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Abstract 
This paper considers the location tracking problem in 

PCS networks. How a solution to this problem peflorms in 
fact highly depends on the mobility patterns of users [14]. 
In this paper; we propose a new Traveling Salesman Mobil- 
ity (TSM) model, in hope of catching the mobility patterns 
of a large group of users. The TSM model is character- 
ized by features of “stop-or-move ”, “infrequent transition ”, 
“memory of roaming, direction”, and “oblivious in differ- 
ent moves”. Then a location tracking strategy based on this 
TSM model is developed. The scheme only needs to keep 
very little information for each user: Analyses and simu- 
lations are provided, which show that the strategy is very 
prospective. 

1 Introduction 
One essential issue in PCS networks is the location man- 

agement or mobility tracking problem. To keep its location 
up-to-date, a mobile subscriber must update its current loca- 
tion with its HLR (home location register) from time to time. 
On a call arriving, the system will page the subscriber based 
on its most recent updating. Since it is a tradeoff between 
updating and paging, considerable research has been done 
in this topic [ I ,  2, 3 , 4 ,  5 ,6 ,  8, 10, 1 1 ,  12, 13, 15, 171. 

The current GSM system adopts the location area ap- 
proach [13]. How to optimally partition LAs is discussed 
in [ 161, and the subscribers’ moving directions are further 
taken into consideration in [9]. Dynamic update schemes 
developed based on users’ activity have also been proposed. 
This can be generally divided into three categories [5]: 

1) Time-based: A mobile user registers with its HLR 
whenever a preset timer expires since its previous up- 
date [5, 121. 

2) Movement-based: A mobile user registers whenever it 
has crossed a preset number of cell boundaries since its 
previous update [2, 51. 
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3) Distance-based: A mobile user registers whenever the 
distance between its current cell and its previously reg- 
istered cell exceeds a preset threshold [3,5, 8, 111. 

On a call arriving, a wireless link between the subscriber 
and its current base station must be established. The ear- 
lier update operation will confine the base stations where 
the subscriber may be found to a certain range. In reality, 
paging must be completed within some delay constraint. A 
simple approach is single-step paging, where all cells where 
the subscriber may reside are paged at once. An alterna- 
tive is selective paging [2, 3, 81, where the cells where the 
subscriber may reside are partitioned into a number of sets 
based on the possibility that the subscriber may be located. 
Then these sets are paged one after another until the called 
subscriber is found. 

How a location tracking strategy performs in fact highly 
depends on  the assumed user mobility pattern. As observed 
by [ 141, different mobility models, when applied to differ- 
ent schemes, may lead to very different performance con- 
clusions. However, as pointed out in [18], not sufficient 
studies have been conducted in human’s realistic mobility 
behavior. For example, an office staff will mostly commute 
between only home and working place. A housewife is more 
likely to be static than mobile, while a taxi driver may be mo- 
bile all the time. Different drivers will have different driving 
speeds and directions (e.g., an office worker may have quite 
fixed moving directions, while a taxi driver may have quite 
random driving directions). Further, when being mobile, a 
driver may be affected by many situations, such as traffic 
lights, speed limits of roads, occasional traffic jams, etc. In 
the literature, most works assumed a simple, but unrealistic, 
random walk model [ 2 ,  3, 81. It is certainly very difficult to 
have a general model that can catch the mobility patterns of 
all mobile users. The works by [5, 71 have taken directional 
bias in user movement into consideration. In [ 11, the roam- 
ing directions of mobile subscribers are considered, and it 
is assumed that users tend to pick the shortest paths lead- 
ing to their destinations. All these models [ l ,  2, 3, 5, 7, 81 
do not consider the mobility variation of users, since it is 
unlikely that one will be mobile all the time. In 1141, an 
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activity-based model is presented, which assumes that users 
may transit from activity to activity, where an activity has 
an associated time of day, duration, and location. In [ 6 ] ,  an 
efficient way to record a user’s roaming history is proposed. 
While more efficient, the database for [6, 141 could be very 
large because information is maintained in a per user, per 
cellLA basis. 

