc networks are not suitable for WSNs due to their
computation and memory overheads.

III. DESIGN OF ANONYMOUS PATH ROUTING (APR)

PROTOCOL

A. Overview of APR

Anonymous Path Routing (APR) protocol proposed in this
paper is designed for achieving anonymous communication in
WSNs. In APR, nodes request routes and exchange data by
recognizing hidden identities. APR is supposed to have the
following properties:

1) Transmission relationship anonymity: The sender’s and
receiver’s identities in the packet header are replaced by
pseudonyms. Even if adversaries can eavesdrop on packets,
they still cannot find where the packet comes from and
where the packet goes to.

2) Authentication through anonyms: Any pair of nodes can
authenticate mutually without revealing their identities.

3) Unlocatability: The adversaries cannot locate nodes by
tracing the transmitted packets that they overhear back to
the source or to the destination.

4) Limited area of leakage: If a node is compromised, the
effect of the compromised behavior will be limited in a
local area.

5) Secure data transmission: The intermediate nodes do not
know the source and destination of the packets that they are
forwarding. And only the source and the destination of the
packet can decrypt the cipher of the packet payload.

6) Resilience to packet loss: Due to packet collision or other
wireless medium interference, packet loss occurs frequently,
and causes the sensor nodes confuse about the anonyms.

7) Light-weight computation: APR can achieve anonymous
communication without heavy computation overhead. It is
thus suitable for sensor nodes with limited resources.

B. Network Assumptions and Notations

We assume that the wireless links are symmetric and each
node has limited transmission and reception capabilities.
Notations used throughout this paper are defined as follows:

‧ IDA: identity for node A

‧ rn: a random nonce number

‧ SeqAB (= SeqBA): sequence number of the link between

node A and node B

‧ KAB (= KBA): the pair-wise key shared with node A and

node B

‧ K
i
AB-enc (=K

i
BA-enc): the i-th pair-wise key shared with node

A and node B used to encrypting packet payload

‧ KAB-enc (=KBA-enc): the set of K
i
AB-enc for i = 0… n

‧ E{KAB, M}: a messge M encrypted with pair-wise key KAB

‧ H: a one way hash function

‧ K
i
AB-mac (=K

i
BA-mac): the i-th pair-wise key shared with

node A and node B used to compute MAC (Message

Authentication Code of the packet)

‧ KAB-mac (=KBA-mac): the set of K
i
AB-mac for i = 0… n

‧ HI
i
A


B: the i-th hidden identity presenting the link from

node A to node B

‧ HIA


B: the set of HI
i
A


B for i = 0… n

‧ HIPSD (=HIPDS): the hidden identity for a pair of source

node S and destination node D

C. Three Schemes of APR

APR protocol consists of three schemes: anonymous one-
hop communication, anonymous multi-hop path routing, and
anonymous data forwarding. Below, we describe the three
schemes one by one.

1) Anonymous One-hop Communication
This scheme is performed right after the sensors are

deployed. By this scheme, every sensor node establishes a
bidirectional anonymous communication link for each of its
one-hop neighbors after sensor nodes are deployed in the
sensing field. In order to achieve this goal, any two
neighboring nodes must have a pair-wise key to create hidden
identities (HIs) for each other. In practice, APR can rely on a
pair-wise key establishment protocol like PIKE [12] to
establish a one-hop pair-wise key KAB and a random nonce
number rn for a communication link between node A and A’s
neighboring node B. Afterwards, APR establishes two more
keys, namely data encryption key KAB-enc and MAC (Message
Authentication Code) encryption key KAB-mac. APR also
establishes two hidden identities, namely HIA


B and HIB


A, for

the anonymous links from A to B and from B to A, respectively.
KAB-enc, KAB-mac, HIA


B and HIB


A are used only once; APR

alters them when they are ever used. KAB-enc and KAB-mac are first

calculated by hashing the values of (KAB⊕C1) and (KAB⊕C2)

respectively, where ⊕ stands for EXCLUSIVE OR operation

and C1 and C2 are pre-specified constants (refer to (1)).
Afterwards, KAB-enc and KAB-mac are calculated by hashing their
previous values (refer to (2)). And HIA


B and HIB


A are

calculate by hashing the values of (KAB ⊕ IDB ⊕ SeqAB × rn)

and (KAB ⊕ IDA ⊕ SeqAB × rn) respectively, where SeqAB,

which is initially 0, is the sequence number of the packet
transmitted between A and B (refer to (3)).













