will be faster in our paradigm, given the summaries and
the generalized attributes. Furthermore, we have shown
that the number of involved brokers during event
processing is, on average, smaller.

6. Conclusions

We contributed a new paradigm for pub/sub systems
based on the novel notion of subscription summaries. We
have presented the data structures -constituting the
summaries and the algorithms manipulating these
summaries in order to match incoming events against the
brokers’ subscriptions. Also, we have developed the
notion of multi-broker summaries, shown how to compute
them, and the accompanying algorithm for subscription
summary propagation. These contributions introduce
significant performance gains during subscription
propagation, for network bandwidth, storage
requirements, and in required broker involvement (hop
counts). We then contributed a distributed event
processing algorithm, which ensures efficiency during the
event processing phase, in terms of the number of brokers
involved in event routing.

Our performance results show that our approach can
drastically improve the bandwidth requirements to
propagate subscriptions, outperforming the subsumption
mechanism of Siena by a factor of four to eight. At the
same time, the hop count for both subscription
propagation and event processing is smaller and the
computational requirements at each broker for filtering
and matching events are expected to be better than those
of related work. Finally, the storage requirements are
smaller than Siena’s by 2 to 5 times.

Our on-going work includes ensuring load balancing
during event processing, which is an open problem. We
employ ‘virtual degrees’ for the maximum-degree nodes,
reducing their load, while continuing, however, to offer
significant improvements. Further, we are currently
extending our structures to accommodate dynamically-
changing attribute schemata, for larger-scale networks
(e.g., multi-ISP, global CDNs) (basically, this only
requires changing the c; field of subscription ids). Finally,
we are also currently developing techniques combining
summarization and subsumption.

7. References

[11 M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and
T. D. Chandra. Matching events in a content-based
subscription system. Proc. ACM PODC Symposium, pp 53—
61, 1999.

[2] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R.
E. Strom, and D. C. Sturman. An efficient multicast

protocol for content-based publish/subscribe systems. Proc.
ICDCS, pp 262-272, 1999.

[3] G. Banavar, M. Kaplan, K. Shaw, R. E. Strom, D. C.
Sturman, and W. Tao. Information flow based event
distribution middleware. Proc. ICDCS Workshop on
Electronic Commerce and Web Applications, 1999.

[4] Cable and Wireless plc. http://www.cw.com.

[5] A. Carzaniga, E. Nitto, D. Rosenblum, and A. Wolf. Issues
in supporting event-based architectural styles. 3rd Intl
Software Architecture Workshop, 1998.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving
scalability and expressiveness in an Internet-scale event
notification service. Proc. ACM PODC, pp 219-227, 2000.

[71 G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI event-
based infrastructure and its application to the development
of OPSS WFMS. [EEE TSE, Sep. 2001.

[8] EF. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,
and D. Shasha. Filtering algorithms and implementation for
very fast publish/subscribe systems. ACM SIGMOD 2001,
pp. 115-126, 2001.

[9] J. Gough and G. Smith. Efficient recognition of events in a
distributed system. Proc. Australasian Computer Science
Conference, Feb. 1995.

[10] R. E. Gruber, B. Krishnamurthy, and E. Panagos. The
Architecture of the READY Event Notification Service.
ICDCS workshop, June 1999.

[11] G. Muhl, L. Fiege, F. Gartner, and A. Buchmann.
Evaluating advanced routing algorithms for content-based
publish/subscribe systems. Proc. MASCOTS'02, ppl67-176,
2002.

[12] Object Management Group. CORBAservices — event
service specification. Technical report 2001.
ftp://ftp.omg.org/pub/docs/formal/01-03-01.pdf.

[13] Object Management Group. CORBAservices — notification
service specification. Tech. report, 2000.
ftp:/ftp.omg.org/pub/docs/formal/00-06-20.pdf.

[14] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The
Information Bus - an architecture for extensible distributed
systems. Operating Systems Review, 27.5:58—68, 1993.

[15] P. R. Pietzuch and J. Bacon. A distributed event-based
middleware architecture. Proc. I*' International Workshop
on Distributed Event-Based Systems, 2002.

[16] A. Rowstron and P. Druschel. Pastry: Scalable
decentralized object location and routing for large-scale
peer-to-peer systems. Proc. Middleware 01, 2001.

