
A Traffic-Aware Scheduling for Bluetooth Scatternets1

Jang-Ping Sheu†, Chao-Hsun Cheng†, Kuei-Ping Shih‡, and Shin-Chih Tu†

†Dept. of Computer Science and Information Engineering, National Central University, Chungli, Taiwan
‡Dept. of Computer Science and Information Engineering, Tamkang University, Tamshui, Taiwan

e-mail: †sheujp@csie.ncu.edu.tw, ‡kpshih@mail.tku.edu.tw

Abstract: Bluetooth scatternet is a set of piconets inter-
connected via bridge devices. A good inter-piconet schedul-
ing is necessary for the bridge devices to switch among
the piconets they participated. This paper proposes an
inter-piconet scheduling algorithm, Traffic-Aware Scatter-
net Scheduling (TASS), for bridges in bluetooth scatternets.
According to the traffic information of all masters that the
bridge is connected, TASS can adaptively switch the bridge
to the masters with high traffic loads and increase the usage
of the bridge. In addition, TASS can reduce the number of
failed unsniffs and the overhead of the bridge switch wastes
to further increase the overall system performance. Sim-
ulation results show that TASS outperforms the existing
inter-piconet scheduling in network throughput and adapt-
ability for various traffic loads.

1. Introduction

Bluetooth is a low cost, low power, and short-range radio
technology used for wireless personal area networks (PANs)
[1]. A piconet is a basic structure in Bluetooth, which is con-
structed in an ad-hoc fashion by one master and up to 7 active
slaves [2, 3, 4]. A piconet can only contain one master and the
master administers the whole piconet. A slave may connect to
more than one master. The slave connecting to two or more
masters is termed as a bridge. A set of piconets that are in-
terconnected by bridges is referred as a scatternet. Although
a bridge can participate in two or more piconets, it can only
serve in one piconet at a time. The bridge will switch among
all piconets it is connected in a time-sharing fashion. For ease
of explanation, the master that the bridge is serving is called
the serving master and the other masters that the bridge is con-
nected but not in service are called waiting masters.

The scheduling of a bridge switching among piconets is
also referred as inter-piconet scheduling. Obviously, an ill-
considered scheduling may cause severe system performance
degradation. However, inter-piconet scheduling is not specified
in Bluetooth specification. Thus, the inter-piconet scheduling
should be developed and be well designed to help the bridge ef-
ficiently switch among piconets. On the other hand, the intra-
piconet scheduling is referred as the scheduling of a master
serving the slaves which the master connects. Polling is a gen-
eral scheme adopted for intra-piconet scheduling. There have
been existed a lots of researches on intra-piconet scheduling in
the literature [5, 6, 7, 8, 9, 10, 11]. Intra-piconet scheduling is
out of the scope of the paper.

Recently, a number of researches on inter-piconet schedul-
ing have been proposed [12, 13, 14, 15, 16]. In [12] an Adap-
tive Presence Point Density scheme (called APPD) for inter-
piconet scheduling is proposed. In APPD, a credit value is
attached to each connection of the bridge that is established.

1This work was supported by the Ministry of Education, the Repub-
lic of China, under Grant A-92-H-FA07-1-4 (Learning Technology).

According to the credit values, the bridge can decide whether
to switch to another piconet or not. However, the decision of
the switching is controlled by the bridge, without negotiating
with the serving master. It may result from one or more packet
losses. On the other hand, to preserve the fairness among the
connections, in APPD, the probabilities of masters getting the
usage of the bridge are the same. Nevertheless, it may lead to a
bottleneck since the master with high traffic load may have not
enough service time to finish its transmission. In addition, re-
ducing the number of failed unsniffs is not considered in APPD
as well.