)(

)(

2

0

1

0

CKHK

CKHK

ABmacAB

ABencAB (1)





















)(

)(
1

1

i

macAB

i

macAB

i

encAB

i

encAB

KHK

KHK (2)













)(

)(

AB

AB

Seq

AB-

Seq

BA-

rnSeqIDKHHI

rnSeqIDKHHI

ABAAB

ABBAB (3)

By (1), (2) and (3), a sensor node can create a link table
which contains an entry for each link between itself and one of
its one-hop neighbors. Each entry has the fields of the one-hop
neighbor ID, the sequence number of the link, Kenc, Kmac, HI-in,
and HI-out, where HI-in is the hidden identity for the in-bound
direction, and HI-out, the out-bound direction. For example,
assume node A has 3 one-hop neighbors, B, C, and D. After the
pair-wise key establishment, A has the initial link table as
shown in Table I.

TABLE I. THE INITIAL LINK TABLE OF NODE A

ID Seq HI-in HI-out Kenc Kmac

IDB 0 HI
0
B


A HI
0
A


B K
0

AB-enc K
0
AB-mac

IDC 0 HI
0

C


A HI
0
A


C K
0

AC-enc K
0
AC-mac

IDD 0 HI
0
D


A HI
0

A


D K
0
AD-enc K

0
AD-mac

The link table changes for every communication. For
example, the entry in the link table for the link from node A to
node B becomes the six-tuple (IDB, i, HI

i
A


B, HI
i
B


A, K
i
AB-enc,

K
i
AB-mac) after the i-th . If a node A wants to send the (i+1)-th

packet to B, it uses the corresponding out-bound hidden
identity HI

i
A


B in the field HI-out to represent the link from A
to B anonymously. Node A also encrypts the packet payload
with the key K

i
AB-enc in the field Kenc, and prepares a MAC for

the packet payload by the key K
i
AB-mac in the field Kmac. To be

more precise, the (i+1)-th packet from A to B is of the form
<HI

i
A


B, E{K
i
AB-enc, DATA||(i+1)}, MAC(K

i
AB-mac)>. When node

B receives the packet, it will check if the packet is sent to itself
by comparing HI

i
A


B with all in-bound hidden identities of the
field HI-in in its link table. If there is a match, node B receives
this packet, decrypts the packet by K

i
AB-enc and acknowledges

the packet. Otherwise, it drops the packet.

One-hop acknowledgement
After the sender receives an acknowledgement (ACK)

packet, form the receiver, the sender and receiver have both
updated the values of the fields Seq, HI-in, HI-out, Kenc, and
Kmac of corresponding link table entries by (2) and (3). Nodes
can then communicate with the new setting properly. However,
packet loss and transmission errors may occur to make the
sender’s and the receiver’s link tables out of synchronization.
This will hinder future communication of the link.

In order to solve this problem, APR requires one more field
Old-HI-in in the link table to store the previous value of the HI-
in field, and requires a receiver B to send an ACK packet,
<HI

i
B


A, E{K
i
AB-enc, ACK||(i+1)}, MAC(K

i
AB-mac)>, to the sender

A when B receives A’s (i+1)-th packet. The last ACK packet
should also be kept for possible further use. On receiving a
packet, B sends an ACK packet and updates the values of fields
Seq, HI-in, HI-out, Kenc, Kmac, and Old-HI-in of the

corresponding link table entry. On receiving the ACK packet,
A updates the values of fields Seq, HI-in, HI-out, Kenc, and Kmac

of the corresponding link table entry. If A cannot receive the
ACK packet after a timeout period due to the packet loss or
transmission errors, A retransmits the packet. Node B can
identify the retransmitted packet since its HI can match with a
value of the field Old-HI-in of source link table entry. The
coming of a retransmitted packet means that the ACK packet
has been lost and B just resends the last ACK packet kept.
After A receives the ACK packet properly, its link table is
updated and in synchronization with B’s again.