[17] B. Segall and D. Arnold. Elvin has left the building: A
publish/subscribe notification service with quenching. Proc.
Australian UNIX Users Group Technical Conference, pp
243-255,1997.

[18] SoftWired Inc. iBus. http://www.softwired-inc.com.

[19] Sun Microsystems, Inc. Jini(TM) technology core platform
spec - distributed events. Technical report, 2000.
http://www.sun.com/jini/specs.

[20] TIBCO Inc. TIB/Rendezvous. http://www.tibco.com.

[21] P. Triantafillou, A. Economides. Subscription Summaries
for Scalability and Efficiency in Publish/Subscribe Systems.
Proc. I'" International Workshop on Distributed Event-
Based Systems, 2002.

[22] Vitria. BusinessWare. http://www.vitria.com

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)
1063-6927/04 $20.00 © 2004 1IEEE

me

COMPUTER
SOCIETY

A Clock Synchronization Algorithm for Multi-Hop Wireless Ad Hoc
Networks *

Jang-Ping Sheu, Chih-Min Chao, and Ching-Wen Sun

Department of Computer Science and Information Engineering

National Central University, Taiwan

Email: sheujp@csie.ncu.edu.tw, cmchao@axpl.csie.ncu.edu.tw, cwsun@axpl.csie.ncu.edu.tw

Abstract

In multi-hop wireless ad hoc networks, it is impor-
tant that all mobile hosts are synchronized. Synchro-
nization is necessary for power management and for
frequency hopping spread spectrum (FHSS) operations.
IEEE 802.11 standards specify a clock synchroniza-
tion protocol but this protocol suffers from the scala-
bility problem due to its inefficiency contention mech-
anism. In this paper, we propose an automatic self-
time-correcting procedure (ASP) to achieve clock syn-
chronization in a multi-hop environment. Qur ASP
has two features. Firstly, a faster host has higher pri-
ority to send its timing information out than a slower
one. Secondly, after collecting enough timing informa-
tion, a slower host can synchronize to the faster one
by self-correcting its timer periodically (which makes it
becoming a faster host). Simulation results show that
our ASP decreases 60% the average maximum clock
drift as compared to the IEEE 802.11 and reduces 99%
the number of asynchronism in a large-scale multi-hop
wireless ad hoc networks.

Keywords: Clock synchronization, IEEE 802.11,
multi-hop wireless ad hoc networks.

1. Introduction

A wireless mobile ad hoc network (MANET) is
formed by a cluster of mobile hosts without any
pre-designed infrastructure of the base stations. In
MANETS, it is important that all mobile hosts synchro-
nize to a common clock. In frequency hopping spread
spectrum (FHSS), synchronization is required to assure
all mobile hosts hopping at the same time. Synchro-
nization is also required to perform power management
for both FHSS and direct sequence spread spectrum
(DSSS). Without such clock synchronization, mobile
hosts may not wake up at the same time and thus the

*This work was supported by the Ministry of Education,
the Republic of China, under Grant A-92-H-FA(07-1-4 (Learn-
ing Technology).

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 1IEEE

power management operation may not work well. A
distributed timing synchronization function (TSF) is
specified in IEEE 802.11 WLAN standard [1] to fulfill
clock synchronization in a MANET. In this synchro-
nization mechanism, each mobile host is responsible
for exchanging timing information through the period-
ically beacon transmissions. A host synchronizes its
clock according to the timestamp in the beacon if the
received time is later than its own.

As the number of hosts increases, the transmission
contentions uprise accordingly. As a result, the scal-
ability problem occurs (performance analysis can be
found in [2, 3, 4]). A scalability problem is also induced
by this IEEE 802.11 standard T'SF due to the beacon
contentions [5, 6]. For a large scale MANET, beacon
frames can hardly be successfully transmitted and some
hosts may not be able to synchronize with others. An
adaptive timing synchronization procedure (ATSP) is
proposed in [5] to solve this scalability problem. The
basic idea behind ATSP is from the observation that,
in the IEEE 802.11 TSF, only later (faster) timing syn-
chronize others. Thus, ATSP gives the fastest host (the
host that has the fastest timing) the highest priority to
transmit beacons (by increasing its beacon transmis-
sion frequency). On the contrary, slower hosts’ bea-
con transmission frequencies are reduced. ATSP suc-
cessfully alleviate the scalability problem but in some
cases, such as the fastest mobile host leaves, some mo-
bile hosts’ clocks may still differ from others for hun-
dreds microseconds. To overcome these problems, a re-
vision of ATSP, which is called Tiered Adaptive Tim-
ing Synchronization Procedure (TATSP), is proposed
in [6]. Both ATSP and TATSP achieve clock synchro-
nization for mobile hosts and scale well in a single-hop
MANET. However, these two algorithms fail to apply
to a multi-hop MANET.