In this paper, we propose a new model called Traveling 
Salesman Mobility (TSM) model. The model is based on the 
observation from traveling salesmen’s daily moving history. 
We expect that this model will be able to catch the mobility 
patterns of a large group of users. The model is character- 
ized by the following features: (i) stop-or-move: a user is 
either in a stop or a move state, (ii) infrequent transition: 
the user will transit between stop and move states, but once 
in a state, the user has a tendency to remain in the same state 
for quite a while, (iii) memory of roaming direction: in a 
trip, the user will have some preference on some particular 
direction, and (iv) oblivious in different trips: in different 
trips, the roaming directions have litter correlation. These 
features will be delineated in more details in Section 2. The 
first two features are to catch users’ mobility variation. The 
third is to take roaming direction into consideration, while 
the last is to limit the size of our mobility database. 

Based on the TSM model, we then propose a new strat- 
egy for location management. The mobility database will be 
in a per user basis, but not per cell basis. Only recent roam- 
ing directions need to be recorded. Our strategy will try to 
determine users’ current states (stop or move). In terms of 
performance, a subscriber under the stop state will be paged 
with little cost, while one under the move state will be paged 
selectively so as to optimize the tota: cost. Analysis and 
comparisons are provided, which show that our scheme is 
very promising. 

The rest of this paper is organized as follows. Section 2 
discusses our proposed TSM model. Our location manage- 
ment strategy taking account the TSM model is presented in 
Section 3. In Section 4, we show how to optimize our pag- 
ing strategy using a selective paging strategy when there is 
memory in roaming direction. Performance comparisons are 
presented in Section 5. Conclusions are drawn in Section 6. 

2 The Traveling Salesman Mobility (TSM) 
Model 

In this section, we propose a new Traveling Salesman 
Mobility (TSM) model. This model is actually obtained 
from observing a traveling salesman’s daily activity. Un- 
doubtedly, salesmen, especially those traveling constantly, 
are one of the major user groups of PCS. The model is char- 
acterized by the following features. 

Stop-or-Move: In the TSM model, we assume that 
a mobile subscriber will mainly switch between two 

Figure 1. The state-transition diagram of the 
TSM mobility model. 

states: stop and move. Under the stop state, the sub- 
scriber is perhaps working in hisher office, talking to 
customers, or attending a meeting. From time to time, 
the subscriber will be mobile and switch to the move 
state. Under the move state, the subscriber is perhaps 
in hisher way to home/office or for the next meeting. 
Once reaching the next destination, the subscriber will 
enter the stop state. The above scenario may repeat 
several times in the subscriber’s daily life. This can 
be modeled by a state-transition diagram as in Fig. 1, 
where the subscriber has probabilities of p and q to 
remain in the stop and move states, respectively, and 
probabilities of 1 - p and 1 - q to transit to the other 
state. 

0 Infrequent Transition: A traveling salesman has a 
tendency to remain in the same state rather than switch- 
ing states. That is, if the subscriber is currently in the 
stop state, it is more likely that the subscriber will re- 
main in the same state in the next moment than switch- 
ing to the move state. Similarly, once in the move state. 
the subscriber will remain in the same state until the 
subscriber arrives at hisher next destination. Reflect- 
ing by Fig. 1 ,  we will assume that both probabilities p 
and q are very close to 1. For instance, one possibility 
is to set p = 0.99 and q = 0.97. 

0 Memory of Roaming Direction: Once in the move 
state, the subscriber’s mobility pattern may be affected 
by many reasons, such as type of vehicles used, traffic 
jam, and speed limit of different roads. These are cer- 
tainly very difficult to catch by a general model. How- 
ever, there should be a destination for this trip. So there 
will be a tendency in the subscriber’s roaming direc- 
tion. Using a hexagonal cellular system in Fig. 2 as 
an example, we can use different probabilities to char- 
acterize the subscriber’s roaming direction to the six 
neighboring cells. These probabilities should be af- 
fected by the subscriber’s recent roaming history. But 
a preference on some directions and a correlation be- 
tween some roaming directions should exist. For ex- 
ample, directions 0, 1, and 2 may be favored over 3 ,4 ,  
and 5, and neighboring directions should have similar 
probabilities. 