2) Anonymous Multi-hop Path Routing
After one-hop anonymous link are established, a data

source node may communicate with a destination node
multiple hops away. APR establishes an anonymous two-way
multi-hop path between the source and destination nodes. It
contains two steps: anonymous path routing request and
anonymous path routing reply. We assume the source node and
the destination node share a pre-distributed pair-wise key.
When the pair of nodes do not share a pre-distributed pair-wise
key, they can first establish a pair-wise key by integrating the
anonymous multi-hop path routing scheme with a pair-wise
key establish protocol like PIKE. Afterwards, the routing can
proceeds normally with the newly established pair-wise key.
However, we omit the details in this paper.

Anonymous Path Routing Request
When a source node S wants to find a path to a destination

node D multiple hops away, S broadcasts an anonymous path
routing request (APR-REQ) locally. APR puts a hidden
identity HIP instead of a destination node identity in the
routing request. HIP stands the hidden identity for the pair of
the source and the destination nodes. It is computed by hashing
the value of KSD⊕IDS⊕IDD, where KSD is the pre-distributed

pair-wise key and IDD (resp., IDS) is the identity of node D
(resp., S).

)(DSSDSD IDIDKHHIP  (4)

In APR, each sensor node maintains a HIP table right after
it is deployed. The HIP table contains an entry for each
possible source node that shares a pre-distributed pair-wise key
with itself. Each entry has the fields of ID, K and HIP, which
stand for the source node identity, the pair-wise key and in-
bound HIP, respectively. The routing request is flooded to the
entire network to find a path from source to destination. The
nodes which receive routing request APR-REQ but are not the
destination should keep the request for further use. Then they
rebroadcast this routing request locally.

This APR-REQ packet has the form <APR-REQ, IDS,
HIPSD, RSeqS


D>, where RSeqS


D is set to be the last known

routing request sequence number from S to D. The second field
of the packet represents the identity of the node which initiates
or rebroadcasts the packet. It is initially set to IDS, the identity
of S, and will be replaced by the identity of the node which
rebroadcasts the packet. Every node which receives the APR-
REQ packet stores it for further use. The node checks if there is
any entry of HIP table matching HIPSD of the APR-REQ
packet. If so, the node is the destination node. If not, the node
rebroadcasts the packet but replaces IDS with its own identity.
The steps to send anonymous path routing request packet from

S to D through nodes E and C is depicted in Fig. 1 (steps 1 to
3).

Figure 1. Anonymous multi-hop path establishment from the source S to the

destination D

Anonymous Path Routing Reply
When the destination node D receives a routing request

APR-REQ of node S from a neighboring node C (refer to Fig. 1
step 4), D specifies C as the forwarding node to send an
anonymous path routing reply APR-REP to S. The APR-REP
packet has the form <HID


C, E{KCD-enc, APR-

REP||HIPSD||PathIDSD||RSeqS


D ||SeqCD}, MAC(KCD-mac)>. Note
that, we omit MAC field in the following context for simplicity.
This routing reply contains a path identity PathIDSD of the
route path between S and D. Each route path is two-way, so
PathIDSD represents not only the path from S to D, but also the
reverse path from D to S. PathIDSD is generated by D randomly;
however, every path identities for the path between S and D
should be different.