In this paper, we propose a clock synchroniza-
tion algorithm, which is called automatic self-time-
correcting procedure (ASP), to achieve clock synchro-

un@

COMPUTER
SOCIETY

nization among mobile hosts and hence to solve the
scalability problem in a multi-hop MANET. Two tasks
must be done to fulfill clock synchronization in a multi-
hop MANET: to increase the successful transmission
probability for faster hosts and to spread the faster
timing information throughout the whole network. In
ASP, the first task is achieved by increasing the bea-
con transmission priority of a host who has faster tim-
ing and by cutting down the priorities of the others.
And then, when some slower hosts get enough infor-
mation to accomplish synchronization by themselves,
their beacon transmission priorities are increased to
carry out the second task. By efficiently carrying out
these two tasks, the ASP mitigates the clock asynchro-
nism occurred in IEEE 802.11 networks.

The rest of this paper is organized as follows. We re-
view the clock synchronization protocol specified in the
IEEE 802.11 standard in Section 2. Section 3 describes
the details of the proposed clock synchronization algo-
rithm, the ASP. Simulation results are in Section 4.
Conclusions are given in Section 5.

2. Clock Synchronization of IEEE 802.11

IEEE 802.11 standards [1] specify the mechanisms
of clock synchronization and power management in me-
dia access control (MAC) layer. Each mobile host shall
maintain a TSF timer with modulus 24 counting in
increments of microseconds (us). Hosts are responsi-
ble to contend transmitting beacon frames periodically.
The host, who wins the contention will send a beacon
frame which contains the host’s T'SF timer associated
with other parameters. Other hosts adopt the received
timing information only when the TSF timer is faster
than their own. Specifically, hosts are synchronized
with others by the TSF value (timestamp) contained
in the beacon frames. Each host’s TSF timer is the
summation of a variable offset and the host’s clock.
When a host receives a beacon and finds its own TSF
timer is slower than the timestamp in the beacon, it will
add the timing difference to its offset. The interval be-
tween beacon frames is defined as the aBeaconPeriod,
which specifies the length of a beacon interval and is
an identical value for all hosts in the MANET. In other
words, time is divided into a series of beacon intervals
which are exactly aBeaconPeriod time units apart. A
host will execute the following steps at the beginning
of each beacon interval to achieve beacon generation
and clock synchronization:

1. Suspend the decrementing of the backoff timer for
any non-beacon transmission.

2. Generate a random delay uniformly distributed

BeaconInterval BeaconInterval
el

o

Beacon Generation Window
(2 * aCWmin +1 slots)

A
4
A

Figure 1. Beacon generation window.

in the range between zero and twice aCWmin x
aSlotTime. (The values of aCWmin and aSlot-
Time are 15 and 50 ps for FHSS and are 31 and
20 ps for DSSS.)

3. Wait for the random delay timer.

4. Cancel the random delay timer if a beacon is re-
ceived from another host before the timer has ex-
pired. If the clock information in the receiving
beacon is later than its TSF timer, adopt the
value.

5. Send a beacon with the TSF timing information if
the random delay timer has expired and no beacon
has arrived during the delay period.

All hosts participate beacon generation at the be-
ginning of each beacon interval, which is defined as the
beacon generation window as shown in Fig. 1. This
window comprises (2 x aCWmin +1) time slots and
each station is scheduled to transmit a beacon at one
of these slots.