A novel inter-piconet scheduling protocol, Traffic-Aware
Scatternet Scheduling (TASS), is presented in the paper. In
TASS, a bridge will switch to another piconet only when the
current serving master notices it to switch off. As a result,
there will not be any packet loss when the bridge switches to
another piconet. Each master will maintain a scheduling ta-
ble. The table records all masters’ traffic information and their
bridge usage statuses, such as how long the master has waited
for the usage of the bridge, how long the master may not use
the bridge, and so on. The scheduling table of the serving mas-
ter will be transferred to the new serving master through the
bridge when the serving master decides to release the usage of
the bridge. Based on the scheduling table, the serving mas-
ter can predict the time it may not get the usage of the bridge
after it releases the usage of the bridge. After releasing the
bridge, the master will not unsniff the bridge during the time
interval it has predicted. Therefore, the number of failed un-
sniffs can be much reduced. When the new serving master gets
the scheduling table from the bridge, it can figure out the min-
imum time it can freely use the bridge. The bridge can dynam-
ically switch among the piconets that it is connected according
to the master’s traffic loads and waiting time. Simulation re-
sults demonstrate that TASS outperforms from the APPD with
higher network throughput and better flexibility in the various
traffic loads environment.

The rest of this paper is organized as follows. Section 2
presents the challenges of inter-piconet scheduling. In Sec-
tion 3, Traffic-Aware Scatternet Scheduling is introduced. The
bridge switch problem and its solution are proposed in Section
4. Simulation results are analyzed in Section 5. Section 6 con-
cludes the paper.

2. Challenges of the Inter-Piconet Schedul-
ing

The power saving mode that a bridge uses to switch among
piconets directly influences the performance of the scatternet.
Bluetooth specifies three power saving modes, sniff, hold, and
park modes. In general, sniff mode is used for a bridge to
switch among piconets regularly and periodically. A device
in sniff mode only wakes up periodically in pre-arranged sniff

slots. The master and the slave must negotiate the sniff timing
information, such as the first sniff slot, sniff interval (TSniff),
sniff attempt, and the sniff timeout. The sniffing slave only
listens for the traffic during the sniff slots. If no message is ad-
dressed to the sniffing slave, the sniffing slave ceases listening
for packets. If a message is received in a sniff slot, the sniff-
ing slave continues listening for further sniff timeout slots after
the sniff slot. In other words, the transmission time is flexible
between the master and the sniffing slave. The master and the
sniffing slave can only communicate with each other in their
pre-scheduled sniff slots. If either one can not receive packets
from the other in a sniff slot, it is called a failed unsniff. A
failed unsniff will lead to one packet loss. Hence, too many
failed unsniff will significantly degrade the performance of the
piconet, even that of a scatternet.

A bridge will switch among piconets that it is connected in
a time-sharing fashion. An inter-piconet scheduling is needed
for a bridge to switch among piconets. However, the schedul-
ing is not straightforward. The followings are the challenges to
be considered by an inter-piconet scheduling.

• The variance of traffic loads. Since the traffic of a
network must be variable, therefore, an inter-piconet
scheduling must have the flexibility to dynamically ad-
just the scheduling to meet the variant traffic loads [12].

• The tradeoff between the throughput and the trans-
mission delay. To achieve the maximum throughput of
a scatternet, we would like to allocate more bridge ser-
vice time to the master with high traffic loads. How-
ever, it may increase the transmission delay of the mas-
ters with low traffic loads [17]. Therefore, in addition to
increase the throughput, to reduce transmission delay is
also needed to be considered.

• The frequency of a bridge switching among piconets.
When a bridge switches to a new piconet, the bridge may
not match to the timing of the new piconet. The bridge
has to wait until the next even slot to be unsniffed by
the new serving master. The time that a bridge waits for
being unsniffed after switching to a new piconet is called
guard time waste. Reducing the switching frequency of
a bridge among piconets can reduce the guard time waste
as well [18].

In general, the communication between two devices always
lasts for a certain time. The traffic is with the temporal lo-
cality. Consequently, inter-piconet scheduling of a bridge can
utilize the historical information to enhance the efficiency of
the scheduling.

3. Traffic-Aware Scatternet Scheduling
(TASS) Protocol

In this section, the system model of the paper is presented in
Section 3.1 and the TASS protocol is described in Section 3.2.

3.1. System Model

TASS is operated on a constructed scatternet. The connec-
tion between a master and a slave is ACL link only. In TASS,
the sniff mode is used as the operating mode for the bridge
to switch among piconets. The sniff interval negotiated by a
bridge with its serving master is TSniff .