Each node maintains a two-way routing table consisting of
entries with the fields PathID, Pre-hop, Next-hop, and Sour
(Dest). A node updates the table when receiving an APR-REP
packet. The field PathID stores the identity of the route path,
Dest stores the identity of the destination node, Pre-hop stores
the identity of the node where the APR-REQ packet comes
from; and Next-hop stores the identity of the node from which
the corresponding APR-REP packet comes. After D sends out
this APR-REP and receives ACK packet from C, D inserts an
entry or updates the corresponding entry in its routing table as
follows. It puts PathIDSD into the PathID field, puts IDC into
the Pre-hop field, puts IDS into the Sour (Dest) field, and sets
the Next-hop field as Null.

When node C receives the APR-REP from D, C first
figures out the pre-hop node, say node E, by matching HIPSD of
the APR-REP with that of previous APR-REQ packet stored in
its memory. When a match occurs, the corresponding APR-
REQ is purged from the memory. The APR-REP is then
encrypted with the pair-wise key KCE-enc and sent to E. Node C
inserts an entry in its two-way routing table as follows. It puts
PathIDSD in the PathID field; IDD, Next-hop field; IDE, Pre-
hop field. However, the Sour (Dest) field is set as Null because
C is just a forwarding node but not a destination or a source in
this route path. Through hops of relaying, the source node S

ID S
…

Source

K SD HIP S D
… …
K HIP

ID S
…

Source

K SD HIP S D
… …
K HIP

HIP Table of D

ID C
…

Pre - hop

Null
…

Next - hop

ID S PathID SD
… …

Sour (Dest) PathID

ID C
…

Pre - hop

Null
…

Next - hop

ID S PathID SD
… …

Sour (Dest) PathID
Routing Table of D

ID E
…

Pre - hop

ID D
…

Next - hop

Null PathID SD
… …

Sour (Dest) PathID

ID E
…

Pre - hop

ID D
…

Next - hop

Null PathID SD
… …

Sour (Dest) PathID
Routing Table of C

ID S
…

Pre - hop

ID C
…

Next - hop

Null PathID SD
… …

Sour (Dest) PathID

ID S
…

Pre - hop

ID C
…

Next - hop

Null PathID SD
… …

Sour (Dest) PathID
Routing Table of E

Null
…

Pre - hop

ID E
…

Next - hop

ID D PathID SD
… …

Sour (Dest) PathID

Null
…

Pre - hop

ID E
…

Next - hop

ID D PathID SD
… …

Sour (Dest) PathID
Routing Table of S

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6
S D E C

APR - REQ , ID S , HIP SD , RSeq S
 D APR - REQ , ID E , HIP SD , RSeq S

 D APR - REQ , ID C , HIP SD , RSeq S
 D

HI D  C , E { K CD - enc , APR - REP || HIP SD ||
PathID SD || RSeq S

 D || Seq CD }
HI E  S , E { K SE - enc , APR - REP || HIP SD ||

PathID SD || RSeq S
 D || Seq SE }

HI C
 E , E { K CE - enc , APR - REP || HIP SD ||
PathID SD || RSeq S

 D || Seq CE }

receives an APR-REP with HIPSD from a relaying node E. S
recognizes that the APR-REP is a reply for the APR-REQ sent
by S previously. S inserts an entry or updates the corresponding
entry as follows. It sets the field Pre-hop as Null and puts
PathIDSD in the PathID field; IDE, Next-hop field; IDD, Sour
(Dest) field. The steps to send anonymous path routing reply
APR-REP through node E and node C is depicted in Fig. 1
(steps 4 to 6). By the procedures mentioned above, a path from
S to D is established successfully and anonymously.

Because the identities of the source node and the
destination node do not appear in the routing request and
routing reply, the forwarding nodes only know where it should
relay to but no other information. It is worthwhile to mention
that the established path is a two-way path instead of a one-way
path established by another protocol like MASK.