3. Clock Synchronization in Multi-Hop
MANETS

As mentioned earlier, to achieve clock synchroniza-
tion in multi-hop MANETS, we have to uprise the
faster beacons’ successful transmission probability and
then spread this faster timing out. The former task
is accomplished through dynamically adapting hosts’
beacon transmission frequencies, according to their
own clock oscillation frequency, such that a faster host
obtains higher priority to transmit a beacon. Slower
hosts, after receiving the fast beacon twice from the
same host (with the same Seq_No, which will be de-
scribed later), can calculate the exact difference be-
tween their clocks. Then, even without receiving the
faster beacons, slower hosts can automatically syn-
chronize to the faster one. These hosts whose clocks
have been corrected can then take the responsibility to
spread the faster timing out. In the following, we first
describe the mechanism to increase the faster beacons’

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04) .».;@

COMPUTER
1063-6927/04 $20.00 © 2004 IEEE SOCIETY

successful transmission probability and then present
the automatic self-time-correcting procedure.

3.1. Contention for Beacon Transmission

In a MANET, hosts must attend the contention for
beacon transmission and each of them has equal prob-
ability to win the contention. To increase the number
of successful faster beacon transmission, our basic idea
is to reduce the probability of a slower host to transmit
the beacons. An integer variable p; is defined as the
period, counted in the number of beacon intervals, for
host ¢ to transmit a beacon. For example, host ¢ will
try to transmit a beacon every 2 beacon intervals if
p; = 2. The setting of the p; must reflect host i’s clock
such that a faster host can transmit beacon frequently.
Also, p; is related to the number of host i’s neighbors,
NB;. The value p; should be in proportion to NB;
since a large N B; means a beacon is vulnerable to be
collided with. We define p; as follows.

where NL; is the number of host i’s neighbors who’s
TSF timer is equal to or slower than host i. The value
of « is used to adjust the number of hosts to contend
for the beacon transmission. A small « induces more
hosts to transmit. For example, when NB; = 10 and
a =1, p; will be one when N L; is more than five. That
is, the hosts belong to the faster half will attempt to
transmit a beacon in every beacon interval. On the
contrary, when o = 2, p; will be one when N L; is more
than seven, which means the number of hosts that can
transmit in every beacon interval is reduced. The best
value of o will be selected by simulations.

3.2. Automatic Self-time-correcting Procedure
(ASP)

ASP changes a mobile host’s offset to achieve clock
synchronization, which is the same as IEEE 802.11.
In addition, a host running ASP tries to obtain the
clock oscillation difference between itself and a faster
host. With this information, a slower host can avoid
asynchronism, even without receiving the faster bea-
cons, by adding the oscillation difference to its off-
set periodically. A host i obtains the oscillation dif-
ference by comparing the difference of its TSF timers
to the successively received faster beacons (from the
same host). Specifically, we define Pass_Timel as the
elapsed time that a host receives two successive bea-
cons from the same host and Pass_Time2 as the times-
tamps difference between these two beacons. The oscil-
lation difference of these two hosts’ clocks, Diff, equals

to (Pass-Time2 - Pass_Timel). To achieve self-time-
correction, a slower host ¢ should adjust its offset peri-
odically. The interval, a;, between each self-correction
is defined as

a; = |Pass_timel / Diff] (2)

That is, the slower host shall automatically increase
one to its offset in every a; microseconds to keep syn-
chronized with the faster one.

Note that, strictly speaking, we define Pass_Time2
by simply taking the elapsed time for successively two
beacons from the same host is not correct. Consider
the following situation: a host i receives the beacon
transmitted by a faster host j in the first beacon inter-
val. Next, a host k& which is far from the host ¢ transmit
a faster beacon than host j does. Thus, host j updates
its offset. In the next beacon interval, host j transmits
another beacon carrying this modified TSF timer. Un-
aware of the beacon transmitted by host &, host i will
estimate its clock oscillation to host j improperly. To
overcome this problem, we add a 4-bit variable Seq_No
in the beacon frame to keep track of the changes of
TSF timer. Whenever the offset is updated because of
a faster beacon, Seq_No is increased by one. The cor-
rect calculation of Pass_Time?2 shall be taken from two
beacons that is transmitted by the same host with the
same Seq_No. Note that it does no hurt for a slower
host, say host A, to receive only one faster beacon with
the same Seg_No. In such a case, host A still can syn-
chronize its TSF timer to the fast beacon although it
is incapable of doing self-correction.