0 Oblivious in Different Moves: When the subscriber 
newly transits to the move state, the subscriber’s fu- 
ture roaming pattern should have little relevance to 
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Figure 2. Roaming directions and their prob- 
abilities ( U ,  b ,  c, d, e, and f) in a hexagonal sys- 
tem. 

the subscriber’s previous roaming pattern. Intuitively, 
the salesman now has a different destination (and thus 
roaming direction, for example) from his previous trip. 
That is, there is memory for the roaming pattern in 
the same trip, but it  is “memoryless” between differ- 
ent trips. As a result, the memory of roaming pattern 
should be refreshed when the subscriber transits from 
the stop to the move state. 

3 Update and Paging Strategy 
In this section, we present our update and paging strat- 

egy. The strategy is developed with an intention to catch the 
characteristics of the TSM model, and thus optimize the total 
update and paging cost. Our update strategy will reflect the 
“stop-or-move’’ and “infrequent-transition” features of the 
TSM model. A mobile subscriber will always update, based 
on its guess, its current state (stop or move) with its HLR. 
When the subscriber is under the move state, i t  will use a 
movement-based strategy to update its current location with 
its HLR. To page the subscriber, we will apply a selecfive 
paging strategy similar to the work in [2]. On the contrary, 
when the subscriber is currently under the stop state, we will 
simply page the cell where the subscriber registered previ- 
ously. In this case, we will be able to find the user “in one 
shot.” 

3.1 The Strategy 
Since a HLR can only catch a mobile subscriber’s mo- 

bility at the cellular level, we will interpret the move state 
in Fig. 1 as a boundary crossing. Similarly, the stop state 
will also be interpreted as whether the subscriber stays in 
the same cell or not in the next moment. Based on these 
interpretations, our strategy needs two constants: 

D:  the boundary crossing threshold. When a mobile 
subscriber under the move state makes this number of 
boundary crossings, i t  should update with its HLR. 
T :  the transit-to-stop threshold. When a mobile sub- 
scriber under the move state stays in a cell for this num- 
ber of time units, it should transit to the stop state. 

In response to these constants, each subscriber should keep 
two local variables: (i) d, the number of boundary crossings 
the subscriber has made, and (ii) t ,  the number of time units 
thG subscriber has stayed in the current cell. 

When a handset was initially turned on, we assume that i t  
is either in the move or the stop state (this does not affect the 
correctness of our strategy). The subscriber should update 
with its HLR based on the following rules. 

1. Under the stop state, whenever the subscriber crosses a 
cell boundary, it should change to the move state and 
update this fact as well as its current cell with its HLR. 
Also, the subscriber sets its d to 0 and t to 0. 

2. Under the move state, whenever the subscriber experi- 
ences a boundary crossing, i t  should increment its d by 
1 and reset its t to 0. Whenever d reaches the threshold 
D ,  i t  should update its current location with its HLR 
again, on which event it  should reset its d to 0. 

3 .  Under the move state, the subscriber should increment 
its t by 1 whenever it stays at the same cell over a dura- 
tion of one time unit. Whenever t reaches the threshold 
T ,  the subscriber should change to the stop state and 
update this fact as well as its current location with its 
HLR. 

When a call arrives, the system will page the subscriber 
based on the following rules: 

I .  When the current state of the called subscriber is stop, 
the system will simply page the cell where the sub- 
scriber registered previously. 

2. When the current state of the subscriber is move, we 
will adopt the selective paging strategy as in [2] to lo- 
cate the subscriber. Specifically, we will partition the 
cells that are at the distance of D - 1 from the cell 
where the subscriber registered previously, into a num- 
ber of subsets (how to determine these subsets will be 
discussed in the next section). Then we will page the 
subset (of cells) with the highest hit probability first. If 
this fails, the subset with the second highest hit prob- 
ability will be paged. This is repeated until the sub- 
scriber is located. 

Note that in the first rule, the system will be able to iden- 
tify the subscriber “in one shot” because based on our update 
rules a subscriber under the stop state will always update 
with its HLR whenever there is a boundary crossing. 

3.2 Cost Analysis 
This section analyzes the total update and paging cost of 

our strategy under the TSM model. We will apply a Markov 
model for our analysis. We first define the possible states of 
a mobile subscriber based on its local variables. 

0 S:  The subscriber is under the stop state. 
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Figure 3. The state transition diagram of a mo- 
bile subscriber under the TSM model. 

Mi, j ,  i = O..D - 1,j  = O..T - 1: The subscriber is un- 
der the move state, having made i boundary crossings, 
but having stayed in the current cell for j units of time. 