3) Anonymous Data Forwarding
When the source node S wants to send a data packet to the

destination node D multiple hops away after the anonymous
path routing establishment (suppose the forwarding node is E),
It first finds out PathIDSD and the forwarding node identity IDE
for D by looking up the routing table. The identity of the
forwarding node is stored in non-Null Pre-hop field or Next-
hop field of the entry for destination D. Then S sends out the
data packet to the forwarding node E with the form <HIS


E,

E{KSE-enc, MHOP-DT||PathIDSD||E{KSD-enc, DATA}||SeqSE}>,
where MHOP-DT stands for the packet label for multi-hop
data transmission. When a forwarding node C receives a
MHOP-DT packet, it looks for the entry of PathIDSD in its two-
way routing table. If the identity stored in the Pre-hop (resp.,
Next-hop) field matches with IDE (the identity of the node from
which the packet comes), the next forwarding node is with the
identity stored in the Next-hop (resp. Pre-hop) field. If the
Next-hop (resp. Pre-hop) is Null, the destination node is
reached. The destination node D knows the source node
identity IDS which is stored in the Sour (Dest) field in the
routing table. Then D can decrypt the data cipher with the key
KSD-enc shared by S and D.

D. PathID Collision Problem

Since PathID of a path is generated randomly by the
destination node of the path, two different paths crossing at a
same forwarding node may have the same PathID. We call this
the PathID collision problem. There are two cases for such a
problem: (case 1) the Pre-hop fields of the paths are different
and (case 2) the Pre-hop fields of the two paths are identical.

The scenario depicted in Fig. 2 is an example of case 1. The
forwarding node, F, has two paths with PathID = 12. Since
both the Pre-hop and Next-hop fields of the paths are different,
the forwarding node can choose proper node to forward the
packet. For example, packets with PathID = 12 from I should
be forwarded to K, and packets with PathID = 12 from L
should be forwarded to N.

The scenario depicted in Fig. 3 is an example of case 2. The
forwarding node O receives an APR-REP packet with PathID =
13 from node P. According to the HIP in the APR-REP packet,
this packet should be relayed to node Q. But there is already a
path with PathID = 13 in the routing table, and the relay (pre-
hop) node of the path is also, Q. To distinguish the two

different paths, node O changes PathID from 13 to another
number, say 14, in the APR-REP packet and sends it to the
relay node Q. After that, if node O receives a packet from node
Q with PathID = 14, it forwards this packet to node P by
changing PathID to 13. Therefore, node O will keep PathIDs
13 and 14 in the routing table. To indicate that a PathID should
be changed to a new one, node O stores the new PathID in
Change field. If the Change field is Null, the PathID has no
need to be changed. To make sure that the forwarding node O
can choose a proper node for forwarding the packet sent from
node Q, an Original field is added in the routing table. Original
field of the first path with PathID = 13 is set to be “true”,
which means this entry should be checked first if node O
receives a packet with PathID = 13. After checking the entry
with Original is true, if the packet is sent from Q (R), node O
forwards the packet to R (Q). Otherwise, node O will check the
entry with Original being false and determines its next relay
node accordingly.

Figure 2. Two different paths with the same PathID and different Pre-hop

nodes

Figure 3. Two different paths with the same PathID and Pre-hop node

IV. SECURE ANALYSIS OF ANONYMITY

In this Section, we analyze how well APR achieves
anonymity for communication In APR, except the rebroadcast
node ID in the APR-REQ packet, no real node identity appears
in any packet after one-hop pair-wise keys are established. But
the rebroadcast node ID is useless for adversaries because any
local communication uses hidden identity. Furthermore, a
multi-hop communication path is anonymous since it is
identified by PathID and its source and the destination nodes
are represented by HIP, which can only be identified by the
corresponding source and destination nodes. Due to the
anonymity, APR can resist the following attacks.