To prevent the wraparound problem of Seq_No for
TSF timer, the received timing information stored in
each host will be abandoned after eight beacon inter-
vals. Sometimes, in a multi-hop MANET, a host will
receive more than one faster beacon in one beacon in-
terval. Each of these beacons causes an offset update,
which consume the Seq_No quickly. For example, three
hosts A, B, and C are in line. Host B can communi-
cate with A and C while A and C are hidden to each
other. Suppose that host A has the fastest clock among
the three, which is in turn followed by C and B. Now,
host C transmits a beacon first. Host B will update its
offset and Seq_No after recognizing this faster clock.
Then, in the same beacon interval, host A (without re-
ceiving any beacon) also transmits its beacon and host
B updates its offset and Seq-No again. This exam-
ple illustrates the scenario that a host may update its
Seq_No more than once in a beacon interval. That is
why we cut the timeout threshold by half.

Each mobile host maintains a Neighbor_Table to
keep track of its neighbors and their TSF timers.
Each host should also maintain a Clock_Table to

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04) .».;@

COMPUTER
1063-6927/04 $20.00 © 2004 IEEE SOCIETY

record the information of neighbors who have faster
TSF timers than its own. A Clock Table consists
of four fields: MH_Id, Seq_No, Last_Recv_Clk, and
Last_My_Clk. MH_Id is the neighbor’s identity,
Seq_No is the sequence number of the neighbor’s TSF
timer, Last_Recv_Clk is the last received beacon times-
tamp from the particular neighbor, and Last_My_Clk
is its own TSF timer value when Last_Recv_CIk is re-
ceived. With the information in Clock_Table and Eq.
(2), mobile hosts are able to synchronize to faster clock
automatically.

To make the ASP work properly, four variables are
needed for each host i:

1. An integer variable Seq_No for TSF timer. This
Seq_no is increased by 1 whenever the TSF timer
is changed. The maximum value of Seq_No is 15.
This value is included in the beacon frame.

2. An integer variable p; which indicates the period
a host i shall attempt to transmit a beacon. p; is
calculated by Eq. (1) using the information in its
Neighbor_Table.

3. A counter ¢; which counts for the number of bea-
con intervals that have elapsed since the host 4
attempt to transmit a beacon last. Initially, ¢; is
set to zero. When ¢; = p;, mobile host ¢ shall
transmit a beacon and ¢; is reset to zero.

4. An interval a; which is calculated from Eq. (2). If
host ¢ can not synchronize automatically, a; is set
to infinity.

The operation of a host ¢ running ASP can be for-
mally described as follows.

Automatic Synchronization Procedure

1. In each beacon interval, host i checks
whether its ¢; = p;. If so, host i will
attempt to transmit a beacon in this
beacon interval (follow the operations of
IEEE 802.11). Also, the variable ¢; is
reset to zero. If not, go to step 4.

2. Cancel the random delay timer if a bea-
con is received from other mobile host
before the timer has expired. The TSF
timer information in the received beacon
is recorded in host i’s Neighbor_Table. If
the timestamp in the received beacon is
later than its TSF timer, host ¢ will syn-
chronize to this timestamp and increase
its Seq_No. Simultaneously, timing in-
formation is recorded to Clock_Table. If

Beacon Beacon
Host A >
TSF=0 TSF=100005| TSF=200000| TSF=300005| TSF=400000
Beacon Beacon Beacon
Host B >
TSF=0 TSF=100000| TSF=199990| TSF=300000| TSF=399990
Beacon Beacon
Host C { >
TSF=0 TSF=99995 | TSF=200000" TSF=299980" TSF=400000
Beacon 2 3 4 5
Interval

Figure 2. An example of beacon transmission

the host that transmits the beacon is al-
ready in host i’s Clock_Table, validity
check (exceeds eight beacon intervals or
not) and a; calculation will be applied.
If mobile host i already has a value a;,
the small one will be selected.

