
Interest-Based Lookup Protocols for Mobile Ad Hoc Networks

Yi-Chung Chen and Jang-Ping Sheu

Department of Computer Science and Information Engineering

National Central University, Taiwan, R.O.C.

s1522067@cc.ncu.edu.tw sheujp@csie.ncu.edu.tw

Abstract

In this paper, we propose two interest-based band-

width-efficient lookup protocols, simple lookup protocol

and advanced lookup protocol, for mobile environments.

A peer willing to search files broadcasts a query message

with keywords relevant to its interests to its neighbors in

the transmission range, and only those neighbors also

interested in the query forward. Simulation results show

that our protocols have higher success rate and raise the

scalability and bandwidth efficiency comparing to the

previous work. Besides, our protocols can avoid selfish

behaviors, since the behavior of forwarding queries bene-

fits not only the source node but also the forwarding

node.

1. Introduction

With flourishing development of Internet, more and

more resources and information are shared on the Inter-

net. The resources and information may be in the forms of

web pages, documents, multimedia files, services, and

computing powers, etc. Peer-to-peer networking is differ-

ent from the client/server architecture where all the re-

sources are located in a server. Resources in a peer-to-

peer network are distributed and peers play both roles of

servers and clients simultaneously. A mobile ad hoc net-

work (MANET) consists of mobile devices communicat-

ing with each other using multi-hop wireless links without

any central control. Peer-to-peer networks and MANETs

share the same characteristics of self-organization, decen-

tralization, and dynamic topology. Hence, it is natural to

apply peer-to-peer techniques to MANETs. Although

there have been significant research efforts in peer-to-

peer systems during the past few years, peer-to-peer sys-

tems for mobileenvironments is still a new research issue.

7DS [6] is the first approach to apply peer-to-peer tech-

nique to mobile environments. For queries, 7DS imple-

ments a multi-hop flooding algorithm combined with

multicast delivery of queries. PDI [5] provides the lookup

service by locally broadcasting query messages and re-

sponse messages, and

it eliminates the need for flooding the entire network with

query messages by maintaining an index cache at every

device.

To address the problem of service discovery in a mo-

bile environment, we propose a simple lookup protocol

(SLP) and an advanced lookup protocol (ALP) for

MANETs. In contrast to the previous work PDI, our pro-

tocols are more bandwidth-efficient and scalable by an

interest-based selective forwarding scheme. In SLP, the

source node broadcasts a Query message with an interest

threshold and a time-to-live (TTL), and only the neighbor

nodes whose interests in query string are larger than the

threshold keep forwarding the query. The query process

goes on until the TTL is equal to zero. All nodes that have

the corresponding resources return a QueryHit containing

file references reversely along the query path to the

source node. In ALP, we save the bandwidth further by

determining threshold and TTL dynamically according to

feedbacks from previous query requests. Note that, we

propose lookup protocols for resources discovery, but do

not discuss how the files transmit. The data transmissions

after lookup can be solved by using any existed routing

protocol such as DSR [3], DSDV [7], and AODV [8].

The rest of this paper is organized as follows. Section

2 presents our lookup protocols. In Section 3, we evaluate

the performance of our protocols through simulations.

Finally, we conclude our contributions in Section 4.

2. Our Protocols

Traditionally, the lookup service is provided by flood-

ing queries over the whole network. This method is effec-

tive to find out matching results but it is not efficient.

Especially in the wireless environment, it also causes

large number of collisions and leads to degradation of the

network performance. In this section, we present our sim-

ple lookup protocol (SLP) and advanced lookup protocol

(ALP) for MANETs. Our lookup protocols both achieve

bandwidth efficiency and high utilization of reference

cache via interest-based mechanism. Efficiency of band-

width is improved further in ALP by referring to feed-
This work was supported by the National Science Council of the

Republic of China under grants NSC 92-2213-E-008-006 and

NSC 93-2752-E-007-003-PAE.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

backs from previous query requests. We present the de-

tails of two protocols in the following.