‧ Traffic Analysis attacks
In one-hop communication, two neighboring nodes use

different parameters, such as hidden identity HI, data
encryption key and MAC encryption key, for different packets.

false
false
true
…

Original

Null
Null
Null
…

Sour (Dest)

14 ID P ID Q 13

… … … …

13 ID P ID Q 14

ID Q

Pre - hop

ID R

Next - hop

Null 13

Change PathID

false
false
true
…

Original

Null
Null
Null
…

Sour (Dest)

14 ID P ID Q 13

… … … …

13 ID P ID Q 14

ID Q

Pre - hop

ID R

Next - hop

Null 13

Change PathID
Routing Table of O

O

P

Q

R

F
I

K

L

N

Null ID
N ID

L 12
ID

K

…
Pre - hop

ID
I

…
Next - hop

Null 12

… …
Sour (Dest) PathID

Null ID
N ID

L 12
ID

K

…
Pre - hop

ID
I

…
Next - hop

Null 12

… …
Sour (Dest) PathID

Routing Table of F

Except the two communication nodes, no node can uncover the
data packet or identify the sending and receiving nodes.
Although the receiving node sends an ACK packet
immediately to confirm that the packet is successfully received,
the HI in the ACK packet is different from the HI of the
received packet. So the other nodes cannot learn the
relationship between the sending and receiving nodes to derive
the network topology. That prevents the traffic analysis attack.

‧ Forging attacks
In APR, hidden identity should be used in common data

transmission. If the adversary sends a malicious packet with a
forged HI, the packet will be accepted with probability 1/2

h
,

where h is the length of HI. However, even the adversary has a
correct guess of HI, it should have a correct guesses of the
packet MAC to make the forged packe be accepted. If the
MAC has a length of m, the adversary has a 1/2

h+m
 chance in

blindly forging a valid HI and MAC for a particular packet. A
typical setting of h and m is h = 16 and m = 32. Under such a
setting, if an adversary repeatedly attempts blind forging, s/he
is guaranteed to succeed after about 2

48
 tries. Adversaries can

try to broadcast with forgeries, but on a 125kb/s channel,
sending 2

48
 packets would spend over 500 years.

‧ Replay attacks
Replay attacks use the legal packets sent before which have

correct MAC and cipher. In APR, each HI is used once only, so
sensor nodes will discard replayed packets. In order to maintain
the synchronization of link table entries between neighboring
nodes, APR keeps the last HI. If adversaries replay a data
packet, this packet will only be accepted by the receiving node
only once. This is because the receiving node will adjust its
link table and update the last HI when accepting the replayed
packet. Therefore, APR can resist replay attacks effectively.

‧ Denial-of service (DoS) attacks
DoS attacks are generally hard to resist. In APR, multi-hop

communications are split as a chain of one-hop transmissions,
which use different HIs. Without correct HI, DoS attack
packets will be ignored directly. APR can limit the damage
caused by this kind of attacks in a local area.

V. IMPLEMENTATION AND MEMORY OVERHEAD

EVALUTION

In order to provide strong security protection and good
scalability, APR combines symmetric key cryptographic
algorithm, hash function and message authentication code
together. We use Skipjack block cipher algorithm [13] as the
symmetric key cryptosystem, SHA-1 [5] as the hash function,
and CBC-MAC [11] as the MAC function.

We have implemented APR on the Berkeley sensor nodes
to demonstrate its applicability and communication capability.
In our implementation, we assume the pair-wise keys are pre-
distributed. So the PIKE protocol is not included in our
implementation. APR currently runs on the MICAz platform
with TinyOS operating system. And it also can run on the
MICA and MICA2 platform. The implementation of APR
requires 9436 bytes of program space. The required SRAM
size depends on the network size and node density.

In our implementation of Skipjack, encrypting 24 bytes
data costs 1.51 milliseconds. And the operation of executing
link table update after each one-hop communication costs 1.27
milliseconds. The time of computing MAC costs 0.81
milliseconds. Comparing to the average transmission time of
the packet with 24 bytes data payload, which is 27.5
milliseconds, the three operations mentioned above do not cost
heavy computing overhead and time delay on sensor nodes.
The routing latency of APR is shown in Fig. 4. For a node
needs to find a route path to another which is 7 hops away, the
average time of path establishment is about 574 milliseconds.