In TASS, each master will maintain a scheduling table,
which indicates the traffic information of all masters that the

bridge is connected. According to the scheduling table, the
new serving master can figure out the time it can use the bridge
and the waiting master can calculate the time it needs not to
poll the bridge in the following sniff slots. A scheduling table
is shown in Table 1, where MID represents the identity of the
master and the other fields are described as follows.

• QCT (Queue Consuming Time): the time that a link still
needs the bridge to serve,

• LT (Lost Time): the time that a master can not get the
usage of the bridge,

• WT (Waiting Time): the time that a master has been
waiting for the usage of the bridge, and

• α: the historical information that, in average, the traf-
fic generation rate per slot between the master and the
bridge.

The unit of the time described above is slot.
QCT is defined as the time that a link still needs the bridge

to serve. It means the time that all the data packets in the
queues of the master and the bridge need to be transmitted
completely. There is a queue agent to monitor the status of
the queue on either side of a link. The bridge will notify the
master about this information at each communication with the
master. Therefore, the master can compute the QCT .

LT is defined as the time that a master can not get the usage
of the bridge. Since the scheduling table has the QCT s of all
masters that the bridge is connected, when the serving master
has to release the usage of the bridge, according to QCT s, it
could predict the time that it may lose the bridge after it re-
leases the usage of the bridge. The time is called LT . LT

could be used to reduce the number of failed unsniffs of the
waiting masters. For example, when master A has to release
the usage of the bridge to master B. Master A will compute
the LTA to predict how many time slots that it may lose the
usage of the bridge in the future. Thus, after master A releases
the usage of the bridge, master A will skip the sniff slots during
the LTA. Therefore, master A could reduce the number of the
failed unsniffs.

WT is the time that the master has been waiting for the
usage of the bridge since it released the usage of the bridge.

α represents the history of the traffic loads. Since the de-
cision of the master releasing the bridge depends much on the
value of QCT , the precision of QCT will influence the perfor-
mance of TASS. Therefore, to obtain QCT precisely, the his-
tory of traffic loads is counted to evaluate QCT due to the tem-
poral locality of the traffic. Let ρ be the increment of the traffic
in queue during a fixed time period, say T . The queue agent
responds to maintain ρ. Thus, α can be obtained as α = ρ

T
. α

will be computed for every T time period. After α is obtained,
the queue agent will reset ρ to zero. For example, suppose
T = 20. For some master and the bridge, they generate 2 DH5
packets in T . So ρ = 10 and α = 10/20 = 0.5. It means
that the QCT of the master-bridge link will increase 0.5 pack-
ets per slot in average. When the serving master has to release
the usage of the bridge, it would record the α in the scheduling
table. Hence, when the new serving master gets the usage of
the bridge, it could evaluate the QCT more precisely for some
waiting master.

When the serving master i has to release the usage of the
bridge, it will find a candidate to be the new serving master,

MID LT QCT WT α

...
...

...
...

...

Table 1: Scheduling Table.

Figure 1: An example of LT .

say j, and update the LTi. The serving master i first finds the
minimum LTj from the scheduling table, for some j. If there
are more than one minimum LT , then it selects the one with
the maximum WT . It means that the waiting master j has the
highest priority to get the usage of the bridge once the serving
master releases the bridge.

The serving master has to update LTi once it decides to re-
lease the usage of the bridge to the new serving master j. How-
ever, QCTj in the scheduling table of master i is an out-of-date
value since it is recorded when the master j has released the us-
age of the bridge. Therefore, it does not stand for the current
traffic loads of the master j. As a result, we can use αj to
estimate the QCTj roughly. Therefore, at least, the time that
the serving master i will not get the usage of the bridge can be
obtained as below, say WS.

WS = QCTj + αj ∗ WTj

On the other hand, to avoid the excessive transmission delay
of the waiting masters, a waiting threshold (Wthold) is used to
limit the transmission delay. If the WS is bigger than Wthold,
then WS is set to Wthold.

Due to a master can communicate with a bridge only on the
sniff slots, WS may not coincide with the sniff slots. So we
have to add an offset, ∆, to match the sniff slot exactly. ∆ can
be calculated as follows.