2.1. Simple Lookup Protocol (SLP)

Since traditional flooding mechanism is not band-

width-efficient, we propose interest-based lookup proto-

cols selectively propagating queries. Our mechanism op-

erates under the following two assumptions. Firstly, every

participant in the peer-to-peer system has its own inter-

ests. Secondly, peers will request the resources which he

or she is interested in, and the downloaded files reflect its

interests. A peer willing to search files broadcasts a query

message with keywords relevant to its interests to its

neighbors in the transmission range, and only those

neighbors also interested in the query forward. If there are

any files found, the responses are returned to the peer

which issued the query.

To implement SLP, each mobile device maintains a

repository and a reference cache. A repository stores the

resources obtained from other peers in the local file sys-

tem. A reference cache contains the information about the

remote resources. An entry in the cache is composed of

two fields: file reference File_Ref and access time Ac-

cess_Time. A File_Ref is a pair of File_Src and File_Info.

A File_Src field indicates the location information of a

resource such as IP or MAC address of a mobile device.

A File_Info field, which could be file name or the meta-

descriptions of the file, is used for query matching. The

Access_Time indicates the last time the entry is accessed.

We define two types of messages, Query and QueryHit,

for our protocols. A Query message contains query string

Q consisting of one or more keywords, TTL, and thresh-

old Thresh for query matching. TTL is the maximum

number of hops a message can be forwarded in the net-

work. Threshold Thresh is a minimum interest value for

query forwarding. A QueryHit message contains file ref-

erences.

A peer willing to search files broadcasts a Query mes-

sage with an interest threshold Thresh and a set of key-

words relevant to its interests to its neighbors in the trans-

mission range. When a node receives the Query message,

it first calculates the node’s interest in the query string.

The files downloaded due to the querying behaviors in the

past, and therefore reflect a user’s interests and requesting

patterns and it can be used to predict the requesting be-

haviors in the future. Thus, the latest files in the reposi-

tory can be used to reflect the recent interest and request-

ing pattern. We define the interest value as the average of

the similarities between the query string and the latest r

downloaded files, where r is a pre-defined value. The

formal definition of interest of node N for a query string

Q is defined as:

r

fQs

QNint

r

i

ii

1

),(

),(,

where N is the identifier of the node, Q is a query string

in Query message, fi is ith latest file, si is the similarity

between query string Q and file fi, and r is the number of

files used to calculate the interest. We use cosine distance

[2] to measure the similarity. The cosine distance is a

widely used distance measure in information retrieval

(IR) applications, and has been found historically to be

quite effective in practical IR experiments. If the interest

of the node int(N, Q) is larger than the Thresh, the node

forwards the Query message by broadcasting. If there are

files matching the query in the node’s repository or in the

reference cache, the node returns a QueryHit message

containing the references to the matching files along the

query path to the source node, the node issuing the Query

message. Note that a file matches a query only if it

matches all keywords in the query. When the nodes re-

ceive the QueryHit message, if the same entries for the

references message exist in the reference cache, the Ac-

cess_Time of the entries are updated, else the nodes cre-

ate new entries for the QueryHit message. When the Que-

ryHit messages reach the source node, it gets knowledge

of the locations of the files and launches connections and

file transmissions.

The operation of SLP leads to a very attractive charac-

teristic that the references to the files are implicitly repli-

cated on the nodes which tend to request these files in the

future. This is because the QueryHit messages are re-

turned backwards along the query path on which the in-

terests of the nodes except for the end nodes are larger

than the threshold value. All nodes on the query path rep-

licate the references when receiving the QueryHit mes-

sages. Bandwidth efficiency in SLP is achieved by selec-

tive forwarding and further improved by high-utilization

reference caches. Besides, SLP also avoids selfish behav-

iors because the behavior of forwarding query message is

not only beneficial for the source node but also for the

forwarding nodes themselves.

2.2. Advanced Lookup Protocol (ALP)

Advanced lookup protocol retains basic architecture of

SLP and inherits all strengths from SLP such as reduction

of messages, interest-based replication of references, and

avoidance of selfish behaviors, but modifies the data

structures and message formats and adds new features of

incremental threshold and dynamic determining of TTL

and threshold. In ALP, the initial threshold is lower and

the probes at the beginning are extensive. The threshold is

getting higher and the probes are narrowed down gradu-

ally. Therefore it will not give up too many possible re-

sources at the beginning. Determination of TTL and

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

threshold is dynamic with the peer-to-peer network condi-

tion such as the number of shared files in the network, the

number of nodes in the network, etc.