0

100

200

300

400

500

600

700

2 3 4 5 6 7

Number of Hops

R
ou

tin
g

Ti
m

e
(m

s)

Figure 4. Average routing latency of APR

In APR, a node needs 50 bytes of SRAM for storing an
entry of the link table, and needs 8 bytes of SRAM for storing
information of a path in the routing table. We conducted
analysis to evaluate the memory overhead of APR. Because
HIP table is loaded in the program space of the flash memory
before nodes are deployed. Thus, only the link table and
routing table occupy SRAM. We analyze a WSN with sensor
nodes randomly deployed in a 5R × 5R field, where R is the
communication range of sensor nodes. The varying parameters
used for the analysis are the number of deployed nodes. In the
5R × 5R field, the number of sensor nodes is 25, 50, … or 200,
and each node must establish anonymous multi-hop
communications with 5, 10, 15 or 20 randomly selected multi-
hop neighboring nodes. The analysis results are shown in Figs.
5.2, 5.3 and 5.4.

Fig. 5 shows that the link table size grows with the node
density. For the situation of 200 nodes, the link table size goes
to 1.1 Kbytes. According to Fig. 6, the routing table size
decreases when the number of nodes increases. When node
density is higher, a node has more choices of farther one-hop
neighbors to establish paths with fewer hops, which pass
through fewer nodes. Thus, the average routing table size is
smaller. As the number of nodes reaches 125, the routing table
size hardly decreases from then on. This is because the number
of hop count of paths hardly decreases when number of nodes
is higher than 125.

By summing up the link table size and the routing table size
per node, we can get the total memory overhead per node in
APR, as shown in Fig. 7. The maximum memory overhead of
APR shown in Fig. 7 is 1881 bytes when there are 200 nodes in
the field, which is affordable for practical sensor nodes. To
sum up, by the implementation and analysis results, APR is
computationally feasible and only consumes little memory
space. It is thus suitable for sensor nodes with limited resources.

Area size = 5R x 5R

0

200

400

600

800

1000

1200

25 50 75 100 125 150 175 200

Number of nodes

A
ve

ra
ge

 s
iz

e
of

 H
I

ta
bl

e
pe

r
no

de

(B
yt

es
)

Figure 5. Average link table size of a node in a 5R × 5R field

0

200

400

600

800

1000

1200

1400

1600

1800

25 50 75 100 125 150 175 200

Number of nodes

A
ve

ra
ge

 r
ou

ti
ng

 t
ab

le
 s

iz
e

pe
r

no
de

 (
B

yt
es

) 5 Multihop Neighbors
10 Multihop Neighbors

15 Multihop Neighbors
20 Multihop Neighbors

Figure 6. Average routing table size of a node in a 5R × 5R field

0

200

400

600

800

1000

1200

1400

1600

1800

2000

25 50 75 100 125 150 175 200

Number of nodes

A
ve

ra
ge

 m
em

or
y

ov
er

he
ad

 o
f

A
PR

 p
er

 n
od

e

(B
yt

es
)

5 Multihop Neighbors

10 Multihop Neighbors

15 Multihop Neighbors

20 Multihop Neighbors

Figure 7. Average memory overhead of a node for varying number of nodes

in a 5R × 5R field

VI. CONCLUSION

In this paper, we propose an anonymous path routing
protocol, called APR, for WSNs. APR has three basic schemes:
(1) anonymous one-hop communication, (2) anonymous multi-
hop path routing, and (3) anonymous data forwarding. By the
first scheme, each node can create two hidden identities for
each link of itself and one of its neighbors. One is for the in-
bound direction of the link; the other, out-bound direction. Data
are encrypted and sent without revealing the real identity of the
sender. By the second scheme, APR can find a two-way multi-
hop routing path for it in an anonymous way and assign a
pseudonym, called PathID, to the path for identification. Only
the pair of the source and destination nodes know each other’s
identity. The third scheme can forward packets in an
anonymous way by using the PathIDs. If adversaries eavesdrop
on packets, they can only gather a large pool of pseudonyms

but have no knowledge of the relationship between
pseudonyms and real traffic links. This prevents adversaries
from figuring out the network topology. We implement APR
on the sensor platform MICAz with TinyOS operating system
and find that it is applicable to practical sensor nodes.