∆ = TSniff − ((WS + 2) mod TSniff).

Therefore, the time that the serving master i will not get the
bridge after it releases the usage of the bridge is

LTi = WS + ∆.

Take Figure 1 as an example, where master A is the serving
master and TSniff = 8. Assume that master A is going to
release the usage of the bridge on the first time slot. WS =

QCTB + αB ∗ WTB = 12 (QCTB = 12, αB = 0, and
WTB = 4). ∆ = 8 − ((12 + 2) mod 8) = 2. Hence, LTA =

WS + ∆ = 12 + 2 = 14.

3.2. The Protocol

TASS consists of two phases: bridge phase and bridgeless
phase. The serving master executes bridge phase and all the
other waiting masters perform bridgeless phase.

Bridge Phase

If a serving master i gets the usage of the bridge, it first finds
the minimum LTj from the scheduling table, for some j. Ac-
cording to this information, master i can realize how much time
it can use the bridge freely. Besides, master i should be respon-
sible for the maintenance of the scheduling table. That is, the
serving master i should add 1 to each WT and subtract 1 from
each LT in the scheduling table per slot. When LTj = 0,
master i must check if it has to release the usage of the bridge
to the waiting master j. When the released condition is satis-
fied, the serving master i has to release the usage of the bridge
to the waiting master j. The serving master i then performs
the serving master part of the Bridge Release Procedure. As
described above, once the serving master i intends to release
the usage of the bridge, the serving master i will calculate LTi

by means of the scheduling table. After the LTi is calculated,
master i updates the LTi into the scheduling table and resets
the WTi to zero. Master i then transmits the scheduling table
to the bridge and informs the bridge to serve the new serving
master j. The role of the master i is turned from the serving
master to the waiting master. Thus, master i then performs the
bridgeless phase afterward. The bridge receiving the schedul-
ing table will perform the Bridge Release Procedure as well,
but the bridge part. The bridge then waits for being unsniffed
by the new serving master j and maintains the scheduling table
during this waiting period. The maintenance is that the bridge
would record the time slot count (sc) since it got the scheduling
table to receive the unsniff message from the new serving mas-
ter. When the bridge is unsniffed by the new serving master,
it would subtract sc from each LT , add sc to each WT in the
scheduling table, and then transmit the scheduling table to the
new serving master. The bridge phase and bridge release pro-
cedure are demonstrated in Algorithms 1 and 2, respectively.

There are two conditions that the serving master i has to
release the usage of the bridge to the waiting master j.

1. WTj > Wthold, (TIME event),

2. QCTj +αj ∗WTj > QCTi+QCthold, (QUEUE event).

The first condition implies that the master j has been waiting
for the usage of the bridge over the Wthold. The second con-
dition implies that all the data needed to be transmitted com-
pletely between master j and the bridge is bigger than those
between master i and the bridge plus a QCthold. The QCthold

is designed for avoiding the ping-pong effect when QCTi and
QCTj are close to each other.

The first condition is to avoid the excessive transmission
delay of the waiting master. The released event triggered by
this condition is termed as TIME event. The second condition
is to allocate more service time to the link with high traffic
loads. The released event triggered by this condition is termed
as QUEUE event. If none of the two conditions is satisfied,
then the serving master i could keep using the bridge. This is
termed as EXTEND event. It is worth mentioning that an EX-
TEND event will result in a failed unsniff at the waiting master
which has the highest possibility to get the usage of the bridge
in the near future (here implies the waiting master j). How-
ever, EXTEND event implies that the traffic loads between the
serving master i and the bridge is higher than those between
the waiting master j and the bridge.

To improve the throughput of a scatternet, the master with
high traffic loads will be allocated more service time. However,

when an EXTEND event is triggered, it also implies that the
LTj of the waiting master j is expired. So master j will try to
unsniff the bridge on the sniff slots in the future. Therefore, the
LTj in the scheduling table of the serving master i must reset
to TSniff .

Algorithm 1 Bridge Phase.

{The serving master should execute the algorithm per
slot.}

Step 1:
The serving master, say i, maintains the scheduling
table. The maintenance is to add 1 to every WT , sub-
tract 1 from every LT (for all waiting masters), and
update the QCTi in the scheduling table according to
its queue status.