From the above states, we draw a state-transition diagram 
in Fig. 3. The probability associated with each transition is 
obtained based on the probabilities in Fig. 1 .  From this di- 
agram, we need to determine the probability that the sub- 
scriber will stay in each state. Let’s denote this by Prob(z), 
where z is any state defined earlier. Since the sum of proba- 
bilities over all states must be I ,  we have: 
Consi+&q@+ t S ,  f r o T  e q u i l i ~ ~ ~ @ , o ~ ~  ye have 

2 3  
i=O..D-l,j&t!T-l 

Prob(S)(I - p )  = PTOb(Mi,T-l) ‘ p .  (1 )  
i=O 

Similarly, we can derive from the equilibrium of flows for 
state M O , ~ .  

Prob(Mo,o) = Prob(S)(1 - p )  + Prob(MD-l,o) . q  
T-1 

+ (1 - P) 1 P r o W D - l , j ) ,  
j=1 

and for states Mi,o,i = l..D - 1, 

Prob(M2,o) = Prob(M2-1,o) . q 
T-1 

+ (1 - p )  PTOb(Mz-1,j) .  
j=1 

For the rest of the states, we can derive, for i = O..D - 1 
a n d j  = 2..T - 1, that 

Prob(M2,1) = Prob(M2,o). (1 - q)  
PTOb(M2,j) = P?-Ob(i,lfi,j-1) . p . 

Cvrrent call Prewos call 
I , 
i- k, -* 

H.. . I&{. . .  I+, 
TlmC 

t z  tl 
t k* . 

(b) 

Figure 4. Relationship of t l  (time of the previ- 
ous call) and t2  (time of the subscriber enter- 
ing the move state): (a) t l  < t2 and (b) tl 2 t2. 

There are DT + 1 state probabilities to be determined. 
From the above equations, we can obtain for i = O..D - 1 
and j = 1.T- 1 that (note that only those state probabilities 
that will be used subsequently are shown here) 

Prob(S) = (1 - q)pT-’ / (2  - p - q )  

Recall that in our strategy there are three events which 
will trigger a mobile subscriber to update its location: (i) the 
subscriber switches from stop to move, (ii) the subscriber 
switches from move to stop, and (ii i)  under the move state, 
the subscriber crosses D cell boundaries. These events are 
illustrated in Fig. 3 by dashes. Let Cu be the cost to perform 
an undate. Then the average update cost per time unit is: 

i=O..D-1 j=O. .T-1  

(1 - P)( l  - 4)PT-’ ( 2  - [4 + (1 - 4)(1 - pT-’ID) 
( 2  - P - q)(l - 19 + (1 - q ) ( l  -PT-” 

= c, . . 

Next, we calculate the paging cost per call. Let the cost 
to page a cell be Cp. Consider the time when a call arrives. 
There are two possibilities. If the subscriber is under the stop 
state, then the cost is C,. Multiplying by the probability that 
the subscriber is under the stop state, the cost is 

Cstop = PTob(S) . c,. 
Otherwise, there is a probability of 1 -Prob(S) that the sub- 
scriber is under the move state. Consider the time tl when 
the previous call arrived and the time t 2  when the subscriber 
entered the current move state (refer to Fig. 4). There are 
two cases. 
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1 .  t l  < t 2 :  If so, there was an update at time t 2 .  The pag- 
ing cost will depend on the number of boundary cross- 
ings (say k )  that the subscriber has made from t 2  to 
now. Specifically, from t 2  to now, the subscriber would 
update every time when it made D boundary crossings. 
The probability that the subscriber has made exactly k 
continuous boundary crossings is ( 1  - q)qk  (i.e., k con- 
tinuous moves preceded by a stop were made). Also, to 
satisfy tl < t 2 ,  there must be no calls arriving from 
t 2  up to now, which has a probability of eCXck .  As a 
result, the paging cost under the condition that t l  < t 2  

is 

m 

k=O 

. PAGE(k mod D), 

where PAGE(i) is the cost to page a subscriber which 
is under the move state and which has made i boundary 
crossings before its previous update. 