3. Send a beacon out if the random delay
timer has expired and no beacon has ar-
rived during the delay period.

4. At the end of a beacon interval, increases
c; by 1.

5. Mobile host 7 automatically adjusts its
clock offset one microsecond ahead in ev-
ery a; microseconds.

We use an example to illustrate how to get the inter-
val a;. Assume that the length of a beacon interval is
0.1 second (100000 microseconds). For ease to under-
stand, we further assume that a beacon is transmitted
in the first slot of the beacon generation window and
the beacon transmission time is ignored. Suppose that
there are three hosts, A, B, and C in a MANET. Hosts
A and B, hosts B and C are within each other’s trans-
mission range but hosts A and C can not hear from
each other. Host A’s, B’s, and C’s TSF timers start
with time zero and their Seq_No’s are set to zero ini-
tially. All of these hosts claim that their clock oscillate
once per microsecond. But in reality, host A oscillates
faster than host B which in turn oscillates faster than
host C. Assume that, after one beacon interval (accord-
ing to host A’s clock), host A’s clock oscillates 100000
times, host B’s clock oscillates 99995 times and host
C’s clock oscillates 99990 times. That is, host B’s and
host C’s clocks are five and ten ticks slower than that of
host A’s every beacon interval, respectively. As shown
in Fig. 2, in the first beacon interval, host B success-
fully transmits a beacon with timestamp and Seq_No
are both zero. Since the timestamp in the beacon is

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04) .».;@

COMPUTER
1063-6927/04 $20.00 © 2004 IEEE SOCIETY

not later than their own, host A and C will not change
their TSF timer.

Next, in the second beacon interval, host B trans-
mits a beacon with timestamp 100000 and Seq_No
zero when its clock equals to 100000. After receiving
this beacon, host A will not modify its offset since the
timestamp in the beacon is not faster than its own. On
the contrary, host C will synchronize to this timestamp
and increase its Seq_No by one. Host C achieves syn-
chronism by changing its offset to five (timestamp in
the received beacon - its own clock value = 100000
- 99995 = 5). In addition, timing information will
be stored to host C’s Clock_Table with M H_Id =
host B, Seq_-No = 0, Last_Recv_Clk = 100000, and
Last_My_Clk = 99995.

In the third beacon interval, host A transmits a bea-
con with timestamp 200000 and Seq_No zero when its
clock is 200000. Host B receives this beacon at its
clock value 199990. After receiving host A’s TSF, host
B increases one to its Seq_No and adds ten (200000
- 199990 = 10) to its offset. This timing informa-
tion is recorded with M H_Id = host A, Seq_No = 0,
Last_Recv_Clk = 200000, and Last_My_Clk = 199990.
In this beacon interval, host C does not receive any bea-
con so it transmits a beacon when its clock is 199995
(TSF timer is 200000 since its offset is set to 5 at the
second beacon interval). This beacon is received by
host B successfully. But host B will not do anything
because it does not contain a faster timestamp.

In the fourth beacon interval, host B transmits its
beacon again with timestamp 300000 (299990 + 10)
and Seq_No 1. Similar to the second beacon inter-
val, host A will do nothing but host C will synchro-
nize to this beacon. The offset of host C will be set
to 25 (300000 - 299975 = 25). Also, timing informa-
tion is stored to host C’s Clock_Table with M H _Id =
host B, Seq_No = 1, Last_Recv_Clk = 300000, and
Last_My_Clk = 299975. Although host C receive two
beacons from host B, host C still does not have the au-
tomatic self-time-correcting capability since these two
beacons have different Seq_No values.

Lastly, in the fifth beacon interval, host A trans-
mits its beacon which contains timestamp 400000 and
Seq_No zero, and is received by host B. Since it is a
beacon with later timestamp, host B will synchronize
to it by updating its offset to 20 (400000 - 399980 =
20) and increases its Seq_No by one. Again, timing in-
formation is recorded with M H _Id = host A, Seq_No
= 0, Last_Recv_Clk = 400000, and Last_ My Clk =
399980. This is the second beacon from the host A
with the same Seq_No hence host B can calculate its

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 1IEEE

o M, Cleck D

300

Number of Hosts

Figure 3. Effect of «

interval ap for automatic self-time-correction:

(399980 — 199990) = 199990,
(400000 — 200000) = 200000,

Pass Timel =

Pass_Time2

Diff = PassTimel — Pass_Timel = 10, and
199990
= = 19999.

That is, host B shall automatically adjusts its offset by
one in every 19999 oscillations to synchronize with the
host A.