Step 2:
if there is no data to send between the serving master
i and the bridge then

Execute the Bridge Release Procedure.
end if

Step 3:
if there is no any LT except LTi in scheduling table
is equal to zero then

Go to Step 8.
end if

Step 4:
Choose a waiting master j with LTj = 0.
if there are more than one waiting master with LT = 0
then

Select the waiting master j with the largest WT and
the other LT s are reset to TSniff

end if
Step 5:
if WTj > Wthold then

Execute the Bridge Release Procedure {TIME

event}
Go to Step 8.

end if
Step 6:
if QCTj + αj ∗ WTj > QCTi + QCthold then

Execute the Bridge Release Procedure {QUEUE

event}
Go to Step 8.

end if
Step 7:
Reset LTj to TSniff {EXTEND event}
Go to Step 8.

Step 8:
End.

Bridgeless Phase

The waiting masters that do not get the usage of the bridge will
perform the bridgeless phase. For some waiting master, say
j, according to the LTj that was calculated when the master j

had released the usage of the bridge, the master j could realize
the time it might not get the usage of the bridge. Therefore, the
waiting master j won’t unsniff the bridge during LTj . Hence,
it could reduce the number of failed unsniffs. Algorithm 3 is
the operations that all waiting masters have to perform per slot.

Algorithm 2 Bridge Release Procedure.
The part to be executed by the serving master.
{The serving master i deciding to release the usage of
the bridge will perform the following operations.}

Step 1:
Calculate LTi.

Step 2:
Update LTi and reset WTi to zero in the scheduling
table.

Step 3:
Transfer the scheduling table to the bridge and inform
the bridge to be unsniffed by the new serving master.

Step 4:
Wait for the ACK from the bridge.
Go to the Bridgeless phase.

The part to be executed by the bridge.
{The bridge receiving the scheduling table and being
informed by the serving master i to switch to another
piconet to serve the new serving master j will perform
the following operations.}

Step 1:
Send an ACK to the old serving master i at the follow-
ing odd slot after it receives the scheduling table.

Step 2:
Accumulate the time slot count sc since the bridge
gets the scheduling table from the serving master i
to receive the unsniff message from the new serving
master j.

Step 3:
{Maintain the scheduling table.}
Add sc to every WT and subtract sc from every LT
in the scheduling table.

Step 4:
Transfer the scheduling table to the new serving mas-
ter j.

Algorithm 3 Bridgeless Phase.

{The waiting master should execute the algorithm per
slot. Suppose the waiting master is master j, for some
j.}
if LTj > 0 then

LTj = LTj − 1
else

Back to normal operation of sniff mode.
{It implies that the master j will try to unsinff the
bridge on the following sniff slots.}

end if

if master j unsniffs the bridge successfully then
Go to the Bridge phase.

end if

4. Bridge Switch Problem

If a bridge switches to a piconet, but the serving master has
no data to the bridge. A Poll-Null sequence event happens. It
is a bridge switch waste. However, if the Poll-Null sequence
event is happened in the sniff slot between the master and the
bridge, it implies that this switch of the bridge is waste once.
It would lead the bridge to go back to sleep and the other wait-
ing masters would be unable to unsniff the bridge successfully.
This will reduce the usage of the bridge. In TASS, in order
to reduce the number of bridge switch wastes, LT will be in-
creased as long as the bridge switch waste happens. When a
bridge switches to a serving master, the bridge will transfer the
scheduling table to the serving master on the first odd slot. If
the serving master receives from the bridge a DH1 ACK packet
that no data is included, except the scheduling table, the serv-
ing master will regard the ACK packet as a Null packet. Thus,
LT of the serving master will be increased accordingly. An
additional time (PNT , Poll-Null time) is added to the LTi.
As a result, the LTi will be lengthened after the Poll-Null se-
quence event. Thus, it could reduce the number of the bridge
switch wastes. A Poll-Null event counter is used to record the
times of successive bridge switch wastes, and the PNT can be
obtained as follows.

PNT = TSniff ∗ 2(Poll-Null event counter)

The LTi will be lengthened after a bridge switch waste as be-
low.