2. t l  2 t 2 :  If so, there was an update at time t l .  Sup- 
pose that there are kl time intervals from t l  up to now, 
and k2 time intervals from t 2  up to now. Similar to the 
earlier case, the paging cost will depend on the value of 
kl , the number of boundary crossing from t l  up to now. 
The probability that the subscriber has made exactly IC2 

continuous boundary crossings is ( 1  - q ) q k z .  The prob- 
ability that the call prior to the current one happened at 
tl is 

e- -Xckx * ( 1  - e-Xc) .  

Since kl must be less than k2, the paging cost when 
t l  2 t 2  is 

03 k z - I  

As a result the paging cost per call is 

Summing all the above together, the total update and paging 
cost of our strategy in one time unit is 

Ctota l  = C u p d a t e  + (A,) * C p a g e  (2) 

4 Cost Optimization with Location Predic- 
tion and Selective Paging 

One unsolved problem in the previous section is the pag- 
ing cost PAGE(i), which was defined to be the cost to lo- 
cate a subscriber which has made i boundary crossings after 
its previous update (of course, the value of i is unknown to 

the HLR). If no selective paging is applied, the HLR will 
search all the cells that are within a distance of D - 1 from 
the previous update cell. In this case, PAGE(i) will be in- 
dependent of i, giving 

PAGE(i) = Cp * (3 (D  - 1)2 + 3(D - 1 )  + 1 ) .  

On the contrary, if a selective paging is applied, the above 
PAGE(i) will change and it is possible to further optimize 
the paging cost. 

In the following, we first show how to predict the sub- 
scriber’s location under the move state. We will conduct the 
prediction based on the assumption that the subscriber has 
a “memory of roaming direction” as discussed in Section 2. 
Then we will show how to optimize the paging cost by inte- 
grating these predictions with PAGE(i). 

4.1 Location Prediction with Directional Prefer- 
ence 

Suppose a subscriber is under the move state. Consider 
the six roaming directions as 0, 1, 2, 3 ,4 ,  5 in Fig. 2. Based 
on our “memory of roaming direction” assumption, let’s 
assume that the probabilities that the subscriber will roam 
from its current cell toward these directions be a ,  b ,  c, d, e ,  f, 
respectively (these probabilities may be obtained from the 
user’s previous roaming pattern under the same move pe- 
riod). 

Let z be the cell where the subscriber registered previ- 
ously. Given any cell y,  we will derive the probability that 
the user will be located in cell y after the user made n bound- 
ary crossings, denoted as P,(n). Apparently, Pz(0) = 1, 
which means that without boundary crossing, the user must 
be located in the original cell. 

To resolve our problem, we need a scheme to number 
cells. Fig. 5 shows our numbering scheme. The numbering 
is relative to cell 2. 

1. Number the cell on the north of z by 0, and that on the 
same direction at a distance of k by O k .  Similarly, for 
the other five neighbors of z, number them by 1 ,  2, . . . , 
5, and those on the same directions at a distance of k 
by l k ,  2 k , .  . . , 5 k .  (Refer to the gray cells in Fig. 5(a).) 

2. The above numberings (for gray cells) have partitioned 
the area into 6 sectors of cells. To number the other 
cells, let’s take the cells in the sector bounded by cells 
li and 22,i = l . . ~ ,  as an example. The cell that will 
form a parallelogram together with cells z, 12, and 2 j  

will be numbered l i 1 2 j ,  where ‘‘I” means a string con- 
catenation (refer to Fig. 5(b)). The cells in the other 
sectors are numbered similarly. 

Clearly, when n = 1, we have 

Po(1) = U , P l ( l )  = b,P2(1) = c, 

Ps(1) = d,P4(1)  = e,P5(1) = f ( 3 )  
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Figure 5. (a) Numbering of cells with respect 
to a cell z. (b) Numberings based on a paral- 
lelogram coordinate. 