REFERENCES

[1] A. Boukerche, K. El-Khatib, and L. Kobra, “SDAR: A Secure
Distributed Anonymous Routing Protocol for Wireless and Mobile Ad
Hoc Networks,” in Proceedings of IEEE International Conference on
Local Computer Networks (LCN), pp. 618-624, Florida, USA,
November 2004.

[2] B. Zhu, Z. wan, M. S. Kankanhalli, F. Bao, and R. H. Deng,
“Anonymous Secure Routing in Mobile Ad Hoc Networks,” in
Proceedings of IEEE International conference on Local Computer
Networks (LCN), pp. 102-108, Florida, USA, November 2004.

[3] C. Karlof, N. Sastry, and D. Wagner, “TinySec: A Link Layer Security
Architecture for WSNs,” in Proceedings of ACM International
Conference on Embedded Networked Sensor Systems (Sensys), pp. 162-
175, Maryland, USA, November 2004.

[4] D. Boneh and M. Franklin, “Identify-based Encryption from Weil
Pairing,” SIAM Journal on Computing, Vol.32, No.3, pp. 586-651,
March 2003.

[5] D. Eastlake and P. Jones, “US Secure Hash Algorithm 1 (SHA1),” in
IETF Request for Comments 3174, 2001.

[6] D. Gay, P. Levis, and D. Culler, “Software design patterns for TinyOS,”
in Proceedings of ACM Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES), pp. 40-49, Illinois, USA, June
2005.

[7] H. Chan and A. Perrig, “PIKE: Peer Intermediaries for Key
Establishment in Sensor Networks,” in Proceedings of IEEE
International Conference on Computer and Communications Societies
(INFOCOM), pp. 524-535, Miami, USA, March 2005.

[8] J. C. Kao and R. Marculescu, “Real-Time Anonymous Routing for
Mobile Ad Hoc Networks,” in Proceedings of IEEE Wireless
Communications and Networking Conference (WCNC), pp. 4139-4144,
Hong Kong, China, March 2007.

[9] J. Kong and X. Hong, “ANODR: Anonymous on Demand Routing with
Untraceable Routes for Mobile Ad-Hoc Networks,” in Proceedings of
ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), pp. 291-302, Maryland, USA, June 2003.

[10] J. Raymond, “Traffic Analysis: Protocols, Attacks, Design Issues and
Open Problems,” in Proceeding of International Workshop on Designing
Privacy Enhancing Technologies: Design Issues in Anonymity and
Unobservability, pp. 10-29, California, USA, January 2001.

[11] M. Bellare, J. Kilian, and P. Rogaway, “The Security of the Cipher
Block Chaining Message Authentication Code,” in Proceedings of
International Cryptology Conference (CRYPTO), pp. 341-358,
California, USA, August 1994.

[12] R. Song, L. Korba, and G. Yee, “AnonDSR: Efficient Anonymous
Dynamic Source Routing for Mobile Ad-Hoc Networks,” in
Proceedings of ACM workshop on Security of ad hoc and sensor
networks, pp. 33-42, Alexandria, USA, November 2005.

[13] Y. W. Law, J. Doumen, and P. Hartel, “Survey and Benchmark of Block
Cipher for WSNs,” in Proceedings of ACM Transaction on Sensor
Networks (TOSN), Vol. 2, No. 1, pp. 65-93, Feburary 2006.

[14] Y. Yang, X. Wang, S. Zhu, and G. Cao, “SDAP: A Secure Hop-by-Hop
Data Aggregation Protocol for Sensor Networks,” in Proceedings of
ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), pp. 356-369, Florence, Italy, May 2006.

[15] Y. Zhang, W. Liu, and W. Lou, “Anonymous Communication in Mobile
Ad Hoc Networks,” in Proceedings of IEEE International Conference
on Computer and Communications Societies (INFOCOM), pp. 1940-
1951, Miami, USA, March 2005.