LTi = LTi + PNT.

LT is getting larger while the bridge switch wastes happen of-
ten. To avoid excessive transmission delay while master i has
data to the bridge, an upper bound, MaxLT , is to limit the in-
creasing of LT .

In the following, we will give an example to demonstrate
the procedure to reduce the bridge switch wastes. Figure 2(a)
shows the result of no improvement of bridge switch wastes
and Figure 2(b) shows the result with the improvement. In Fig-
ure 2(b), the numbers below the gray squares indicate the val-
ues of the Poll-Null event counter, and zero implies the Poll-
Null event counter is reset to 0 due to data transmission be-
tween the master and the bridge. Assume that LT will be the
same after each bridge switch waste. In Figure 2(b), the LT

will be lengthened after each bridge switch waste. The more
the successive bridge switch wastes are, the longer the LT is.
Consequently, in Figure 2, we can obviously observe that it
will reduce 3 times of bridge switch wastes in the result with
the improvement of bridge switch wastes comparing with the
result without the improvement.

5. Simulation Results

CSIM is the simulator we use to verify the feasibility of
the proposed protocol. In the experiment, TSniff = 20,
QCthold = 10, Wthold = 50, and MaxLT = 100, where
the unit is slot. The period to collect the historical information
is 160 slots. The data queue size is 32KB. Initially, all WT s in
the scheduling table are set to Wthold.

The topology on which the experiment performed is shown
in Figure 3. In the topology, there are 7 piconets sharing a
bridge. To do so is because we are interested in the influence
of the inter-piconet scheduling on the scatternet performance.
On the same conditions, the comparisons between TASS and

(a) No improvement.

(b) With improvement.

Figure 2: The comparison of the results without and with the improve-
ment of bridge switch waste.

Figure 3: Simulation topology.

APPD (Adaptive Presence Point Density [12]) on throughput,
activity ratio, packet delay, and the number of failed unsniffs
are presented as well. The packet generation rates of the mas-
ters are in a constant bit rate (CBR). Among these masters, the
packet generation rate of one master is fixed on 300kbps and
those for the others are fixed to 60kbps. A high packet gener-
ation rate implies that the master would need more bridge ser-
vice time. The bridge does not generate any packets at all and
the destinations of all packets are to the bridge. The simulation
time is 200 seconds.

Figures 4 and 5 show the impact of the degree of the bridge
on the activity ratio and the throughput of the master whose
packet generation rate equals 300kbps, respectively. The ac-
tivity ratio means the ratio of the total bridge service time of
the master whose packet generation rate equals 300kbps to the
total simulation time. The throughput is evaluated by the data
packets received by the bridge per second. Obviously, TASS
can allocate more bridge service time to the master with high
traffic loads. The master with high traffic loads can almost
obtain the maximum throughput. On the contrary, in APPD,
the bridge service time allocated to the master with high traf-
fic loads decreases seriously as the degree of the bridge in-
creases. Accordingly, the throughput of the master with high
traffic loads will decrease when the the degree of the bridge in-
creases as well. It is because that, in APPD, the bridge service
time allocated to the masters is based on the link level fair-
ness. That is, the chances of the masters getting the usage of
the bridge are the same, no mater how heavy the traffic load of
the master is. Therefore, the bridge service time of the mas-
ter with high traffic loads will decrease seriously as the bridge
degree increases. Contrarily, in TASS, the master with high
traffic loads will have higher probability to obtain the usage of

Figure 4: The impact of the degree of the bridge on the bridge activity
ratio of the master with high traffic loads.

Figure 5: The impact of the degree of the bridge on the throughput of
the master with high traffic loads.

the bridge due to QUEUE event. On the other hand, TASS will
not cause the master with low traffic load to starve since the
master with low traffic load can obtain the usage of the bridge
by TIME event.

Figure 6 illustrates the impact of the bridge degree on the
number of failed unsniffs. Due to the lack of the traffic infor-
mation in APPD, the number of unsniffs in APPD is higher
than that in TASS. In APPD, the waiting master that has pack-
ets to transmit will try to unsniff the bridge on each sniff slot
until it successfully unsniffs the bridge. Thus, the number of
failed unsniffs of APPD would be high. However, in TASS,
the waiting masters know how long it can not get the usage of
the bridge. Therefore, the waiting master would not unsniff the
bridge until its LT expires. As a result, the number of failed
unsniffs of TASS is reduced accordingly.