For n > 1, we will take a recursive approach. Consider 
any cell y.  Let yo, y1, . . . , y 5  be the six neighbor cells of y 
along directions 0, 1, . . . , 5, respectively. The probability 
that the user will stay at y after n boundary crossings is the 
sum of the probabilities that the user stays at the six cells 
yo, y1, . . . , y 5  after n - 1 boundary crossings, and the last 
boundary crossing brought the user to y. This leads to 

Py(n) = PYo(n - 1) . d + Pyl (n  - 1) . e + Py2 (n - 1) . f 
+ Py3(n - 1) . a  + Py4(n - 1).  b +  Py5(n - 1). c 

(4) 

This equation can be expressed more specifically if the num- 
bering for cell y is known. When y = Oi, we can rewrite 
Eq. (4) as 

P y ( n )  = P y l t ( y ) ( n - l ) . d + P y l l ( n -  

+ P r ( y ) I l b  - 1).  f + - 1) . a 

f P 5 1 r ( y ) ( n  - l) ' b + P51y(n - l) ' c, 

where t(y) is the last element of y (i.e., tail), r (y )  is y after 
removing t(y) (i.e., pIefix). In general, for cells y = ik, 
i = 0..5, substituting a, b,  c, d, e, f by the probabilities in 
Eq. (3), we have 

Py(n) = Pylt(y)(n - l) ' q t ( y ) + 3 ]  mod 6 ( l )  

+ Pyl[t(y)+l] mod 6(n  - 1) . P[t(y)+4] mod 6 ( l )  

+ Pr(y)l[t(y)+l] mod 6 ( n  - l) ' q t ( y ) + 5 ]  mod 6 ( l )  

+ P r ( y ) b  - 1). Pt(y,(l) 

where h(y) is the first element of y (i.e., head), s(y) is y 
after removing h(y) (i.e., suffix). In general, substituting 
a ,  b,  c, d, e ,  f by the probabilities in  Eq. (3), we have 

P Y  (n)  = P r ( y )  (n  - 1) . P t ( y )  (1) 
f Pylt(y)(n - l) ' q t ( y ) + 3 ]  mod 6 ( l )  

+ Ph(y)ly(n - l) ' q t ( y ) + 2 ]  mod 6 ( l )  

+ Ph(y)lr(y)(n - l) ' q t ( y ) + l ]  mod 6 ( l )  

f Ps(y)(n - l) ' q t ( y ) + 5 ]  mod 6(l) 

f Ps(y)lt(y)(n - l) ' P[t(y)+4] mod 6 ( l ) .  

(6) 

Lemma 1 Let 3: = iml(i + 1 mod 6)n-m, where i = 0 . 5  
Then P,(n) = Czi"(i + 1 mod 6)n-m. 

4.2 Cost Optimization 
With the above derivation, we can formulate PAGE(i), 

which is defined to be the paging cost when the mobile sub- 
scriber is known to make i boundary crossings after its previ- 
ous update. We will adopt a selective paging strategy similar 
to [ 2 ] .  Suppose that the previous cell where the subscriber 
registered is z. Based on the selective paging scheme, sup- 
pose we divide the cells that are at a distance of D - 1 from 
z into c subsets of cells, S1 , Sz, . . . , S,. Then we will page 
the subset (of cells) S1 first. If this succeeds, the paging is 
completed and the cost will be IS1 I . C,. Otherwise, we will 
page the second subset Sa, and the cost will be 

where the leading probability is that for the subscriber not in 
SI. If this succeeds, the paging is completed; otherwise, S 3  

will be paged, which will cost 

This will be repeated until last subset S, is searched. The 
total cost will be 

When y is a mixture of different symbols, we need a dif- 
ferent approach. Let cell y be in the sector bounded by the 
cells Oi and 12, i = l..co, we can derive that 

YES1 us2u..  US, - 1 
P y ( 4  = P r ( y ) ( n  - 1) . b + P y l t ( y ) ( n  - 1) . e 

+ P h ( y ) l y ( n  - 1) . d + P h ( y ) l r ( y ) ( n  - 1) . c 

+ P s ( y ) ( n  - 1) . a + P , ( y ) l t ( y ) ( n  - 1) . f, 
Next, we integrate the above cost into the Ctotal in 

Eq. (2). This will give the exact cost of our update and 
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Table 1. The parameters used for comparison. 

boundary crossing threshold ( D )  
transit-to-stop threshold ( T )  

paging delay ( c )  
call arrival rate (A,) 

transition probabilities ( p ,  q )  

0.005,0.01,0. I ,  I 

0.7 - 0.99 

I 0.02,0.04, 0.15) I 

paging strategy. It remains to determine the way the par- 
tition the cells within a distance of D - 1 from 2 into sub- 
sets SI , SZ, . . . , s,. One simple approach when D and c are 
small, is to exhaustively test all possible partitions to find 
the optimal partition which will give the smallest Ctotal. We 
believe that in reality these two values will not be too large. 