Each mobile device in ALP maintains a repository, a

reference cache, a feedback table, and a helper table. A

repository stores the resources obtained from other peers

in the local file system. A reference cache contains the

information about the remote resources. An entry in the

reference cache is composed of four fields: File_Ref, In-

terest, Popularity and Access_Time. The File_Ref and

Access_Time are same as in the SLP. The value of the

Interest field is calculated when receiving the Query mes-

sage and is filled in cache entry when receiving the Que-

ryHit message. We expect that the higher the Interest is,

the more likely the reference is to be used in the future.

The Popularity indicates how popular the resource is.

A feedback table contains three fields: TTL, Thresh-

old, and N_FF. The feedback table is used to keep track

of historical query results for estimating the most appro-

priate TTL and threshold for the lookup. It shows that

how many files could be found under what kind of TTL

and threshold assigned to a query. For example, an entry

of <5, 0.8~0.7, 8.25> means that a query with TTL equal

to 5 and threshold ranging between 0.8 and 0.7 are able to

get 8.25 results on the average. We divide the range of

threshold into ten sections, (1.0~0.9), (0.9~0.8), …, and

(0.1~0.0). Then the number of entries of the feedback

table is TTLmax x 10, where TTLmax is maximum value of

TTL allowed in the system. In this example, the TTLmax is

five, and the size of feedback table is fifty. The size of

feedback table is independent of the number of nodes.

The helper table is used to keep track of the relation-

ship between a Query message and its corresponding

QueryHit messages to help maintenance of the reference

cache and the feedback table. The entry of the helper ta-

ble is composed of five fields: Query_ID, TTL, Thresh,

Interest, and N_FF. When a node receives the Query mes-

sage, it adds an entry and copies the IdQuery, TTL, thresh-

old Thresh of the Query message and its interest in the

query string to the Query_ID field, TTL field, Thresh

field, and Interest field of the new entry, respectively. The

default value of N_FF is zero. The N_FF means the num-

ber of files found and it is accumulated whenever the

node receives the corresponding QueryHit messages.

Every entry of the helper table lives for a predefined pe-

riod of time. Before being removed, the information of

the entry is transferred in the form of <TTL, Thresh,

N_FF> to the feedback table. The new N_FF value of the

feedback entry is updated as 1/2 N_FFhelper + 1/2

N_FFfeedback , where N_FFhelper is N_FF in helper table and

reflects the current network condition, N_FFfeedback is

N_FF in feedback table and reflects the historical infor-

mation.

 We modify the formats of Query message and Query-

Hit message defined in SLP. A Query message in ALP is

a query string Q including one or more keywords, TTL, a

threshold Thresh, an increment Inc, and a unique identi-

fier IdQuery for the Query message. TTL is the maximum

number of hops a message can be forwarded. Threshold

Thresh is a minimum interest value for query forwarding.

IdQuery is chosen by hashing the combination of the ad-

dress of the source node, the query string, and the time-

stamp. The Inc is the unit of threshold increment. A Que-

ryHit message consists of file references, Hops (hop

count for retrieving the files), and the identifier IdQuery of

the Query message it corresponds to. The initial value of

Hops is one, and is increased by one as the QueryHit mes-

sage is forwarded. The IdQuery is retrieved from the re-

ceived Query message.