The switching of the bridge among piconets is the main rea-
son resulting in the guard time waste. The higher the frequency
of the bridge switch is, the more the guard time wastes. Fig-
ure 7 shows the bridge switch frequencies of TASS and APPD
for various bridge degrees. Due to the lacks of the traffic in-
formation and the same probabilities of the master getting the
usage of the bridge in APPD, the bridge may switch to a mas-
ter with no packet to send and the bridge switch waste would
be high. On the contrary, TASS takes traffic information into
consideration. The bridge service time for a master would
be different and depend upon the traffic loads of the master.
The bridge would not switch among the piconets blindly. In
TASS, the average bridge service time of the master that has
data packets to send will be longer than that in APPD. This im-

Figure 6: The impact of the bridge degree on the number of failed
unsniffs.

Figure 7: The impact of the bridge degree on the frequency of bridge
switches.

plies that the frequency of bridge switch in TASS will be lower
than that in APPD, as shown in Figure 7.

In the following, we will investigate the impact of the vari-
ous traffic loads on the total throughput when a bridge connects
with 3 masters. Among the three masters, one master will vary
its packet generation rate from 100kbps, 400kbps, to 20kbps
every 20 seconds and the other two masters will fix their packet
generation rates to 100kbps. Initially, the packet generation
rate of each master is 100kbps. Figure 8 illustrates the total
throughputs of TASS and APPD, which are obtained from ev-
ery 1600 slots (i.e. 1 second). As shown in Figure 8, TASS
and APPD can reach the maximum throughput in the first 20
seconds since the packet generation rates of the three masters
are the same. In the following 20 seconds, the packet genera-
tion rate of one master rises to 400kbps. Since APPD does not
take traffic information into consideration, it can not adjust the
switch scheduling according to different traffic loads of mas-
ters. Thus, TASS can still keep the maximum total throughput,
but APPD can not. At the last 20 seconds, the packet gener-
ation rate of one master is reduced to 20kbps. As the figure
shows, TASS can adapt to the real traffic rapidly, but APPD
still needs some time to adapt to the real traffic loads. Since
there are still a lot of data packets queued at the previous 20
seconds in APPD, hence, it needs additional time to consume
the queued packets. Therefore, the adaptability of TASS is su-
perior to that of APPD.

Figure 8: The impact of the various traffic loads on the total throughput
when a bridge connects to three masters.

6. Conclusions

In this paper, we presented an inter-piconet scheduling,
Traffic-Aware Scatternet Scheduling (TASS), which can dy-
namically adjust the bridge service time according to the mas-
ter’s traffic loads, reduce the number of failed unsniffs, and fur-
ther increase the system throughput. The primary idea of TASS
is to allocate the bridge service time to the master which needs
the most. That is, TASS would allocate enough bridge service
time to the master with high traffic loads and reduce the bridge
switch wastes. On the other hand, to avoid excessive transmis-
sion delay of the master with low traffic loads, TASS would
allocate the bridge service time to a master once the master
has waited for a period of time, no longer than Wthold. More-
over, the masters in bridgeless phase will reduce the number
of failed unsniffs because of the LT . To improve the bridge
switch problem, TASS will lengthen the LT after a bridge
switch waste and hence can reduce the number of the bridge
switch wastes.

Simulation results reveal that when the traffic loads of the
masters are various, the bridge switch scheduling of TASS is
more efficient than that of APPD. In addition, TASS is better
than APPD in adaptability. The number of failed unsniffs of
TASS is also fewer than that of APPD. Comprehensively, the
performance of TASS outperforms against APPD, especially
under the environment with various traffic loads.

REFERENCES

[1] Specifications of the Bluetooth System, ver. 1.1,
Bluetooth Special Interest Group, Feb. 2001,
http://www.Bluetooth.com.

[2] J. Bray and C. F. Sturman, Bluetooth Connect Without
Cables. Prentice Hall PTR, 2001.