5 Performance Comparisons 
In this section, we compare the performances of the 

movement-based scheme and our scheme based on the 
above analysis. Under the TSM model, the movement-based 
scheme will have a total cost of 

+ (3 (D  - 1)’ + 3(D - 1) + 1) . C, . A,. 

(The first term is the probability that a subscriber makes a 
boundary crossing in one time unit times the probability that 
this is the d-th boundary crossing times the update cost. The 
second term is the paging cost since we do not use selective 
paging.) The parameters used in the comparison are in Ta- 
ble l .  In our scheme, an exhausted search is used to find the 
best partitioning of SI , SZ, . . . , S,. 

A)  Efsects of the Boundaq Crossing Threshold D:  Fig. 6 
shows the costs at various D under different call arrival 
rates A,. As can be seen, at low A, (0.005 and 0.01), the 
movement-based scheme is better when D is small, but will 
degrade faster than ours as D gradually increases. When 
A, 2 0.1, our scheme is better in almost all range of D.  
This is because our scheme pays more update cost to catch 
the state (move or stop) of the subscribers, hoping in reward 
of lower paging cost. Thus, at low A,, the benefit will be 
overwhelmed by the higher update cost. With calls arriving 
more frequently, the benefit will be more significant. Thus, 
our scheme is more useful in busy environment. 

B) Effects of Transit-to-Stop Threshold T :  In the previ- 
ous comparison, we used a fixed T = 3. Fig. 7 shows the 
costs at various T under different A,. At lower A,, increas- 
ing T will reduce the total cost. On the contrary, at larger 
A,, increasing T will slightly increase the total cost. This 
shows an interesting behavior that a larger T will decrease 
the accuracy in predicting subscribers’ states (move or stop). 
Thus, this may result in a higher paging cost. However, at 

1 6  
1.4 

g 1.2 

Q ::% 3 0.4 
0.2 

,.- r +Movement 

2 3 4 1 6 1  2 3 4 1 6 7  
Boundary sroiiing threshold (D) B o u o d y  sroiiin‘ threshold (D) 

( 8 )  (b) 

-Movement 

3100 - s = 2  

2 3 4 5 6 7  1 3 4 1 6 ?  
Bouadsry crossing threshold (D) Boundary crcming threihold (D) 

(E) (4 
Figure 6. Costs at various boundary crossing 
threshold D when (a) A, = 0.005, (b) A, = 0.01, 
(c) A, = 0.1, and (d) A, = 1 (T = 3, C, : Cp = 1 : 
1, p = q = 0.9). 

the same time a less number of update messages will be sent. 
Since the call arrival rate A, will affect the paging cost, this 
explains why we see different trends for different A,. 

C )  Efsects of Call Arrival Rate A,: Both of the above 
experiments show that the call arrival rate has some effect 
on our scheme. To understand this issue, we show Fig. 8 
by varying A,. The figure is drawn by separating the update 
cost and paging cost. As can be seen, the paging cost will 
increase sharply as A, increases, while the update cost is 
quite insensitive to the change of A,. Also, note that we 
have used C, : C, = 10 : 1 in this experiment to signify 
the update cost. Thus, it is worth-while to use our scheme, 
especially when calls arrive more frequently. 

D )  Efsect of Transition Probabilities p and q: Recall that 
p (resp., q )  is the probability for a host currently in the stop 
state (resp., move state) to remain in the same state in the 
next moment. To understand how these probabilities affect 
our scheme, we show Fig. 9. The result in Fig. 9(a) shows 
that a largerp and a smaller q will favor our scheme. The in- 
tuition is as follows: (i) a larger p implies a higher probabil- 
ity that a mobile host remaining in the stop state, and thus a 
larger saving in paging (we may find the host in “one shot”), 
and (ii) a larger q implies a higher probability that a mobile 
host remaining in the move state, and thus higher inaccuracy 
in determining its location when calls arrive. Fig. 9(b) shows 
the amount of improvement by our scheme as compared to 
the movement scheme. The range of improvement is about 
6 times to 12 times. 

6 Conclusions 
We have proposed a new traveling salesman mobility 

(TSM) model to characterize mobile subscribers’ roaming 
pattern. Most existing works assumed a random walk roam- 
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