4. Simulation Results

The proposed ASP is evaluated by the ns-2 [7] sim-
ulator (CMU wireless and mobile extensions [8]). We
use 224 us as the maximum tolerable clock drift since it
is the duration, specified in the IEEE 802.11 standard,
for the PHY to hop to another frequency in FHSS.
Asynchronism happens when a host’s TSF timer is be-
hind that of another host’s over 224 us. It is checked in
every beacon interval. A beacon interval is 0.1 second
long and the clock accuracy of hosts is uniformly dis-
tributed in the range of [-0.01%, + 0.01%]. The num-
ber of mobile hosts is 100, 300, or 500. Each of them
is randomly located in a region of 1000 x 1000 square
meters with a transmission range of 250 meters. All
hosts move according to the random way-point model
[9] with maximum speed 5 m/s and pause time 50 sec-
onds. We simulate the DSSS environment. Each point
in the Figs. is the average of ten simulation runs with
simulation time 500 seconds (5000 beacon intervals).

In the following, we make observations from three
aspects.

(A) Effect of a:
In this experiment, we investigate the effect of «
to the performance of ASP by varying it from one

un@

COMPUTER
SOCIETY

800 800

@
3
s

Y
3
s

m
S
38

0

S

8

Max Clock Drift (us
N
&
3

Max Clock Drift (us)
=
s
S

SN Y VAR

0 100 200 300 400 500 0 100 200 300 400 500

Time (s) Time (s)

=)
o

(a) IEEE 802.11 TSF with n =100 (b) ASP with n =100

800 800

u

2 600 2 600

=
S
3

Max Clock Drift
Max Clock Drift

~
3
s

o

0 100 200 300 400 500
Time (s)

(d) ASP with n =300

W

Max Clock Drift (us)

i

J\ [l

TR

. e —"

0 100 200 300 400 500 0 100 200 300 400 500
Time (s) Time (s)

(e) IEEE 802.11 TSF with n = 500 (f) ASP with n = 500

Figure 4. Maximum clock drift vs. simulation
time

to five. The metric is the average maximum clock
drift between every pair of hosts. According to
Eq. (1), a controls the number of mobile hosts to
transmit beacon. A large o will reduce this num-
ber. In Fig. 3, when the number of mobile hosts
is 100, the clock drifts are all below 100 us for all
five different « values, among them o = 5 per-
forms the best. When the number of mobile hosts
is 300, a = 3 performs the best which is in turn
followed by a = 1,5,4, and 2, respectively. When
the number of hosts is increased to 500, o = 3 still
outperform the others. Since o = 3 performs well
in most situations, @ = 3 is used in the following
simulations.

(B) Effect of Number of Hosts: In this experiment, we
compare the performance of our ASP with IEEE
802.11 on different number of hosts. The metrics
used here are the maximum clock drift of any two
mobile hosts and the accumulated number of asyn-
chronisms. In Fig. 4 (a), where IEEE 802.11 TSF
is applied over totally 100 hosts, the maximum
clock drift varies acutely. The clock drift is over

4500
4000 |~ —&— IEEE 802.11 n=100 i
1
£ 3500 [& [EEE 802.11 n=300
53000 - — [EEE 802.11 n=500 i
=
£ 2500
<t
o 2000 T
B 1500
£
21000
500 |-
0
0 50 100 150 200 250 300 350 400 450 500
Time (s)
(a)
100
—4— ASP n=100
g 801 o AsPn=300
g —e— ASP n=500
560 f
5;
<q
=
S 40 T o o - o - o /A/f;
2 o o o o o .
=
Z 0 f
0
0 50 100 150 200 250 300 350 400 450 500
Time (s)
(b)

Figure 5. Accumulated number of asynchro-
nisms vs. simulation time

500 ps for four times and the average clock drift
is 222 ps for the entire simulated 500 seconds. In
contrast to IEEE 802.11 TSF, ASP performs well
as shown in Fig. 4 (b). All hosts come to a sta-
ble state after simulation time 81 seconds. The
average clock drift is 88 ps. Fig. 4 (¢) and (d),
reveal similar results with 300 hosts. The average
clock drifts for IEEE 802.11 and ASP are 260 us
and 97 s, respectively. Fig. 4 (e) and (f) show
the results when host number is 500. Again, ASP
performs much better than IEEE 802.11. The av-
erage clock drifts for IEEE 802.11 and ASP are
264 ps and 114 ps, respectively. Our ASP reduces
about 60% of the average clock drift.