 Besides, a system parameter PNFF (prospective num-

ber of file found) can be set to promise around PNFF files

will be found. A larger value of PNFF leads to more but

slower responses. Contrarily, a smaller value leads to

faster but fewer responses. After PNFF is set, when some-

one desires to issue queries, the most appropriate TTL

and Thresh are determined dynamically for the query re-

quest. If the query hit h files in the reference table, we

update PNFF to PNFF – h. We search for two adjacent

entries E1 = <TTL1, Thresh1, N_FF1> and E2 = <TTL2,

Thresh2, N_FF2> in the feedback table such that TTL1 is

the same as TTL2, N_FF1 is smaller than PNFF, and

N_FF2 is larger than PNFF. Finally, we calculate the

threshold Thresh by the ratio of equality. After executing

the above steps, the TTL and Thresh are produced and

filled in the Query message. The increment Inc is set to

(MaxThresh-Thresh)/TTL, where MaxThresh is the

maximum threshold allowed in the network. If there are

not enough information for calculating TTL and Thresh,

we just set TTL to maximum TTL allowed in the system

and Thresh to zero. After calculation of TTL, Thresh and

Inc, the source node broadcasts the Query message to

their neighbors in the transmission range. When a node N

receives the Query message, it searches for files matching

the query in the repository or in the reference cache and

calculates the node’s interest in the query message. If the

interest of the node int(N, Q) is larger than or equal to the

threshold, the node keeps track of the information <Id-

Query, TTL, Thresh, int(N, Q), N_FF> in the helper table,

and forwards the Query message by broadcasting. The

field Thresh of the forwarded Query message is increased

by Inc. If there are files matching the query in the refer-

ence cache, the node returns a QueryHit message and

increases the Popularity value of the corresponding cache

entry. A QueryHit message contains the identifier of cor-

responding Query message, a hop count initial to one and

the references of the files matching the query backwards

along the query path to the source node.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

 When a node receives the QueryHit message, if the

same entries for the QueryHit message exist in the refer-

ence cache, the Popularity field and Access_Time field of

the entries are updated and the node creates new entry of

the reference cache for the QueryHit message. The con-

tent of File_Ref field of the created entry of the reference

cache is retrieved from the reference in the QueryHit mes-

sage. The value of Interest field of the created entry of

reference cache is retrieved from the entry of the helper

table in which the identifier of the Query message is equal

to the identifier in the QueryHit message. The Popularity

is zero and the Access_Time is the time the entry is cre-

ated. The entries of the helper table live for a period of

time for helping collect query results. Before its end, the

query result (the number of the files found) is transferred

to the N_FF field of corresponding entry in the feedback

table. When the QueryHit messages reach the source

node, it can get knowledge of the location of the files and

launch connections and transmissions. Figure 3 is an ex-

ample shows how ALP works.

0.3

0.7

A

C

B

Query
= < Q308_MH

A
, “friends

1stepisode”, 5, 0.5, 0.1 >

50.80.42
Q264_

MH
k

00.70.64
Q308_
MH

A

N_FFInterestThreshTTL
Query

_Id

50.80.42
Q264_

MH
k

00.70.64
Q308_
MH

A

N_FFInterestThreshTTL
Query

_Id

stop

Query
= < Q308_MH

A
, “friends

1stepisode”, 4, 0.6, 0.1 >

Node B’s helper table

QueryHit
= < Q308_MH

A
, (C, F3), 1) >

Query
= < Q308_MH

A
, “friends

1stepisode”, 5, 0.5, 0.1 >

Figure 1. Advanced Lookup Protocol – Receiving
Query

In Figure 1, node A broadcasts a Query message where

IdQuery is Q308_MHA , keywords in the query string Q are

“friends” and “1stepisode”, TTL is 5, Thresh is 0.5, and

Inc is 0.1. Assume that node A’s neighbors nodes B and C

receive the Query message. Because node B’s interest is

0.7 larger than threshold, node B forwards the Query mes-

sage with new TTL = 4, and increases threshold to 0.6.

Besides, node B creates a new entry <Q308_MHA, 4, 0.6,

0.7, 0> in the helper table. The information contained in

the helper table is used for the maintenance of the refer-

ence cache and the feedback table. On the other hand,

node C returns a QueryHit but stops forwarding because

there are files matched in node C but node C’s interest is

0.3 less than the threshold. The QueryHit message con-

sists of an identifier copied from the corresponding Query

message, a hop count 1, and a file reference (C, F3)

where C indicates the file source, and F3 is the informa-

tion for the file.

In Figure 2, node B receives the responses of the

Query message but node C doesn’t receive any response

because it didn’t forward the Query message due to its

insufficient interest. When node B receives the QueryHit

messages, it adds entries for them in the reference cache.

For example, the cache entry <P, F5, 0.7, 15:25> is added

for the QueryHit message <Q308_MHA, (P, F5), 1>. Be-

sides, node B returns the QueryHit message to node A.

Finally, source node A gets five query results. In our pro-

tocol, we do not record the hop counts for the files in the

reference cache, because the nodes are able to move arbi-

trarily in the mobile environment and lead to the recorded

hop counts may not make sense when requesting the file.

0

0

0

0

0

3

Popularit
y

15:420.7F9L

15:280.7F56K

File_Ref

File_

Info

16:030.7F16E

15:360.7F47J

15:250.7F5P

11:230.79F12D

Access_
Time

InterestFile_
Src

0

0

0

0

0

3

Popularit
y

15:420.7F9L

15:280.7F56K

File_Ref

File_

Info

16:030.7F16E

15:360.7F47J

15:250.7F5P

11:230.79F12D

Access_
Time

InterestFile_
Src

Node B’s reference cache

0.3

0.7

A

C

B

QueryHit
= < Q308_MH

A
, (P, F5), 1 >

QueryHit
= < Q308_MH

A
,

(K, F56), 1 >

QueryHit
= < Q308_MH

A
,

(E, F16), 3 >

QueryHit
= < Q308_MH

A
,

(L, F9), 3 >

QueryHit
= < Q308_MH

A
, (J, F47), 2 >

QueryHit
QueryHit

QueryHit
QueryHit

QueryHit

50.70.64
Q308_
MH

A

N_FFInterestThreshTTL
Query

_Id

50.70.64
Q308_
MH

A

N_FFInterestThreshTTL
Query

_Id

Node B’s helper table

Figure 2. Advanced Lookup Protocol – Receiving
QueryHit

2.3. Maintenance of Data Structures

In SLP, every node needs to maintain two data struc-

tures, which are a repository and a reference cache. The

repository is managed by the local file system. When the

node retrieves a file, it is stored in the repository. The

files in the repository also can be deleted by the user

when unnecessary. As to the reference cache, it contains a

fixed number of entries. The entry is added when the

node receives a new file reference. When the space of the

cache is inadequate, we use LRU (least recently used)

algorithm [9] for replacement.

In ALP, every node needs to maintain four data struc-

tures, which are a repository, a reference cache, a helper

table, and a feedback table. The maintenance of the re-

pository is the same as those in SLP, but the maintenance

of the reference cache is a bit different from those in SLP.

We combine LRU algorithm [9] and second-chance algo-

rithm [9] to develop a new algorithm for cache replace-

ment. We use LRU as basic replacement algorithm but

give most popular and most interested references second

chances. When an entry has been selected, we inspect

whether it has the right of second chance. If it does not

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

have the right of second chance, we proceed to replace

this entry. If it has the right, we give that entry a second

chance and move on to select the next LRU entry. When

an entry gets a second chance, its Access_Time is updated

to the current time. As to the helper table, an entry is cre-

ated when nodes receives a Query message, and lives for

a predefined period of time. Before it is removed, the

N_FF value of the entry is transferred to the feedback

table. The size of a feedback table is fixed and independ-

ent of the number of the nodes on the network. When the

latest information N_FF stored in the helper table is trans-

ferred to the feedback table, the N_FF in the feedback

table is updated to reflect the latest network condition.

3. Simulation Results

In this section, we demonstrate the simulation results

comparing the performance of our protocols SLP and

ALP with PDI [5], a lookup protocol for the mobile envi-

ronment. The mobile devices are randomly placed within

an area of 1000 m × 1000 m. There are 100 mobile de-

vices moving according to the random waypoint mobility

model [1] in this area. The transmission range for each

mobile device is 150 m. The speed of the device is ran-

domly chosen from 0 to 1.5 m per second. Each device

maintains a repository which is able to store 512 files and

a reference cache with capacity 32 entries. We assume

each device initially stores 100 files in the local reposi-

tory.

For the file matching, we assume files and query

strings are composed of several keywords chosen from

the keyword set K of size Nkeywords = 256. Ninterests is num-

ber of keywords a node is interested in. For each node,

Ninterests keywords can be randomly chosen from the key-

word set K to form the initial files and the query strings.

To calculate the interest, we average the similarities of the

latest 10 files in the repository. The time-to-live (TTL) for

query messages is 3. Interest threshold for SLP is 0.2. The

initial interest threshold and the maximum interest thresh-

old for ALP are 0.0 and 0.5, respectively. We simulate

5000 query requests issued by randomly chosen peers.

We make our observations from four performance

measures: success rate, scalability, bandwidth efficiency,

and search responsiveness.

(A) Success rate: We say a query request is successful if

only if it finds at least one replica of the file. The

success rate is defined as:

requestsqueryallofnumber

requestsqueryl successfuofnumber
ratesuccess

The simulation result is shown in Figure 3. The suc-

cess rates of SLP and ALP increase gradually, and

reach about 80% and 90% at the end of the simula-

tion. With the growing number of query requests, the

number of files to be spread, replicated, and shared is

increasing. Therefore, it becomes easier to find

matching files, and the success rate grows steadily.

We also find an interesting result that the success

rate of PDI reaches its peak 80% at executing around

2000 queries, and then falls. Since PDI use local

broadcast of query messages and response messages,

its success rate booms at the beginning. With the

growing number of shared resources, broadcasting

query responses will fill caches with junk entries,

and it also lead to the replacement of entries fre-

quently.

0

10

20

30

40

50

60

70

80

90

100

3
0
0

6
0
0

9
0
0

1
2
0
0

1
5
0
0

1
8
0
0

2
1
0
0

2
4
0
0

2
7
0
0

3
0
0
0

3
3
0
0

3
6
0
0

3
9
0
0

4
2
0
0

4
5
0
0

4
8
0
0

Number of Query Requests

S
u
cc

es
s

R
at

e(
%

)

PDI

SLP

ALP

Figure 3. Number of Query Requests vs.
Success Rate

(B) Scalability: A scalable lookup protocol should in-

volve only few messages during the search process.

Hence, we exploit Messages per Query to evaluate

the scalability of lookup protocols.

46.97

13.84

24.79

0

5

10

15

20

25

30

35

40

45

50

M
es

sa
g
es

 p
er

 Q
u
er

y

PDI

SLP

ALP

Figure 4. Messages per Query

As shown in Figure 4, on average, there are 46.97

messages generated during a PDI search process,

13.84 messages during SLP, and 24.79 messages

during ALP. PDI generates much more messages

than SLP and ALP, since it locally broadcasts not

only query messages but also response messages.

Therefore, our protocols are more scalable.

(C) Bandwidth Efficiency: In this experiment, we investi-

gate the efficiency of bandwidth of the protocols. A

bandwidth-efficient lookup protocol should take only

few messages to achieve a successful query request.

Therefore, Messages per Success (Cost of Success) is

used to measure the bandwidth efficiency. The simu-

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

lation result is shown in Figure 5. Before executing

around 1200 queries, the replicated files and refer-

ences of our schemes help raise the probability of

success and reduce the required messages remarka-

bly.

Due to the limited size of the cache, afterwards, the

cache reaches full utilization, replacement for cache

entries starts to take place frequently, and reduction of

the cost of success becomes slower. From the simula-

tion result, we can observe that SLP and ALP are

much bandwidth-efficient than PDI.

0

10

20

30

40

50

60

70

80

3
0

0

6
0

0

9
0

0

1
2

0
0

1
5

0
0

1
8

0
0

2
1

0
0

2
4

0
0

2
7

0
0

3
0

0
0

3
3

0
0

3
6

0
0

3
9

0
0

4
2

0
0

4
5

0
0

4
8

0
0

Number of Query Requests

M
es

sa
g

es
 p

er
 S

u
cc

es
s

PDI

SLP

ALP

Figure 5. Number of Query Requests vs.
Messages per Success

(D) Search Responsiveness: Search responsiveness [4]

measuring the responsiveness and reliability of a

lookup protocol can be defined as:

LengthPathAverage

RateSuccess
nessResponsiveSearch

The simulation result is shown in Figure 6. Because

of the efficient cache utilization, our protocols have

higher success rate and lower path length. We also

find that the method of incremental threshold of ALP

improves the responsiveness further. On the other

hand, local broadcasting scheme makes cache utiliza-

tion of PDI inefficient, and the success rate decays

after running for a period of time (as shown in Figure

3). Therefore, our protocols are more responsive than

PDI.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

3
0
0

6
0
0

9
0
0

1
2
0
0

1
5
0
0

1
8
0
0

2
1
0
0

2
4
0
0

2
7
0
0

3
0
0
0

3
3
0
0

3
6
0
0

3
9
0
0

4
2
0
0

4
5
0
0

4
8
0
0

Number of Query Requests

S
ea

rc
h
 R

es
p
o
n
si

v
en

es
s

PDI

SLP

ALP

Figure 6. Number of Query Requests vs. Search

Responsiveness

4. Conclusions

Lookup protocol is one of the critical issues for peer-

to-peer networks. However, the most of existing protocols

are not suitable for mobile environments. In this paper,

we propose two protocols, SLP and ALP, for MANETs.

We use interest-based selective forwarding mechanisms

to reduce the overhead on the networks, and implicitly

replicate files on the nodes which tend to request these

files in the future. We also propose a scheme, incremental

threshold, to improve the performance further. The

threshold is getting higher and the probes are narrowed

down gradually. Therefore it will not give up too many

possible resources at the beginning. Simulation results

show that our protocols have higher success rate and raise

the scalability and bandwidth efficiency comparing to

PDI. Besides, our protocols are more responsive. Finally,

our protocols can avoid selfish behaviors, since the be-

havior of forwarding queries benefits not only the source

node but also the forwarding nodes.

References

[1] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J.

Jetcheva, “A Performance Comparison of Multi-Hop

Wireless Ad Hoc Network Routing Protocols,” in Pro-

ceedings of the 4th Annual ACM/IEEE International Con-

ference on Mobile Computing and Networking, pp. 85-97,

1998.

[2] D. Hand, H. Mannila, and P. Smyth, “Principles of Data

Mining,” MIT Press, 2001.

[3] D. B. Johnson, D. A. Maltz, and J. Broch, “DSR: The

Dynamic Source Routing Protocol for Multi-Hop Wire-

less Ad Hoc Networks” in Ad Hoc Networking, Edited by

Charles E. Perkins, Chapter 5, pp. 139-172, Addison-

Wesley, 2001.

[4] T. Lin and H. Wang, “Search Performance Analysis in

Peer-to-Peer Networks,” in Proceedings of the 3rd Inter-

national Conference on Peer-to-peer Computing, pp.

204-205, 2003.

[5] C. Lindemann and O. P. Waldhorst, “A Distributed

Search Service for Peer-to-Peer File Sharing in Mobile

Applications,” in Proceedings of the 2nd International

Conference on Peer-to-Peer Computing, pp. 73-80, 2002.

[6] M. Papadopouli, and H. Schulzrinne, “Effects of Power

Conservation, Wireless Coverage and Cooperation on

Data Dissemination among Mobile Devices,” in Proceed-

ings of the ACM International Symposium on Mobile Ad

Hoc Networking and Computing, pp. 117-127, 2001.

[7] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destina-

tion-Sequenced Distance-Vector Routing (DSDV) for

Mobile Computers,” in Proceedings of ACM SIG-

COMM'94, pp. 234-244, 1994.

[8] C. E. Perkins and E.M. Royer, “Ad Hoc On-Demand

Distance Vector Routing,” in Proceedings of the 2nd

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

IEEE Workshop on Mobile Computing Systems and Ap-

plications, pp. 90-100, 1999.

[9] A. Silberschatz, G. Gagne, and P. B. Galvin, “Operating

System Concepts,” John Wiley & Sons, Inc., 6th Edition,

2002.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