[3] B. A. Miller and C. Bisdikian, Bluetooth Revealed. Pren-
tice Hall PTR, 2001.

[4] N. J. Muller, Bluetooth Demystified. McGraw-Hill Com-
panies Inc., 2001.

[5] A. Capone, M. Gerla, and R. Kapoor, “Efficient polling
schemes for bluetooth picocells,” in Proceedings of
the IEEE International Conference on Communications
(ICC), June 2001, pp. 1990–1994.

[6] S. Chawla, H. Saran, and M. Singh, “QoS based schedul-
ing for incorporating variable rate coded voice in blue-
tooth,” in Proceedings of the IEEE International Confer-

ence on Communications (ICC), vol. 4, June 2001, pp.
1232 –1237.

[7] A. Das, A. Ghose, A. Razdan, H. Saran, and R. Shorey,
“Enhancing performance of asynchronous data traffic
over the bluetooth wireless ad-hoc network,” in Proceed-
ings of the IEEE INFOCOM, the Annual Joint Confer-
ence of the IEEE Computer and Communications Soci-
eties, Apr. 2001, pp. 591–600.

[8] N. Glomie, N. Chevrollier, and I. ElBakkouri, “Interef-
erence aware bluetooth packet scheduling,” in Proceed-
ings of the IEEE Global Telecommunications Conference
(GLOBECOM), Nov. 2001, pp. 2857–2863.

[9] M. Kalia, D. Bansal, and R. Shorey, “MAC scheduling
and SAR policies for bluetooth: A master driven TDD
pico-cellular wireless system,” in Proceedings of Mo-
MuC, 1999, pp. 384–388.

[10] ——, “Data scheduling and SAR for bluetooth MAC,” in
Proceedings of IEEE Vehicular Technology Conference,
vol. 2, 2000, pp. 15–18.

[11] Y. Liu, Q. Zhang, and W. Zhu, “A priority-based MAC
scheduling algorithm for enhancing QoS support in blue-
tooth piconet,” in IEEE International Conference on
Communications, Circuits and Systems and West Sino Ex-
positions, vol. 1, July 2002, pp. 544 –548.

[12] S. Baatz, M. Frank, C. Kuhl, P. Martini, and C. Scholz,
“Bluetooth scatternets: An enhanced adaptive scheduling
scheme,” in Proceedings of the IEEE INFOCOM, the An-
nual Joint Conference of the IEEE Computer and Com-
munications Societies, June 2002, pp. 782–790.

[13] A. Rácz, G. Miklós, F. Kubinszky, and A. Valkó, “A
pseudo random coordinated scheduling algorithm for
bluetooth scatternets,” in Proceedings of the ACM Inter-
national Symposium on Mobile Ad Hoc Networking and
Computing, 2001, pp. 193–203.

[14] N. Johansson, F. Alriksson, and U. Jonsson, “JUMP
mode - a dynamic window-based scheduling framework
for bluetooth scatternets,” in Proceedings of the ACM In-
ternational Symposium on Mobile Ad Hoc Networking
and Computing, 2001, pp. 204–211.

[15] N. Johansson, U. Korner, and L. Tassiulas, “A distributed
scheduling algorithm for a bluetooth scatternet,” in Pro-
ceedings of the 17th International Teletraffic Congress,
Sept. 2001.

[16] W. Zhang and G. Cao, “A flexible scatternet-wide
scheduling algorithm for bluetooth networks,” in Pro-
ceedings of the 21st IEEE International Performance,
Computing, and Communications Conference, 2002, pp.
291–298.

[17] J. Kim, Y. Lim, Y. Kim, and J. S. Ma, “An adaptive seg-
mentation scheme for the bluetooth-based wireless chan-
nel,” in Proceedings of the 10th IEEE International Con-
ference on Computer Communications and Networks,
2001, pp. 440–445.

[18] S. Baatz, M. Frank, C. Kuhl, P. Martini, and C. Scholz,
“Adaptive scatternet support for bluetooth using sniff
mode,” in Proceedings of the 26th Annual Conference on
Local Computer Networks, Nov. 2001, pp. 112–120.