In Fig. 5, we see the accumulated number of asyn-
chronisms for IEEE 802.11 is far larger than that
of ASP. For IEEE 802.11, in Fig. 5 (a), the ac-

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04) un@

COMPUTER
1063-6927/04 $20.00 © 2004 IEEE SOCIETY

800 800

3600 geoo

s 3

s | Aol 8

% 400 % 400

2 2

2

MMWW § o ot
(1]

0 100 200 300 400 500 0 10 200 300 400 500
Time (s) Time (s)
() IEEE 802.11 TSF with n = 100 (b) ASP with n = 100
800 800
5 e g o0
€ €
S a
¥ 400 ¥ 400
2 2
o o
¥ 20 ¥ 20
* = h‘- A e aada
0 0
0 100 200 300 400 500 0 10 200 300 400 500
Time (s) Time (s)
(c) IEEE 802.11 TSF with n = 300 (d) ASP with n = 300
800 800
g o0 g o0
€ €
5 o bibtb bbbl &
s 2
o o
- fl T ——
0 0
0 100 200 300 400 500 0 100 20 300 400 500
Time (s) Time (s)

(¢) IEEE 802.11 TSF with n = 500 (1) ASP with n = 500

Figure 6. Maximum clock drift vs. simulation
time with high mobility

cumulated asynchronous numbers are over 3000
for all the three cases at the end of the simula-
tion. Also, the number of asynchronism is pro-
portional to the number of hosts because beacon
collision probability is increased accordingly. For
ASP, in Fig. 5 (b), the whole MANET comes to a
stable state after simulation time 50 seconds and
the numbers of accumulate asynchronism are all
below 40. From these experiments, we conclude
that clock synchronization problem is severer with
larger hosts in IEEE 802.11 while our ASP works
well to keep the hosts synchronized even in a very
large MANET.

(C) Effect of Mobility: Lastly, we investigate the effect
of high mobility to the clock synchronization. The
maximum speed and the pause time are set to 10
m/s and 0, respectively. In Fig. 6 (a), we can find
that the maximum clock drift for 100 hosts run-
ning IEEE 802.11 still changes dramatically with
the highest value 632 ps at simulation time 358
seconds. The average maximum clock drift is 209
us. In Fig. 6 (b), the average clock drift for ASP

4000
3500 + —* IEEE802.11 n=100 ,
—&- [EEE 802.11 n=300
—&— [EEE 802.11 n=500

[N (O8]

wn j=)

o (=)

S (=)
T T

Number of Asynchronisms
—_ (3]
wn ()
o (=)
o S
T

1000 |-
500
0
0 50 100 150 200 250 300 350 400 450 500
Time (s)
(@)
200
180 F —a— ASP =100
g 100 7 s ASPn=300
E MO e ASPR=500
5120 '
£
Z 10 ¢
T80
L
e 60 F
=
Z 40 |
=) =) & & =) = = -
20 |
0
0 50 100 150 200 250 300 350 400 450 500
Time (s)
(b)

Figure 7. Accumulated number of asynchro-
nisms vs. simulation time with high mobility

is 108 ps. A notably large clock drift (214 ps) is
happened at simulation time 168 seconds. We be-
lieve it, because the higher mobility increases the
possibility that a MANET can be partitioned into
several subnetworks. Such subnetworks may have
large clock differences and increase the maximum
clock drift when they are merged. Fig. 6 (¢) and
(d), with 300 hosts, have similar results. The av-
erage clock drifts for IEEE 802.11 and ASP are
262 ps and 107 ps, respectively. Fig. 6 (e) and (f)
demonstrate the results when host number is 500.
Again, ASP performs much better than the IEEE
802.11. The average clock drifts for IEEE 802.11
and ASP are 264 ps and 114 us, respectively.

In Fig. 7 (a), we can see that asynchronism is still
serious. The accumulated asynchronous numbers

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04) nn@
1063-6927/04 $20.00 © 2004 1EEE Cg)(rs/lcl’llggll

	footer1:

